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Abstract—The radio-frequency (RF) technology is a scalable
solution for the backhaul planning. However, its performance is
limited in terms of data rate and latency. Free Space Optical
(FSO) backhaul, on the other hand, offers a higher data rate but
is sensitive to weather conditions. To combine the advantages
of RF and FSO backhauls, this paper proposes a cost-efficient
backhaul network using the hybrid RF/FSO technology. To
ensure a resilient backhaul, the paper imposes a given degree
of redundancy by connecting each node throughK link-disjoint
paths so as to cope with potential link failures. Hence, the
network planning problem considered in this paper is the oneof
minimizing the total deployment cost by choosing the appropriate
link type, i.e., either hybrid RF/FSO or optical fiber (OF),
between each couple of base-stations while guaranteeingK link-
disjoint connections, a data rate target, and a reliabilitythreshold.
The paper solves the problem using graph theory techniques.It
reformulates the problem as a maximum weight clique problemin
the planning graph, under a specified realistic assumption about
the cost of OF and hybrid RF/FSO links. Simulation results
show the cost of the different planning and suggest that the
proposed heuristic solution has a close-to-optimal performance
for a significant gain in computation complexity.

Index Terms—Backhaul network design, deployment cost min-
imization, link-disjoint graph, free-space optic, optical fiber.

I. I NTRODUCTION

WITH the drastic increase of smartphones and data con-
suming devices, the last few years witnessed a gigantic

increase in the demand for mobile data services, e.g., the
demand is more than doubling each year for the last quinquen-
nial. Moreover, mobile traffic is expected to experience100-
fold increase by2020 [1]. To cope with such traffic growth,
service providers are required to upgrade their networks sub-
stantially. For cells become simultaneously smaller and denser,
a particular emphasis on the backhaul network upgrade is
crucial.

Optical fibers (OF) are a popular high data-rate technology
for the backhaul design supporting many Gbit/s, e.g.,9.9
Gbit/s for STM-64 [2]. However, their use requires digging and
protection, which limits their application to specific scenarios
excluding small cells. Furthermore, the employments of OF
links entail high initial investment.

The radio-frequency (RF) technology, on the other hand, is a
scalable and relatively easy to deploy solution for the backhaul
planning. RF links are not limited by the geographic features
of the location; however, the data rate they provide is lowerto
OF links rates. For the inverse relation between bandwidth
and transmission range, RF technologies operating at high

bandwidth, e.g., microwave and millimeter wave (mmwave),
are limited in coverage. Further, due to spectrum shortage,
the initial investment in the licensed spectrum is of high
importance [3].

Recently, Free-Space Optics (FSO) technology emerge as a
reasonable alternative for next-generation backhaul design. By
transmitting a laser beam in the micrometer range [4], FSO
photo-detector transceivers are immune to electromagnetic
interference generated by nearby RF links. Such micrometer
waves, also referred to as visible light, fall in the unlicensed
part of the spectrum. Moreover, by using multiplexing tech-
niques such as wavelength-division multiplexing, FSO can
achieve up to10 Gbit/s over one kilometer and1.28 Tbit/s
over 210 meters [4]. However, FSO performance is highly
affected by weather conditions, e.g., rain, fog, and snow.

In order to benefit from both the low cost and reliability
of the RF technology and the high data rate provided by the
FSO technology, the hybrid RF/FSO technology is a suitable
solution for backhaul design [5]. Hybrid RF/FSO transceivers
communicate using both the RF and FSO links and switch to
FSO or RF only conditioned by the electromagnetic interfer-
ence levels and the weather conditions.

