
A Timing-driven Data Path Layout Synthesis

with Integer Programming

Jaewon Kim and S. M. Kang

Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, 1308 W. Main St., Urbana, IL 61801

Abstract
We propose an e�cient data path synthesis algorithm which

generates bit-sliced layouts. Since data path circuits have spe-
cial characteristics which are di�erent from those of random
logic circuits, the dedicated synthesis system is required for ef-
�cient layouts. Our main goal in the data path synthesis is
to satisfy the timing constraints of circuits as well as to re-
duce layout areas. Timing-driven placement and over-the-cell
routing techniques are developed to generate data path modules.
Also, signal interfaces between bit-slices are carefully considered
to further reduce layout areas. Our synthesis techniques take
advantage of the common characteristics of data path structures
under timing constraints and applies mixed integer linear pro-
gramming approach to solve the problem. The superior results
from our data path synthesis system are demonstrated through
comparison with the layout results with the simulated annealing
technique.

Introduction
In [1, 2, 3], data path layout synthesis systems were in-

troduced to take advantage of common characteristics of data
paths. The layout area minimization with the linear placement
of function blocks was the major concern in the previous works.
A data path module was assumed to be stacked bit-slices that
have leaf cells in one-dimensional array. Even if time delay is
an extremely important factor in data path design, they did not
address the timing and the control signal interface issues, which
may lead to the performance bottleneck.

In this paper, we present an e�cient synthesis technique
for data path modules. It uses unique performance-driven
placement and routing that are specially developed to take
full advantage of the common characteristics of regular data
path structures. Our placement algorithm uses the path-based
approach[4] which tries to minimize the most critical delay path
under 0 timing requirements. To enforce timing requirements
rigorously, path delays are calculated using the internal MOS
channel resistance values of cells and the estimated capacitance
values of routed nets. Our routing algorithm, in conjunction
with the placement algorithm, tries to minimize the delays of
individual nets to ensure the total path delays are within the
limits. The physical and delay requirements are represented
with linear equations in compact format through several steps
to manage large data path circuits. We also pay special atten-
tion to signal interfaces between bit-slices, which are usually
critical paths in data path modules.

Data Path Synthesis
We assume that data signals
ow horizontally, while control

signals
ow vertically. Figure 1 shows the usage of the horizontal
and vertical signal
ows in a four-bit data path left to right and
top to bottom, respectively. We note that this characteristic,
if harnessed properly, can contribute to the reduction of circuit
delays. For the abutment of the duplicated rows, the interface
between data path rows should allow direct signal
ow without
signal reordering.

Control signals that run vertically are divided into two cate-
gories in our data path synthesis. One is for feed-through signal
and the other is for carry-chain signal. The feed-through signal

Data

Data

Data

Data 0

1

2

3

Control

Figure 1: Four-bit data path.

Datapath Row 3

Datapath Row 2

Datapath Row 1

Datapath Row 0

(a) feed-through signal

Datapath Row 3

Datapath Row 2

Datapath Row 1

Datapath Row 0

(b) carry-chain signal

Figure 2: Vertical signals.

is from the control logic unit that is usually located above a
data path unit, but the carry-chain is for control
ow or special
data
ow between data path units such as carry-in and carry-
out in full adder implementation. Figure 2 shows examples of
the feed-through signal and the carry-chain signal in a four bit
data path. We note that the incoming and outgoing signal loca-
tions in both cases should be consistent for the direct interface
between data path rows. In the carry-chain example of Fig. 2,
the delay from the carry-input to the carry-output in a data
path row may be relatively small. However, if we do not enforce
carefully the timing constraints on the local delay, the delay will
be ampli�ed four times in the output of the least signi�cant row,
which can be unacceptable in global view.

Placement
Since the net delay in the long path from input signal to

output signal can be unacceptable for the given timing require-
ments, the net delay should be carefully considered in the place-
ment step. In order to reduce the di�culty of the placement
problem, we divide the entire problem into three phases; initial
placement, slot assignment, cell row assignment.

