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Abstract
In this paper, a new approach to analog test design based
on the circuit design process, called Characteristic Obser-
vation Inference (COI), is presented. In many situations,
it is prohibitive to directly verify the circuit specifications
due to the test equipment costs. Our approach consid-
ers a given universal set of reasonable input stimuli and
measurements that can be performed with the given test
equipment. From this universal set, a minimal number of
measurements is automatically selected that represent a set
of observations characterizing the state of the circuit under
test with respect to parametric faults. A parametric fault
model is introduced which is related to the individualcircuit
specifications. For each given circuit specification, a cor-
responding test inference criterion is computed, based on
logisticdiscriminationanalysis. By applying these criteria,
the satisfaction or violation of the given circuit specifica-
tions can be inferred from the observations of the circuit
under test.
The COI method applied to a complex operational amplifier
yields very encouraging simulated results with respect to
parametric faults as well as to catastrophic faults.

1 Introduction
Parametric testing of analog circuits is a topic of growing
importance [1].
The faults of an analog circuit are usually split into two
classes [1]: Parametric faults, which result e.g. from in-
evitable fluctuations inherent to the manufacturing process
are usually modeled by small deviations of the circuit pa-
rameters. Catastrophic faults, due to e.g. spot defects, are
usually modeled by a topological change of the circuit.
The detection of parametric faults is regarded as a much
more difficult problem than the detection of catastrophic
faults [2]. Commonly, parametric testing of analog circuits
is done by verifying all circuit specifications. A circuit is
accepted if all specifications are satisfied. In [3], a more
sophisticated test decision based on aggregating all func-
tional tests is presented. Nevertheless, evaluating all per-
formances of the circuit results in a very long production
testing time and in strict demands on test equipment. Due
to these reasons, analog testing is very expensive. It is esti-
mated to account for about 30% of total manufacturing cost
[2]. So the goals of an analog test design are production
testing with reasonable test equipment and in short testing
time.
The latter is e.g. addressed by the authors in [2, 4, 5].

In [2], a time–optimal ordering of the functional tests is
determined and for a given fault coverage some tests can
even be eliminated. In [4], an approach called ‘Predictive
Subset Testing’ is presented. Here, a subset of functional
tests is determined that is under certain conditions sufficient
to test the whole circuit. The approach of [5] determines
a minimal number of functional tests such that the system
performance is within given bounds. All these approaches
need to evaluate the given circuit performances.
In [6], analog fault detection is addressed under the as-
sumption of dc and ac nodal voltage measurements for
linear circuits. A hypothesis test is performed with re-
spect to parametric faults. In [7], neural networks are used
for fault diagnosis of analog circuits, and different meth-
ods for establishing training data sets are investigated. In
both approaches, the fault model with respect to parametric
faults is geometrically defined in the parameter space. In
[6], hyperellipsoids that represent the process statistics are
used, while in [7], coordinate hyperplanes are assumed that
bound parameter tolerances. As analog testing consists of
validating a circuit’s functionality, e.g. by checking the sat-
isfaction of the given specifications, it seems worth striving
for a fault model closer related to the given specifications
of the circuit.
This paper presents a new and very efficient method for the
test design of analog circuits. The COI method is based
on a novel fault modeling that is closely related to circuit
design methodologies [8]. The main improvements of our
COI method on the state of the art are that we avoid expen-
sive functional testing and that we maintain a parametric
fault model that is related to the given specifications of the
circuit. The costs of analog testing can be significantly
reduced by integrating the COI method into the manufac-
turing process. The measurements to be performed are
automatically selected from a given universal set of rea-
sonable input stimuli and measurements. This universal
set considers the capacity of the available test equipment
and restrictions of the test configuration. For instance it
can be advantageous to use dc and low–frequency ac input
stimuli as especially the high–frequent signal portions are
most distorted by the probe. Moreover, on determination
of the universal set the COI test design can easily be re-
stricted to consider only measurements at such nodes of the
circuit that really can be probed. Therefore, a high grade
of practical applicability is provided. For each given cir-
cuit specification, a corresponding test inference criterion
is computed by applying logistic discrimination analysis.
The test decision is made after all selected measurements
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Figure 1: CMOS operational amplifier to be tested.