The cost optimization problem of the backhaul is studied in
[6], [7] for different communication technologies. The authors
in [8], [9] consider minimizing the cost of upgrading a network
by optimally placing the minimum number of FSO transceivers
to achieve a given target throughput. The hybrid RF/FSO is
mainly considered in [10]–[12]. The authors in [10] proposea
mixed integer program to upgrade an RF backhaul network by
optimally placing FSO links. The setup is extended in [11] to
include reliability and throughput constraints. Reference [12]
suggests deploying mirrors for non-line-of-sight FSO connec-
tions. The backhaul design proposed in this paper is especially
related to the works [13]–[15]. The authors in [13] propose
designing a cost-efficient backhaul using hybrid RF/FSO under
throughput constraints. The model is extended in [14] to
incorporate reliability constraints. In [15], the authorspresent
a business case of an RF backhaul network, which motivates
the need for deploying resilient hybrid RF/FSO backhauls.

This paper proposes the hybrid RF/FSO as a cost-effective
technology for backhaul network design. To ensure a resilient
backhaul, the paper imposes a given degree of redundancy by
connecting each node throughK link-disjoint paths so as to
cope with potential link failures. The paper then considersthe
network planning problem of minimizing the total deployment
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cost by choosing the appropriate link type, i.e., either hybrid
RF/FSO or optical fiber, between each couple of base-stations
by guaranteeingK link-disjoint connections, a data rate target,
and a reliability threshold.

The paper main contribution is to propose an explicit close-
to-optimal solution to the backhaul planning problem under
the aforementioned constraints, i.e., connectivity, reliability
and data rate constraints. The paper proposes solving the
problem using techniques from graph theory. It reformulates
the problem as a maximum weight clique problem in the
planning graph under a specified realistic assumption about
the cost of OF and hybrid RF/FSO links. Simulation results
suggest that the proposed heuristic solution provides a close-
to-optimal performance for a significant gain in computation
complexity.

II. SYSTEM MODEL AND PARAMETERS

This paper considers a network composed ofM base-
stations denoted by the setB = {b1, · · · , bM}, wherein base-
stations are connected to each other using either optical fibres
or hybrid RF/FSO backhaul links. All nodes1 are assumed
to have a line-of-sight connection. The paper addresses the
problem of minimizing the cost of backhaul planning under
connectivity, reliability and data rates constraints and proposes
choosing the appropriate cost-effective backhaul connection
between BSs.

Let π(O)(bi, bj) = π
(O)
ij andπ(h)(bi, bj) = π

(h)
ij be the cost

of deploying an OF and a hybrid RF/FSO link, respectively,
between nodesbi andbj. As hybrid RF/FSO is a cost effective
solution as compared to optical fibres, this paper assumes that
π
(h)
ij ≤ π

(O)
ij , ∀(bi, bj) ∈ B2.

The connectivity constraint is achieved by connecting each
pair of nodes in the network via single or multi-hop connec-
tions through1 ≤ K < M link-disjoint paths. Such path
diversity allows the network to be more resilient to link failure
by providing multiple alternative routing solutions. Figure 1
shows a planning for a network composed of5 base stations
for 1 and 2 link-disjoint paths. LetK(bi, bj) = Kij be the
path diversity between nodesbi and bj , ∀(bi, bj) ∈ B2. In
other words,K(bi, bj) is the maximum number of distinct and
disjoint path that link nodebi to bj , e.g.,K(1, 4) = 3 and
K(2, 3) = 2 in Figure 1 of 2 link-disjoint path. Note that
2 → 1 → 4 → 3 and2 → 1 → 5 → 4 → 3 are not considered
disjoint paths as they share the link4 → 3.

Let 0 ≤ α ≤ 1 be the reliability threshold at each node.
Unlike OF links that are perfectly reliable, the reliability of
hybrid RF/FSO links heavily depends on several factors, such
as transmission distance, power, and weather conditions. This
paper assumes independent link failures. LetR(O)(bi, bj) =

R
(O)
ij be the reliability of the link connecting nodesbi and

bj . Similarly, in contrast with OF links that always satisfy the
targeted data rateDt, the provided data of a hybrid RF/FSO
link depends, for a fixed transmit power, on the distance
separating the two end nodes and the weather conditions. Let

1The terms node and base-station are used interchangeably throughout this
paper
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Fig. 1. Network containing5 base-stations connected together with OF and
hybrid RF/FSO links for1 and2 link-disjoint paths.