In the �rst and second phases, we consider one-dimensional
array as the platform for cell placement and try to �nd the best
permutation of cells. In the third phase, each cell is allowed
to move to the speci�c cell row, if the data path row has more
than one cell row. We apply the mixed integer programming
technique to the �rst and the second steps separately to uti-
lize available integer programming packages. Suppose a circuit
has n basic cells. The objective of the placement is to opti-
mally assign all the basic cells in the circuit into n slots. If we
apply the 0-1 integer programming technique to this permuta-
tion problem directly, O(n2) variables and constraints will be
necessary to formulate the problem. We divide the integer pro-
gramming process into smaller problems. The cell positions in
one-dimensional array and the delay speci�cations are primar-

ily considered in the mixed integer programming. An instance
of cell placement in a linear array is chosen among n! solution
space. However, some cells may share the same position due to
the coarse resolution of the constraints. In the second phase,
slot assignment, the placement con
ict is resolved, where the
constraints and the objective function can have �ner resolu-
tions. After the con
ict resolution, the complete cell locations
in a linear array are provided. In the third phase, each cell is
assigned to a particular cell row by the row select algorithm,
which minimizes unnecessary vertical connections.

initial placement

Let c1; c2; � � � ; cn denote the cells in a circuit with inputs
f1; f2; � � � ; fm and outputs g1; g2; � � � ; gl. While the heights of
the cells are kept to be the same, the widths of cells can be
di�erent from each other. In order to estimate the lumped ca-
pacitance value of a net, we de�ne the average width as

�w =

P
n

i=1
width(ci)

n
:

Then, the corresponding one-dimensional array consists of
n slots each with width �w. To represent the position of the
cells, n integer variables x1; x2; � � � ; xn are de�ned to be the slot
numbers for cells c1; c2; � � � ; cn, respectively.

1 � xi � n; 1 � i � n:

Since we assume that the primary inputs enter the left side
of the data path and the primary outputs exit from the right
side of the data path, the main signal
ow is mostly in the
left-to-right direction. To enforce the signal direction, the cell
positions are ordered according to the signal
ow.

While we restrict the signal
ow in the data path, in some
special cases the reversal of direction may be inevitable. Since
the associated input and output positions of the carry-chain
should be consistent, it is inevitable in this case that the sig-
nal
ow should be allowed in the reverse direction. In order
to represent the timing speci�cations of a circuit by linear al-
gebraic equations, the delay models has to be established. For
delay modeling, each CMOS gate is converted to its equivalent
inverter with the corresponding parameters[5]. The parasitic
capacitance of each net is assumed to be proportional to the
net length. Propagation delay of the net is found based on the
cell's load capacitance and inherent resistance using Elmore de-
lay formula[6].

For the critical path delay modeling, we consider the propa-
gation delay from the latest arrival input of the cell to its fanout
cells through output[7]. Let arr(ci) denote the latest signal ar-
rival time in ci. The signal arrival times of the primary inputs
are given in the timing speci�cation of the circuit. In Fig. 3,
the delay expressions for cr are denoted as

arr(cr) � arr(cp) + del(cP) +Req;cp (
~C �w(xcr � xcp)

ROW

+ Cint;cp +Cgate;cr);

arr(cr) � arr(fr) + Req;fr (
~C �wxcr
ROW

+ Cint;fr +Cgate;cr);

where del(cp) is the given internal delay of cp, ROW is the
number of cell rows in a data path row, Cint;cp is the parasitic
capacitance of cell cp, Cgate;cr is the gate capacitance of cell cr
and Cint;fr is the given capacitance of primary input fr. Note

net length term ~C �w(xcr � xcp) is divided by ROW in the �rst
equation.

In order to enforce the maximum path delay in circuits, the

required signal arrival time for each primary output and carry-
chain output is given. To ensure the required signal arrival time,

each output should have timing constraint. In Fig. 3, the delay

expressions are represented as

arr(gq) � arr(cq) + del(cq) +Req;cq (
~C �w(xgq � xcq)

ROW
+Cint;cq);

C

C

C

p

p

q

r

f

f

f

g

g

p

q

r

q

Figure 3: Data path circuit ex-
ample.

s

cc ba

s s

c ca b

1 2

Figure 4: Slot sharing.

C C3 6 nCC C5 7C C C C2 1 4 8

current window

(a) cell array, orderedCell

current position

(b) assigned cell rows

Figure 5: Row assignment.

arr(gp) � arr(cr) + del(cr) +Req;cr (
~C �w(xcr � xgp)

ROW
+Cint;cr);

req(gq) � arr(gq) +MINSLACK;

req(gp) � arr(gp) +MINSLACK;

where MINSLACK represents the minimum slack time in all
path from the primary inputs to the primary outputs in the
circuit. MINSLACK < 0 means the violation of the speci�ed
timing constraints. While we maintain MINSLACK � 0, we
need to maximize MINSLACK to reduce the critical path delay.
With the above equations, the constraints are well established.