Gain GBW SR
�

SR+ �Vout

>85dB >4.3MHz >5.0V/�s >8.0V/�s >4.1V

Table 1: Specifications given for the circuit.

have been evaluated.
The paper is organized as follows: In Section 2, the motiva-
tion of our approach is given using an operational amplifier
as example circuit. In Section 3, the COI method is pre-
sented. Section 4 shows the results for the operational
amplifier of Section 2. Section 5 concludes the paper.

2 Motivation
Let us regard the CMOS operational amplifier in Fig. 1.
The specifications that are given for the circuit are shown
in Table 1.
In order to test the circuit with respect to parametric faults,
we could measure the given performances of the circuit, i.e.
Gain, GBW, SR

�

, SR+, and�Vout. We would then accept
the circuit if all specifications of Table 1 are satisfied.
However, let us assume that we do not want to perform
the required measurements, e.g. in order to save testing
time and test equipment costs, or because we know that the
original performances are insensitive by design. Then, we
need to take other measurements from the circuit and derive
a test decision whether to accept or to reject the circuit based
on these measurements. In this situation, we need to have
a universal set of input stimuli and measurements that we
can perform reasonably with the given test equipment. This
set can usually be obtained from the test engineer. For the
testing of the example circuit, we restrict ourselves e.g.
to dc and small–signal ac input stimuli. We consider the
test configuration shown in Fig. 2. In order to determine
the universal set of input stimuli, we select a grid of pairs
of operating voltages Uop and frequencies ! of the small–
signal ac source. The grid positions with respect to the
operating voltage Uop are 1:5 V, 2:5 V, and 3:5 V. The
frequency ! of the small–signal ac source is varied from
1 kHz to 32 kHz in 1 kHz steps. We assume that only
signals at the accessible nodes of the circuit can be probed.
So we can measure the signals listed in Table 2.
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Figure 2: Test configuration for testing the operational
amplifier.
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Table 2: Accessible signals.

These measurements are very simple and can be performed
without sophisticated test equipment. They contain infor-
mation of the circuit concerning the non–linear behavior
of the circuit by applying different operating voltages Uop
and they contain information concerning the dynamical be-
havior of the circuit by using different frequencies ! of the
small–signal ac source.
In order to obtain a test inference criterion whether to accept
or to reject a circuit based on such measurements, we first
of all need to determine a set of parameters reflecting para-
metric fluctuations of the manufacturing process. Here we
consider twelve statistical transistor model parameters, e.g.
oxide thickness or length and width reduction, that reflect
parametric faults.
We now can outline the main stages of our COI approach:

� In order to provide a short production testing time, we
determine a minimal number of input stimuli from the
given universal set of reasonable input stimuli. The
selected input stimuli are sufficient to characterize the
state of the circuit with respect to the statistical pa-
rameters that reflect parametric faults of the circuit
(Section 3.2). These measurements represent charac-
teristic observations of the circuit under test.

� Based on these characteristic observations, a test infer-
ence criterion whether to accept or to reject a circuit is
designed. This criterion is based on a parametric fault
model that combines circuit specifications, statistical
parameters reflecting parametric faults, and charac-
teristic observations (Section 3.3). For each given
specification of the circuit, one test inference criterion
is computed based on logistic discrimination analy-
sis (Section 3.4). The circuit is accepted if all test
inference criteria are satisfied.

3 Proposed approach
In order to apply our design based approach towards ana-
log testing, the following items concerning the design and



testing problem have to be given:

� A universal set of input stimuli and measurements
that can be performed reasonably with the given test
equipment is available. E.g. for our circuit example,
we restrict ourselves to dc and low–frequency ac input
stimuli and to measurements at I/O nodes of the circuit.
Of course, each measurement recommended by an
expert can be added.

� Simulation of the circuit and the testing environment
is available.

� The set of statistical parameters reflecting paramet-
ric fluctuations is given. Parametric fluctuations are
usually modeled as a statistical distribution of these
parameters. Therefore, parametric faults can be mod-
eled in the space of statistical parameters.

� Lower and/or upper boundary values for the circuit
performances are given. These so–called circuit spec-
ifications are required for our fault modeling.

Though our approach focuses mainly on detection of para-
metric faults we achieve very good fault coverages with
respect to modeled catastrophic faults as will be shown in
Section 4. This confirms the statement in [2] that paramet-
ric faults are much harder to detect than catastrophic faults,
and justifies the proceeding of our approach.