D(O)(bi, bj) = D
(O)
ij be the provided data rate by the link

between base-stationsbi andbj.

III. PROBLEM FORMULATION AND APPROXIMATION

A. Problem Formulation

The paper proposes to minimize the deployment cost of
the backhaul network by connecting base-stations using either
optical fibers or hybrid RF/FSO links under the following
practical constraint:

• C1: Each node can be connected to any other through
either an OF or a hybrid RF/FSO link.

• C2: Each node is connected to any other node with at
leastK link-disjoint paths.

• C3: The reliability thresholdα is exceeded at each node.
• C4: The provided data rate at each base-station is bigger

or equal than the target data rateDt.

Let Xij and Yij , 1 ≤ i, j ≤ M be two binary variables
indicating if base-stationsbi andbj are connected through an
OF connection, i.e.,Xij = 1 or a hybrid RF/FSO, i.e.,Yij = 1,
link, respectively. From the link reciprocity, the variablesXij

and Yij are symmetric. In other words, the variable should
satisfy:

Xij = Xji (1)

Yij = Yji, 1 ≤ i, j ≤ M. (2)
Given that, at maximum, only one type of connection can
exist between any pair of nodes, i.e., system constraint C1,
it can easily be seen that such binary variables are mutually
exclusive. In other words, the following condition is verified
by any feasible solution:

XijYij = 0, 1 ≤ i, j ≤ M. (3)
The connectivity constraint C2 can be reached by guaran-

teeing that the minimal maximum number of disjoint path,
i.e., min1≤i6=j≤M Kij , between any couple of nodes exceeds
K link-disjoint paths. Hence, the connectivity constraint C2
can be written as follows:

min
1≤i6=j≤M

Kij ≥ K. (4)

Given independent link failures, the reliability condition C3
at nodebi is violated if and only if all the links connecting
base-stationbi are experiencing a failure. Therefore, the sys-
tem constraint C3 can be written as follows:

1−
M
∏

j=1

(1−Xij)(1− YijR
(h)
ij ) ≥ α, 1 ≤ i ≤ M. (5)

Finally, the data rate constraint C4 implies that the provided
data rate at each node needs to exceed a predefined threshold

2



Dt. Given that OF links always satisfy the target data rate,
the offered data rate of such links can be assumed to beDt

which allows to write the data rate constraint as follows:
M
∑

j=1

XijDt + YijD
(h)
ij ≥ Dt, 1 ≤ i ≤ M. (6)

Combining the constraints (1), (2), (3), (4), (5), and (6),
the problem of minimizing the cost of the backhaul network
planning can be formulated as:

min

M
∑

i=1

M
∑

j=1

Xijπ
(O)
ij + Yijπ

(h)
ij (7a)

s.t. Xij = Xji (7b)

Yij = Yji (7c)

XijYij = 0 (7d)

min
1≤i6=j≤M

Kij ≥ K (7e)

1−
M
∏

j=1

(1−Xij)(1− YijR
(h)
ij ) ≥ α (7f)

M
∑

j=1

XijDt + YijD
(h)
ij ≥ Dt (7g)

Xij , Yij ∈ {0, 1}, 1 ≤ i, j ≤ M, (7h)
where the optimization is over both binary variablesXij and
Yij .