In the �rst phase of placement, both critical timing delay
and the total net length should be minimized. MINSLACK can
represent the timing term, while the total net length can be
induced to the total net delay. The objective function for the
integer programming is

maximize MINSLACK - TOTAL NET DELAY;

where
TOTAL NET DELAY =

~C
P

i
Req;cinet length

ROW
:

slot assignment
While the placement result provides assignment of cell into

one dimensional array slots, some cells may share the same slots
due to the lack of con
ict resolution in the initial placement
phase. In order to solve this problem, we generate more detailed
placement constraints and objective function and apply them
to the 0-1 integer programming technique. Figure 4 shows the
example of such slot sharing case in which slot s is shared by
two cells, ca and cb.

Each shared slot is expanded to as many slots as the number
of sharing cells. Then, we �nd the best permutation of the cells
to �t them into the expanded slots.

cell row assignment
The use of multiple cell rows in a data path row can cause in

the reduction of the total net length. Even though the vertical
delay in a data path row may be negligible, the vertical connec-
tion may cost another resource, pass-through between channels,
which is limited according to the cell design. While the previous
phases are mainly concerned with the net delay in the horizon-
tal direction, in the cell row assignment the main concern is on
the pass-throughs. Hence, cells should be placed in the multiple
rows reducing the required number of pass-throughs.

The row assignment of cells is performed one cell at a time
in the constructive manner from either side of the data path

row as shown in Fig. 5. Among the cells in the current window,
the best cell for the current position is chosen and placed. The
placed cell is removed from the window and the next candidate
cell is inserted in the window.

RowAssignment(orderedCell):

for every row

initialize length[row] of each cell row to 0

window = �

for i = 1 to WINDOWSIZE
window = window [PickNextCell(orderedCell)

while window 6= �

choose row with the minimum length[row]

candidate = �

for every cell in window

calculate weight(cell)

choose cell with maximum weight(cell)

assign cell to row

length[row] = length[row] + width(cell)

window = window � cell

window = window [PickNextCell(orderedCell)

end while

Figure 6: row assignment
The row assignment algorithm is shown in Fig. 6. The one-

dimensional cell array, orderedCell is obtained from the pre-
vious placement. WINDOWSIZE is the user-speci�ed constant
and not less than the number of cell rows in a data path row. In
order to balance the length of the rows, the row with the least
length is picked for the cell assignment. window is the set of the
cells which are chosen from orderedCell according to the place-
ment order. Given WINDOWSIZE, the cardinality of window
is restricted to the number. To �nd the best cell for the chosen
row, the calculation of weight on each cell should be achieved.
The cell with the maximum weight value takes the slot in the
row and it makes the row longer as much as the width of the
cell. After a cell is assigned to a row, the cell is removed and
the next available cell in orderedCell is appended to window.
The time complexity of the row assignment algorithm is linearly
proportional to the number of cells in the circuit, O(n).

Routing

Once each cell is placed in the row-based platform, the next
step is to connect the nets between the terminals of the cells.
Since we pursue the channel-less routing, the net routing is per-
formed over the cell area with the upper two metal layers, which
are metal2 and the metal3 for vertical connection and horizon-
tal connection, respectively. As mentioned earlier, a data path
row is a long series of cells. Thus, the capacity of the horizontal
connection is limited in the over-the-cell area. Hence, the usage
of horizontal tracks should be optimized in order to reduce the
layout area. Our routing strategy is to assign one horizontal
span for each net as much as possible, which guarantees that
the signal delay on each net is minimized.

The routing step is composed of three steps; horizontal seg-
ment assignment, pass-through assignment, and detailed rout-
ing. The horizontal segment assignment is achieved by forming
a horizontal metal segment for each net, which will expand the
entire horizontal span of the net in a data path row. The verti-
cal segment assignment covers the connection between the main
horizontal segment and the terminals that are not adjacent to
the horizontal segment. The �rst two steps are performed with
linear programming technique, which attempts to maximize the
e�ciency of resource usage on the basis of placement result.
If there exist some nets that are not completed in the steps,
a maze router handles such nets one at a time. Sometimes,
it may not complete the net connection due to the insu�cient
routing resource. In such a case, the horizontal track capacity or
pass-through capacity needs to be expanded depending on the
situation and rerun the routing step. After the global routing is
done, the conventional channel routing technique is applied to
achieve the detailed routing over the cell area.

horizontal segment assignment

The main objective of the �rst step in routing is to assign
at most one horizontal span to each net. The horizontal span
of a net should cover horizontally all the terminals that are
associated with the net. Since the height of a data path row is
usually much smaller than the width, one horizontal span with
some pass-throughs is enough for the connection of a net. This
approach reduces the performance degradation which can be
caused by the use of doglegs and vias.