3.1 Basic relationships
Since circuit design serves as a basis for the COI approach
towards analog testing, we require a few basic relation-
ships from circuit optimization and design centering [9].
The performances f 2 Rnf of the circuit depend on the
statistical circuit parameters s 2 Rns . For a given set of
parameters, the performances can be evaluated by circuit
simulation:

f : s 7�! f (s) : (1)

A circuit performance fi may have a lower bound fLi , an
upper bound fUi , or both a lower and an upper bound. Each
lower or upper bound for each circuit performance is called
a specification.
A circuit is regarded as fault–free if all specifications are
satisfied, i.e.:

f
L
� f � f

U : (2)

If only one specification is given for a performance fi, the
unspecified component fLi or fUi is set to �1 or +1,
respectively.
The region in the space of performances f that satisfies
Eq. (2), defines the acceptance region Af in the perfor-
mance space. The acceptance region As in the space of the
statistical parameters s is defined as the set of parameters
that represent fault–free circuits:

As := fs 2 R
nsj f (s) 2 Afg:

This situation is shown in Fig. 3.
One specification induces a hyperplane of dimensionns�1
in the space of statistical parameters s. This hyperplane
separates the space of statistical parameters such that all
circuits satisfying this specification are located on one side

of this hyperplane. This is (at least locally) true if we de-
mand that mapping (1) is continuouslydifferentiable taking
the implicit function theorem into account.

3.2 Measurement selection
In this section, we deal with the determination of a minimal
number of input stimuli and measurements (observations)
o 2 Rno that completely characterize the state of the cir-
cuit with respect to the statistical parameters s that reflect
parametric faults of the circuit.
We consider the input stimuli and measurements defined in
the given universal set that can be performed with the given
test equipment. In general, these are other performances of
the circuit than those specified for the circuit. The special
case that some specified performances of the circuit are
regarded as measurements, too, may occur. We define the
space Rno of observations o of the circuit. As for the
performances, the observations o depend on the statistical
parameters s of the circuit:

m : s 7�! o: (3)

This functional dependency is evaluated by circuit simu-
lation. Analogous to the acceptance regions of fault–free
circuits in the performance space Af and in the parameter
space As, we define the acceptance region Ao in the space
of observations (Fig. 3):

Ao := fo 2 R
no j 9 s; o =m (s) ^ f (s) 2 Afg: (4)

Analogous to the parameter space, one specification in-
duces one separating hyperplane of dimension no � 1 in
the space of observations (Fig. 3).
In order to completely characterize the state of a circuit with
respect to the statistical parameters s by the observations o
of the circuit, mapping (3) has to be a 1–1 mapping. This
means: m (s1) 6=m (s2) whenever s1 6= s2.
We perform a linearization of mapping (3) at the nominal
parameter set s0 of the circuit. This yields

m : s 7�!m (s0) +
@m (s)

@s

����
s0

� (s� s0) : (5)

Mapping (5) is a 1–1 mapping if and only if:

rank

 
@m (s)

@s

����
s0

!
= ns: (6)

If this equation holds, mapping (3) is a 1–1 mapping. This
is due to the fact that the rank of the sensitivity matrix of
the observations with respect to the statistical parameters
is constant for almost all parameters s 2 Rns (we assume
that all observations are continuously differentiable) [10].
Therefore, our algorithm for measurement selection works
as follows:

� A sensitivity analysis is performed for all measure-
ments in the given universal set of possible input stim-
uli and measurements with respect to the statistical
parameters s at the nominal point s0.
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Figure 3: Acceptance regions Af , As, and Ao.

� In order to satisfy Eq. (6) and to provide a good nu-
merical condition of the sensitivity matrix, the most
linearly independent and the most sensitive measure-
ments are selected. This is a problem of subspace
calculation [11, 12]. We solve this problem by em-
ploying e.g. the Householder algorithm.

Please note that all dc measurements are selected in advance
and that all signals that can be measured simultaneous to
selected ones are added, assuming that the production test-
ing time is not significantly extended by this. This is done
in order to gain more information about the circuit under
test and in order to increase the detectability of catastrophic
faults.