The0− 1 mixed integer program proposed in (7) is hard to
solve and may involve a search over all possible combinations
of the binary variables, which results in a high computational
complexity. The difficulty lies, in particular, in the connectivity
constraint (7e) and the concurrent optimization over both
binary variablesXij andYij . Let the optimal solution to the
optimization problem (7) be called the optimal planning. To
overcome such computation bottleneck, this paper proposes
to approximate the optimization problem by a more tractable
one. Hence, the next subsection suggests solving the problem
for only the variablesXij . In other words, it aims to discover
the minimal cost planning solution when only optical fibers
are allowed. Afterwards, such solution, referred to as the
optical fibre planning, is used to reformulate the problem as
a maximum weight clique problem under the assumption that
long distance hybrid RF/FSO connections are more expensive
than short distance OF links. Such assumption is justified by
the fact that, for short distances, OF links whose cost mainly
depends on the link’s length, are cheaper than hybrid RF/FSO
ones whose cost heavily depends on the transceivers price.
The solution to the maximum weight clique problem is called
the hybrid RF/FSO planning.

B. Backhaul Design Using Optical Fiber Only

This subsection considers the problem of backhaul network
design using only optical fibres. The first part of this paragraph
simplifies the problem formulation when only OF links are
allowed. Afterwards, an algorithm to reach the optimal OF
planning is proposed. By settingYij = 0, 1 ≤ i, j ≤ M in
the original problem formulation (7), the OF planning problem

can be written as follows:

min

M
∑

i=1

M
∑

j=1

Xijπ
(O)
ij (8a)

s.t. Xij = Xji (8b)

min
1≤i6=j≤M

Kij ≥ K (8c)

1−
M
∏

j=1

(1 −Xij) ≥ α (8d)

M
∑

j=1

XijDt ≥ Dt (8e)

Xij ∈ {0, 1}, 1 ≤ i, j ≤ M, (8f)

In order to simplify the problem formulation, constraints
(8d) and (8e) are shown to be redundant in (8). For any feasible
solutionXij , constraint (8c) implies thatKij ≥ K, 1 ≤ i, j ≤
M . In particular, asK ≥ 1, we getKij ≥ 1, which implies:

M
∑

j=1

Xij ≥ 1. (9)

Finally, using the inequality (9), it becomes clear that con-
straints (8d) and (8e) are redundant. Therefore, the OF plan-
ning problem can be simplified to:

min

M
∑

i=1

M
∑

j=1

Xijπ
(O)
ij (10a)

s.t. Xij = Xji (10b)

min
1≤i6=j≤M

Kij ≥ K (10c)

Xij ∈ {0, 1}, 1 ≤ i, j ≤ M. (10d)

The key idea to solving the optimization problem (10)
mentioned above is to generate a network withK link-disjoint
paths by first creating a system withK−1 link-disjoint paths.
By prohibiting the already existing connections, the aim isto
find the optimal set of links so as to produce a connected
network. Combining both solutions results in a system with
K link-disjoint paths. Therefore, this subsection suggests
successively generating systems whose minimal maximum
number of disjoint paths, i.e.,min1≤i6=j≤M Kij increases
by 1 at each iteration. More specifically, the algorithm first
generates the optimal planning for a number of link-disjoint
pathsmin1≤i6=j≤M Kij = 1. Afterwards, the algorithm adds
connections to such optimal1 link-disjoint path solution to
produce the optimal2 link-disjoint paths network. The process
is repeatedK times so as to achieve the required resilience.

In order to generate the optimalk + 1 link-disjoint paths
connected network, given the optimalk link-disjoint paths
system, this paper proposes a clustering solution in which
the cheapest links between any two clusters are successfully
created; the groups are then merged. As explained above, the
existing connections in the previous iterations of the algorithm
are prohibited in the next iterations. This can easily be done
by considering a modified cost functionπ(O)(.) that takes
the original value of the cost functionπ(O)(.) by the link
have never been used before and∞ otherwise. Therefore, to
generate ak+1 link-disjoint paths connected network, a cluster
is created for each base-station. The price of connecting two
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Algorithm 1 Optimal optical fibres planning.