The terminals are assumed to be available in the middle of
the individual cells to maximize the OTC routing capacity. We
de�ne channel to be the routing space in the OTC area be-
tween two terminal rows. Figure 7 shows an example of four
channels on the OTC area. Under our assumption on the po-
sitions of the terminals, the terminals should be aligned on the
boundaries of the channels. The channel area is also divided
vertically into column blocks. The size of each column block can
be set to an arbitrary positive number. In Fig. 7, each column
block provides three vertical tracks. Since the vertical tracks are
dedicated to metal2 that is used for the terminals on the chan-
nel boundaries, the existence of a terminal reserves the vertical
tracks for the corresponding net and terminal connection. If no
terminal exists on a boundary of a vertical track, the position
of the vertical track can be used as a pass-through between the
channels. Initially, all pass-throughs are left unoccupied. Since
our individual cell platform allows at least one pass-through in
a cell, the size of a column block is typically set to

max(width(ci)); 1 � i � n;

to evenly distribute the pass-throughs over the column
blocks. For the size of the column block described above, each
column block can have at least one unoccupied pass-through.

Channel 0

Channel 1

Channel 2

Channel 3

Terminal

Unoccupied Pass-Through

0 1 2 3

2 3 4 5 6 5 6

9710871

10 8 2 3 11 10

Column

1212

Figure 7: Channels on data path.

pass-through assignment

Once the horizontal segments are assigned for the nets, the
terminals should be connected to the associated horizontal seg-
ments to complete the net connection. If the associated ter-
minal is on the boundary of the channel where the horizontal
segment belongs, the vertical connection between the horizon-
tal segment and the terminal will be made without any need
of pass-throughs. Otherwise, the connection should be made
through pass-throughs to penetrate the channel boundary. The
pass-throughs are the valuable resource and their usage should
be optimized.

Since no more than one path should be chosen among the
possible routing paths, the following constraint is introduced.

X

k

Fi;j;k � 1;

for net i that needs the terminal connection at column block
j, with k possible routing paths. Note that the terminal connec-
tion path may cost horizontal tracks in column blocks as well
as pass-throughs. Since horizontal tracks and pass-through are
limited, the constraints for the resource usage are speci�ed as

X

i

X

j

X

k

qi;j;kFi;j;k � pu;u+1;v ;

Data Path Synthesis SA
circuit gate net time area max path max path time area(�) max path max path

name number number (sec) (�2) output(�) carrychain(�) (sec) (�2) output(�) carrychain(�)

circuit1 11 14 3.16 34496 352 288 9.9 34496 352 288
circuit2 26 32 14.73 75264 768 1118 21.7 75264 1082 2193

circuit3 33 42 8.9 53360 920 1204 25.6 60720 920 1204
circuit4 61 66 9.15 120516 1824 2950 54.5 124032 1826 4322

ti alu 36 50 29.93 105000 1250 1236 34.7 112437 2282 1594

revised ti alu 36 50 31.56 102384 1410 1268 34.3 111136 1544 1616

Table 1: Test results.

where qi;j;k = 1 if and only if the path represented by Fi;j;k

needs any pass-through track between channel u and u+ 1 on
column block v, otherwise qi;j;k = 0. Similarly,

X

i

X

j

X

k

si;j;kFi;j;k � tu;v ;

where si;j;k = 1 if and only if the path represented by Fi;j;k

is routed on channel u and column block v, otherwise si;j;k = 0.
The track capacity tu;v should be reassessed after the horizon-
tal segment assignment step to re
ect the pre-routed horizontal
segments.