3.3 Fault modeling
Parametric faults are modeled by deviations of the statisti-
cal parameters of the circuit [2], considering multiple devi-
ations of these parameters at a time. Usually, the statistical
distribution of these parameters is needed to define a para-
metric fault as a parameter set outside a certain tolerance
range [6], or is needed to determine a functional testing
order for low testing time [2].
Our fault model is related to the original specifications that
would be verified in functional testing. It reproduces the
circuit specifications in the space of observations, i.e. it
reproduces the acceptance region Ao in the observation
space. The acceptance region Ao is hard to obtain. It
is not explicitly known, and in real situations, it may be
complicated in shape (see Fig. 3).
Therefore, we reproduce each circuit specification in the
observation space individually. The acceptance region of
one single specification in the observation space is bounded
by a hyperplane as indicated by the thick line in Fig. 3.
Based on a formal description of this hyperplane, the sat-
isfaction or violation of one original circuit specification
can be inferred from the observations of the circuit under
test. Therefore, an approximation of this hyperplane is
computed, which builds the test inference criterion for the
corresponding circuit specification.
The test inference criteria for all specifications together
represent the fault model of our approach. A circuit is

accepted if all test inference criteria are satisfied for the
circuit under test.
Please note that, as our fault model is based on circuit spec-
ifications, it only requires the knowledge which parameters
are statistically varying. It does not necessarily require the
detailed knowledge of the distribution, e.g. variances, cor-
relations. This information is helpful to generate a starting
solution and a training data set to compute the separating
hyperplanes, but it is not mandatory.

3.4 Logistic discrimination analysis
Here, we will present how one test inference criterion is
computed for one specification. The test inference criterion
depends on the observations of the circuit. It should be
satisfied if and only if the corresponding specification is
satisfied.

3.4.1 Introduction and problem formulation
Here, we will give a short introduction to logistic discrim-
ination analysis [13, 14, 15]. For go/no–go testing, two
populations �1 and �2 are considered. We denote popu-
lation �1 as good circuits and �2 as faulty circuits with
respect to a single specification.
Suppose a set of observations o 2 Rno is given such that
the observations differ to some extent from one population
to the other. The discrimination problem is to find a rule
for allocating an object of unknown origin to exactly one of
the two populations, based on given observations ô of this
object. The posteriori probabilities p (�1jô) and p (�2jô)
play an important role for classification. They give the
conditional probabilities that an object with a given ob-
servation ô belongs to population �1 or �2, respectively.
An unknown object with observation ô is allocated to the
population with the larger posteriori probability. It can be
proven that this allocation rule maximizes the probability
of correct allocation [13].
The problem arising is that the posteriori probabilities are
unknown. So we first of all have to generate a data training
set. For the experimental results, this data set was gener-
ated by Monte Carlo simulation taking the given process
statistics into account. From this training set, the posteriori
probabilities can be estimated. In logistic discrimination
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Figure 4: Allocation rule.

analysis, the logistic form for the posteriori probabilities is
postulated as [14]:

p (�1jô) =
exp

�
�0 + �

T
ô

�
1 + exp

�
�0 + �T ô

� ; (7)

p (�2jô) =
1

1 + exp
�
�0 + �

T
ô

� : (8)

This induces the following allocation rule:
The object described by the observations ô is allocated to
the population�1 if:

p (�1jô) � p (�2jô) () �0 + �
T
ô � 0; (9)

otherwise it is allocated to population �2. This allocation
rule is illustrated in Fig. 4. All samples that are located
below or on the separation line are allocated to popula-
tion �1. All other samples are allocated to population�2.
Please note that this allocation rule corresponds to a linear
approximation of the separating hyperplane in the observa-
tion space (see Fig 3).
Logistic discrimination analysis only estimates the param-
eters that are specifically required for the allocation rule.
On the contrary, the classical approach to discrimination
analysis, e.g. used in [6] for the detection of catastrophic
faults, is to derive the allocation rule from estimates of the
probability density of the samples in the two populations:
p (oj�1) and p (oj�2). Therefore, many more parameters
have to be estimated in the classical approach to establish
the allocation rule, yielding a lower accuracy when using
the same training samples [14].

3.4.2 Parameter estimation
In this section, we describe how to calculate the parameters
�0 and � 2 Rno that define the allocation rule (9). The
likelihood of the observations o in the training data set is

L (�0;�) =
Y
o

p (�1jo)
y(o)

� p (�2jo)
1�y(o) (10)

where p (�1jo) and p (�2jo) depend on �0 and � due to
Eq. (7) and (8), respectively. y(o) is set to 1 if o belongs
to population �1. It is otherwise set to 0 if o belongs to
population�2.