Require: B, K, andπ(O)(.).
Initialize Xij = 0, 1 ≤ i, j ≤ M .
Initialize π

(O)
ij = π

(O)
ij , 1 ≤ i, j ≤ M

for k = 1 : K do
for i = 1 : M do

for j = i+ 1 : M do
if Xij = 1 then

Setπ(O)
ij = π

(O)
ji = ∞.

end if
end for

end for
Initialize Z = ∅.
for all b ∈ B do

SetZ = {Z, {b}}.
end for
while |Z| > 1 do

Set (Zi, Zj) = arg min
Z,Z′∈Z
Z 6=Z′



min
b∈Z
b′∈Z′

π(O)(b, b′)



.

Set (bi, bj) = arg min
b∈Zi

b′∈Zj

π(O)(b, b′).

SetXij = Xji = 1.
SetZ = Z \ {Zi} \ {Zj}.
SetZ = {Z, {Zi, Zj}}.

end while
end for

clusters is computed as the minimal cost of joining each couple
of base-stations in the clusters. In other words, the cost of
connecting the clusterZ andZ ′ is defined as:

π(O)(Z,Z ′) = min
b∈Z
b′∈Z′

π(O)(b, b′). (11)

The cheapest link between two clusters is deployed, and the
cluster is merged into a single one. Such a process is repeated
until all the initial clusters are merged into a single one. The
steps of the algorithm are summarized in Algorithm 1 whose
performance is characterized by the following theorem:

Theorem 1. Algorithm 1 produces the optimal solution to the
optimization problem (10).

Proof: In order to establish the optimality of the solution
reached by Algorithm 1, an induction approach is used. Given
the optimal solution to ak−1 link-disjoint connected network,
the algorithm is demonstrated to output the optimal solution
to a k link-disjoint connected network. This is done by first
showing that the solution is a feasible one and that any other
solution results in a higher cost. The complete proof can be
found in Appendix VII.

Let Xij be the optimal solution to the optical fiber planning
problem reached by Algorithm 1. The next subsection relates
such solution to the original optimization problem (7) and
suggests approximating it by a more tractable problem.

C. Problem Approximation

This subsection describes the solution of the optimal OF
planningX ij of the original optimization problem (7) and

suggests approximating it with a more tractable one. The
fundamental rationale of the approximation is to make use
of the OF planning to produce aK link-disjoint connected
graph. In fact, it can easily be seen that since the planning
Xij is a K link-disjoint one, then any planningXij and
Yij verifying Xij + Yij = 1 if Xij = 1 also produces a
K link-disjoint graph. Furthermore, the non-existence of an
OF link in the optimal OF planning, i.e.,X ij = 0, does
not add an extra constraint on the feasibility of the planXij

andYij . Therefore, the following constraint is a subset of the
connectivity constraint (7e):

(Xij + Yij)Xij = Xij . (12)
Using the approximations provided in (12), the backhaul

network design problem using the hybrid RF/FSO technology
can be approximated by the following problem:

min

M
∑

i=1

M
∑

j=1

Xijπ
(O)
ij + Yijπ

(h)
ij (13a)

s.t. Xij = Xji (13b)

Yij = Yji (13c)

XijYij = 0 (13d)

(Xij + Yij)Xij = Xij (13e)

1−
M
∏

j=1

(1−Xij)(1− YijR
(h)
ij ) ≥ α (13f)

M
∑

j=1

XijDt + YijD
(h)
ij ≥ Dt (13g)

Xij , Yij ∈ {0, 1}, 1 ≤ i, j ≤ M. (13h)
Let Xij andYij be a solution to (13). As the constraint (12)

is strictly included in (7e) then the solution is feasible tothe
original optimization problem (7).

IV. BACKHAUL DESIGN USING HYBRID

RADIO /FREE-SPACE OPTICAL TECHNOLOGY

The problem approximation provided in (13) is equivalent
to the one illustrated in Lemma 3 of [14]. Hence, this section
proposes a similar method to efficiently solving the problem
through the design of the set of neighbours and the planning
graph. Afterwards, under the assumption that long distance
hybrid RF/FSO connections are more expensive than short
distance OF links, the section reformulates the problem as
a maximum weight clique problem in the planning graph.