The objective function for the 0-1 integer linear programming
in the pass-through assignment step is described as

maximize
X

i

X

j

X

k

Fi;j;k(1�
fi;j;k + gi;j;k

hi
);

where fi;j;k denotes the number of pass-throughs that are nec-
essary for Fi;j;k, gi;j;k denotes the number of column blocks
where Fi;j;k needs the horizontal tracks and

hi =
X

j

X

k

fi;j;k +
X

j

X

k

gi;j;k :

detailed routing

If all the appropriate connections are made with the pre-
vious steps, the conventional channel router can perform the
detailed routing in each channel e�ectively. Since we use only
metal2 and metal3 for the inter-cell routing purpose, the chan-
nel area on the OTC area can be considered as a conventional
channel area, which is empty area between two rows of cells.
If all connections are partially made due to resource con
ict,
the incomplete nets are routed one at a time by a maze router.
Each block is regarded as a grid in the maze routing. When the
maze router can not complete the connections due to the lack
of resources, we have to provide additional horizontal tracks or
pass-throughs depending on the situation and start the routing
steps again. Based on the result, the complete routing is shown
in Fig. 8.

Channel 0

Channel 1

Channel 2

Channel 3

0 1 2 3

2 3 4 5 6 5 6

9710871

10 8 2 3 11 10

5
6

9

10
11

1 3
2

8

Column

12 12

Figure 8: Data path with complete routing.

Experimental Results
We have implemented the performance driven data path

placement and routing algorithm with the linear programming
technique in C on SPARCstation 10/30. It has been tested
with several data path circuits that include MCNC benchmark
circuits. The input circuit is described in net lists, gate type

speci�cations and maximum timing delays between circuit in-
puts and outputs. The physical layout of each circuit has been
generated. To compare the quality of the results, we have gen-
erated the physical layouts with the simulated annealing tech-
nique(SA). For fair comparison, the same layout technology us-
ing the fully customized cells and the triple layer over-the-cell
routing technique was applied to both methods. The results of
the circuits are summarized in Table 1.

The results in Table 1 are produced in one bit layout of each
circuit. ti alu and revised ti alu are from TI74181 ALU. The
maximum path of output and the maximum path of carry-chain
represent the most critical paths in the circuits, respectively.
The distance and the area are measured in terms of � and �2

which are the scalable units. As shown in Table 1, the area
di�erences are rather small, but the critical path delays behave
quite di�erently, especially in the carry-chains. Furthermore, if
the multiple bits of the circuits are stacked up, the di�erences
in the total carry-chain delays will be much greater.

As the number of gates in a circuit increases, the cpu time of
SA increases. However, the cpu time of our data path synthesis
algorithm is more dependent on the circuit behavior rather than
on the number of gates.

Conclusion
In this paper, we have presented a new data path synthesis

system that is based on the performance driven placement and
routing algorithm with linear programming technique. Our al-
gorithms take account of general characteristics of data paths
to generate area-e�cient layouts with satisfying given timing
constraints. With the restraints on signal
ows and track as-
signment policy, it guarantees minimal signal delays on each net
connection. Our synthesis system is shown to generate superior
results for regular data path circuits in view of both timing de-
lay and area than the conventional layout approach. Since the
data path synthesis has the special characteristics of long struc-
ture, carry-chain and feed-through handling which distinguish
it from random logic synthesis, dedicated placement and rout-
ing schemes need to be used for the improvement of physical
layout, circuit performance and the layout area. To generate
more area-e�cient data path layouts, data path modules with
irregular structures should be considered in the future.

References

[1] H. Cai et al.,\A data path assembler for high performance
DSP circuits," Proc. 27th DAC, pp. 306-311, 1990.

[2] M. Shiochi et al., \New design approach for con�gurable
data-path," Proc. 1990 CICC, pp. 14.5.1-4, 1990.

[3] Y. Tsujihashi et al.,\A high-density data-path generator
with switchable cells," IEEE J. Solid-State Circuits, pp.
2-8, Jan. 1994.

[4] T. Gao et al., \A performance driven macro-cell placement
algorithm," Proc 29th DAC, pp. 147-152, 1992.

[5] S. M. Kang and Y. Leblebichi, \CMOS digital integreated
circuits: analysis and design," McGraw Hill, 1995.

[6] W. C. Elmore, \The transient response of damped linear
networks with particular regard to wideband ampli�er," J.
Applied Physics, vol. 19, Jan. 1948.

[7] M. A. B. Jackson and E. S. Kuh,\Performance-driven
placement of cell-based IC's," Proc. 26th DAC, pp. 370-
375, 1989.

	ICCAD95
	Front Matter
	Table of Contents
	Session Index
	Author Index