The parameters �0 and � are obtained by solving the fol-
lowing unconstraint optimization problem [14]:

max
�0;�

L (�0;�) : (11)

This optimization problem can be solved by using Newton’s
method.
In order to provide a reasonable initial estimate for the
numerical solution of (11), we interpret the allocation rule
(9) from a more technical point of view. Recall that the
observations o depend on the set of statistical parameters s
of the circuit (Eq. (3)). Therefore, we can rewrite (9) as

t (s) := �Tm(s) � ��0 =: t
L: (12)

This offers the possibility to interpret the allocation rule (9)
as a circuit specification for testing the circuit with respect
to exactly one given specification. tL represents a lower
boundary value for the circuit performance t (s) that can be
evaluated by measurements from the circuit under test.
The goal of the presented logistic discrimination analysis is
to achieve that the test specification is satisfied if and only
if the corresponding circuit specification is satisfied. This
implies that the acceptance regions of the original specifica-
tion and of the test specification in the space of the statistical
parameters need to be identical. In [9], a linear approxima-
tion of the acceptance region of a single specification for a
circuit performance f is presented based on the worst–case

point sw and on the performance gradient @f(s)

@s

���
sw

of the

specification. It is obvious that if the acceptance regions
of the original specification and the test specification are
identical, this is true for the linearized acceptance regions
as well. So the initial solution for �0 and � are given by
the following equations [8]:

@f (s)

@s

����
sw

= � �
@t (s)

@s

����
sw

= � �
@m (s)

@s

����
sw

� �; (13)

�0 = �t (sw) : (14)

� is either +1 if the original specification involves a lower
bound and �1 otherwise.

3.4.3 Classification quality and interactive ad-
justment of test specification

As can be seen from Fig. 4, there may be samples that are
misclassified. The probabilities of correct classification are
given by the following equations:

p(1j1) = p ( classify a �1 observation as �1) , (15)
p(2j2) = p ( classify a �2 observation as �2) . (16)

The classification quality is described by these two prob-
abilities. p(2j2) denotes the probability to detect a faulty
circuit. In electronic testing, this probability is commonly
defined as fault coverage [2]. p(1j1) denotes the probabil-
ity to accept a fault–free circuit. The problem of discarding
good circuits arises in analog testing, e.g. due to measure-
ment errors, and leads to an additional yield loss. Therefore,
we call p(1j1) yield coverage.



Uop 1.5V 2.5V 3.5V

dc dc dc
1kHz 23kHz 1kHz 28kHz

!
28kHz 30kHz 30kHz 31kHz 30kHz 31kHz

32kHz

Table 3: Automatically selected input stimuli.

The goal of discrimination analysis is to make both the
yield coverage and the fault coverage as close to 100% as
possible. There is a trade off between these two probabili-
ties, that could be considered by introducing different costs
of misclassification into the parameter estimation proce-
dure. The problem of such an approach is that these costs
are typically unknown. On the other hand, we can provide
a graphical support that shows the yield coverage and the
fault coverage for the training samples for different bound-
ary values tL of the test specification (12). This results
from parallel shifting of the separation line in Fig. 4 and
evaluating the two considered probabilities for the training
samples. This is shown e.g. in Fig. 5.

4 Results
We applied our approach to the CMOS operational am-
plifier shown in Fig. 1. The specifications in Table 1 are
given. As mentioned, we consider twelve statistical transis-
tor model parameters for the modeling of parametric faults.
The test configuration is shown in Fig. 2. The universal
set of possible input stimuli was chosen as outlined in Sec-
tion 2.
We ran our algorithm for automatic selection of a minimal
number of input stimuli. The selected input stimuli are
listed in Table 3. The number of measurements in a dc or
an ac test is five or ten, respectively (see Table 2). So we
obtain no = 125 observations of the circuit under test.
The test inference criteria were computed with training data
sets of different sample sizes (500, 1000, 2000, 4000). �0
and � of allocation rule (9) were computed for each of
the five specifications and for the different training sets,
by solving optimization problem (11). The training data
sets were generated with a Monte Carlo simulation, taking
the statistical distribution of the twelve statistical transistor
parameters into account. For each sample, all specified per-
formances and all selected measurements were simulated.
Multipleparametric deviations are considered, as all twelve
statistical parameters are perturbed at a time. The achiev-
able yield coverages (p(1j1)) and fault coverages (p(2j2))
were verified with a separate 3500 samples Monte Carlo
simulation of the parameter distribution. The results are
shown in Table 4.
It can be seen that transient performances (SR