A. Set of Neighbours

Let the setN i of neighbours of base-stationbi be defined
as follows:

Ni =

{

bj ∈ B such thatπ(O)
ij ≤ max

bj∈B
Xikπ

(O)
ik

}

, (14)

Let bi∗ be the node that can be connected tobi with the
cheapest OF link, i.e.,bi∗ = argminbj∈B π

(O)
ij . This paper

assumes that hybrid RF/FSO between non-neighbouring nodes
is more expensive than OF links between each node and its
closest neighbour. In other words, the paper assumes that the
following equation holds∀ (bi, bj) /∈ Nj ×Ni:

π
(O)
ii∗ + π

(O)
jj∗ ≤ π

(h)
ij . (15)
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The following theorem characterizes the optimal solution
X∗

ij andY ∗
ij of the optimization problem (13):

Theorem 2. The optimal solution to (13) satisfies that all
connections for an arbitrary nodebi are inside its set of
neighboursNi. In other words,X∗

i,j + Y ∗
i,j = 1 only if

(i, j) ∈ Nj ×Ni.

Proof: To show this theorem, all the planning decisions
that violate the condition stated in the theorem are proved to
be suboptimal. In fact, it can be seen from (15) that, if the
set of neighbours allows to have aK link-disjoint graph, then
the connection outside the set of neighbours can be replaced
as follows:

• If the link is a hybrid RF/FSO connection then it is
cheaper to replace the link by2 OF links as suggested in
(15).

• If the link is an OF connection, then it is more expensive
than a hybrid RF/FSO one that can be replaced by
connection inside the set of neighbours.

Therefore, the optimal solution to (13) satisfies that all connec-
tions for an arbitrary nodebi are inside its set of neighbours
Ni. The details of the proof are omitted as it mirrors the steps
used in proving Theorem 2 in [14].

B. Planning Graph and Proposed Backhaul Design

The planning graphG(V , E) is a tool introduced in [14]
to solving the planning problem using the hybrid RF/FSO
technology for a1 link-disjoint connected graph. Given the
optimal solution to the optical fibre planning and the definition
of the minimal set of neighbours, such tool can be extended
to solve the planning problem for aK link-disjoint connected
graph.

To generate the planning graph, a vertex is created for each
combination of connections inside each cluster that satisfy the
reliability and the data rate constraint. More specifically, let
Ci be the set of such possible combinations for base-stationbi
defined as follows:

Ci = {((Xij1 , Yij1 ), · · · , (Xij|Ni|
,Yij|Ni|

)), such that
⋃

j∈Ni

bj = Ni

XijYij = 0, ∀ j ∈ Ni

(Xij + Yij)X ij = Xij , ∀ j ∈ Ni

1−
∏

j∈Ni

(1−Xij)(1 − YijR
(h)
ij ) ≥ α

∑

j∈Ni

XijDt + YijD
(h)
ij ≥ Dt}. (16)

For each possible combinationγ ∈ Ci, 1 ≤ i ≤ M , a vertex
vij , 1 ≤ j ≤ |Ci| is generated. The weight of each vertex is
defined as half the total cost of the links represented by that
vertex, i.e., the weight ofγ ∈ Ci is:

w(γ) = −
1

2

∑

j∈Ni

Xijπ
(O)
ij + Yijπ

(h)
ij . (17)

Two distinct vertices representing different nodes are con-
nected if the connections they represent are symmetric. In
other words, verticesvij andvkl with i 6= k are adjacent with
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The solid lines are obtained for a1 link-disjoint network. The dashed and
dotted lines are obtained for a2 and3 link-disjoint paths.
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Fig. 3. Average percentage of used OF connections from the total number of
used links versus the number of base-stationsM . The solid lines are obtained
for a 1 link-disjoint network. The dashed and dotted lines are obtained for
a 2 and 3 link-disjoint paths. Naturally, the three lines coincide for the OF
planning.

an edge inE if and only if the connections they represent
are compatible, i.e.,(Xik, Yik) = (Xki, Yki) if (bi, bk) ∈
(Nk,Ni).

Given the planning graph as constructed above and using the
result of Theorem 3 in [14], the optimal planning (13) using
the hybrid RF/FSO technology is equivalent to a maximum
weight clique in the planning graph that can be solved with
moderate complexity using efficient algorithms, e.g., [16]–
[18].

V. SIMULATION RESULTS

This section illustrates the performance of the proposed
hybrid RF/FSO planning, i.e., optimal solution to (13), as
compared with the optimal plan, i.e., optimal solution to (7)
and the OF planning, i.e., optimal solution to (10), for different
levels of network resilient. The system consists of a5 Km
square area in which the base-stations are placed randomly
at each iteration. As the price of the optical transceivers is
negligible as compared to the cost of links, this paper does not
consider its price. The price of a meter of the multi-mode OM3
(50/125) OF is variable depending on the constructor, e.g.,
Asahi Kasei, Chromis, Eska, OFS HCS. This paper considers
a medium price ofπ(O) = 13.5$. On the other hand, as
the amount of hybrid RF/FSO depends mainly on the cost of
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the transceiver, its price is assumed to be independent of the
distance separating the two nodes and set toπ(h) = 20k$, a
medium price according to different constructors, e.g., fSONA,
LightPointe, and RedLine.

The reliability and provided data rate of a hybrid RF/FSO
links are assumed to be only a function of the distance separat-
ing the two ends nodes. Furthermore, the paper considers that
the reliability thresholdα is satisfied for a distance of2 Km
after which it decays exponentially. The provided data rateis
considered to follows a similar model in which the targeted
data rate is satisfied over3 Km and decreases exponentially
for farther distances.

The reliability threshold is fixed toα = 0.95 in all the
simulations. The number of base-stationsM and link-disjoint
pathsK changes in the simulations so as to illustrate the
performance of the proposed planning in different settings.

Figure 2 plots the total deployment cost of the network
versus the number of base-stationsM , for a various number of
link-disjoint paths. It can easily be seen that the degradation of
the proposed solution is negligible against the optimal solution
for any number of base-stations and link-disjoint paths. The
degradation is even less severe for a high number of base-
stations with an enormous gain in complexity, especially for
a large number of nodes in the network.

Figure 3 shows the ratio of the OF link used against the
number of base-stationsM , for a various number of link-
disjoint paths. We can clearly see that for any number of base-
stations, the percentage of used OF links decreases with the
number of link-disjoint paths. This can be explained by the
fact that the reliability and data rate constraint are satisfied
for a small number of links. The additional links to guarantee
the required resilience level in the network are hybrid FR/FSO
links as they are more cost efficient that OF links.

Finally, to quantify the performance of the proposed al-
gorithms with respect to the number of link-disjoint paths
K, Figure 4 and Figure 5 show, respectively, the total cost
of deployment and the percentage of used OF links versus
the number of link-disjoint paths in networks composed of
M = 6 andM = 7 base-stations. Figure 4 shows that both
the optimal solution and the proposed one scales better with
the number of link-disjoint paths as compared with the OF
planning. This is due to the relative prices of hybrid RF/FSO
and OF links. As the advantage of an OF link is especially
its perfect reliability and satisfying data rate, for a densely
connected network, these two constraints can be satisfied with
a large number of hybrid RF/FSO links. As a result, the total
cost of the system decreases drastically as compared with the
OF planning as the number of link-disjoint paths increases.

The analysis is confirmed by Figure 5 that shows a constant
decrease in the number of used OF links as the resilience
degree increases in the network. Finally, it is worth mentioning
that the performance of the proposed algorithm approaches
the optimal solution for a large number of link-disjoint paths,
which emphasises the close-to-optimal performance of the
proposed algorithm.