�

, SR+) as
well as high–frequent ac performances (GBW) can be effi-
ciently tested by the COI method. E.g. the high–frequent
ac specification 4.3MHz of GBW (Table 1) can be tested
by characteristic observations of not more than 32kHz (Ta-
ble 3). The quality of our method decreases only slightly
if the training sample size is reduced from 4000 to 500
samples. This confirms the statement in Section 3.4.1 that

tL
0%

50%

100%
yield coverage fault coverage

Figure 5: Trade off between yield coverage and fault cov-
erage for specification SR

�

(2000 training samples).

logistic discrimination analysis features a good accuracy
with moderate training data sizes.
In order to provide a means for fine tuning of the trade
off between fault coverage and yield coverage, a graphical
support shown in Fig. 5 is plotted. For tL ! +1, no
circuit at all will be accepted by the test. So we have a fault
coverage of 100% and a yield coverage of 0% (Eq. (12)).
For tL !�1, all circuits will be accepted, which leads to
a fault coverage of 0% and a yield coverage of 100%. The
test engineer can interactively adjust the boundary value of
the test specification tL with respect to the estimated costs
of accepting a faulty circuit and of rejecting a good one.
In order to evaluate the efficiency of our approach with
respect to catastrophic faults, we consider gain to drain
short, gain to source short, drain contact open and source
contact open for each transistor [16]. This fault modeling
results in a fault list with 160 faults (single fault assumption;
designed shorts as e.g. in current mirrors are removed).
With this fault list, analog fault simulation was performed.
The results for functional testing and for our COI method
are shown in Table 5.
It can be seen that the COI method features a very good
fault coverage for the modeled catastrophic faults, while
functional testing lags behind. Moreover, all faulty cir-
cuits detected by functional testing make up a subset of the
circuits detected by the COI method.
One reason for the high efficiency of the COI method for
parametric and catastrophic faults may be the measurement
selection procedure that selects the most sensitive measure-
ments. On the other hand, the original performances can
be less adequate for functional testing, as one goal of cir-
cuit design is to make them as insensitive to variations as
possible.

5 Conclusion
In this paper, we presented an efficient method for the test
design of analog circuits that is based on the circuit design
process. The method automatically provides a minimal
number of reasonable measurements, called character-
istic observations. It therefore addresses the two main
problems of analog testing: production testing time and
costs of analog test equipment.



#training samples 500 1000 2000 4000

Spec. yield p(1j1) p(2j2) p(1j1) p(2j2) p(1j1) p(2j2) p(1j1) p(2j2)

Gain 67.6% 95.8% 95.4% 95.8% 97.6% 97.0% 97.9% 97.5% 98.5%
GBW 67.3% 98.0% 93.1% 98.3% 94.8% 98.4% 96.7% 98.1% 98.4%
SR

�

55.4% 95.3% 93.5% 95.3% 94.8% 95.3% 95.3% 95.8% 94.4%
SR+ 67.7% 97.3% 85.1% 97.0% 88.0% 96.7% 89.0% 95.2% 93.7%
�Vout 51.4% 95.5% 96.5% 95.4% 97.3% 96.4% 97.4% 97.1% 97.7%

total 33.6% 92.4% 96.6% 92.3% 97.5% 93.3% 97.6% 94.7% 97.3%

Table 4: Yield coverages p(1j1) and fault coverages p(2j2) for different training sets. Verification with a separate 3500
samples Monte Carlo simulation.

160 faults considered # tested fault coverage

Functional Testing 117 73.1%
COI 158 98.8%

Table 5: Results for catastrophic faults.

A fault model is introduced that is based on individual
specification values, on the set of parameters reflecting
parametric faults, and on the characteristic observations
of the circuit under test. For each given specification, a test
inference criterion is computed based on logistic discrim-
ination analysis. By applying this criterion, the satisfaction
or violation of the original circuit specifications can be in-
ferred from the observations of the circuit under test. The
trade off between fault and yield coverage can be interac-
tively controlled. First results of our approach with respect
to parametric and catastrophic faults are very encouraging.
Further research topics include a more sophisticated sam-
pling strategy [7] and the consideration of measurement
errors.
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