VI. CONCLUSION

This paper addresses the problem of resilient backhaul
network design using the hybrid RF/FSO technology. In order
to cope with link failure, the paper proposes a hybrid RF/FSO
backhaul network which provides a minimumK distinct and
disjoint links connecting each two base-stations. The paper
suggests finding the optimal type of links, OF or hybrid
RF/FSO connection, between each two nodes so as to mini-
mize the total deployment cost under the practical connectivity,
reliability and data rate constraints. Given the complexity of
the optimal solution, the paper approximates, under a specified
realistic assumption about the cost of OF and hybrid RF/FSO
links, the planning problem by reformulating it as a maximum
weight clique in the planning graph, which can be solved
using efficient algorithms. Simulation results suggest that the
proposed heuristic solution has a close-to-optimal performance
for a significant gain in computation complexity.

VII. PROOF OFTHEOREM 1

This section shows that the solution reached by Algorithm 1
is the optimal solution to the optimization problem illustrated
in (10). To establish the result, an induction approach concern-
ing the number of link-disjoint paths is used herein. In other
words, this section aims to show that:
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Algorithm 2 Next optimal link-disjointed connected network.

Require: B, Xk−1
ij , andπ(O)(.).

Initialize Xk
ij = Xk−1

ij , 1 ≤ i, j ≤ M .
Initialize Z = ∅.
for all b ∈ B do

SetZ = {Z, {b}}.
end for
while |Z| > 1 do

Set (Zi, Zj) = arg min
Z,Z′∈Z
Z 6=Z′









min
(b,b′)∈Z×Z′

X
k−1

b,b′
6=1

π(O)(d(b, b′))









.

Set (bi, bj) = arg min
(b,b′)∈Z×Z′

X
k−1

b,b′
6=1

π(O)(d(b, b′)).

SetXk
ij = Xk

ji = 1.
SetZ = Z \ {Zi}.
SetZ = Z \ {Zj}.
SetZ = {Z, {Zi, Zj}}.

end while

• The optimal solution to ak link-disjoint path system
contains the optimal solution to ak−1 link-disjoint path
network.

• Given the optimal solution to ak − 1 link-disjoint path
system, Algorithm 2 produces the optimal solution to a
k link-disjoint path network.

• Each iterationk of Algorithm 1 provides the same
solution as Algorithm 2 with the optimal solution to a
k − 1 link-disjoint path system as an input.

Showing the steps displayed above is equivalent to showing
that Algorithm 1, for some iterationK, produces the optimal
solution to the optimization problem (10).

Let the graph be abstracted inG(V , E) whereinV is the
set of base-stations andE represents the set of edges, i.e.,
∃ eij ∈ E if and only if Xij = 1. Furthermore, letXk

ij be the
optimal planning for ak link-disjoint path network.

Showing that the optimal solution to thek link-disjoint
graph contains the optimal solution to ak − 1 link-disjoint
connected one translates into the following equation:

Xk−1
ij Xk

ij = Xk−1
ij , 1 ≤ i, j ≤ M. (18)

Assume thatX2
ij violates this property. By definition of

a 2 link-disjoint path, the removal of one edge from each
vertex results in a connected graph, i.e.,1 link-disjoint path.
Therefore, let the edge be divided into two sets,A andB =
E \A such thatA is the maximal set that can be removed from
the graph, excluding edges inX1

ij , resulting in a connected
graph. In other words:

A = argmax
A∈A

|A|, (19)

where
A = {A ∈ P(E) | X1

ij 6= 1,∀ eij ∈ A and (20)

K(G(V , E \A)) = 1},

with P(X ) is the power set ofX and K is the number of
link-disjoint paths in the network defined in Section II. Such
edge separation is always possible asA 6= ∅. Otherwise, the
removal of {eij ∈ E | X1

ij = 1} results in a disconnected

graph in contradiction with the assumption of a2 link-disjoint
graph.

Let B∗ be the set of edges obtained fromX1
ij . Given that

X2
ij violates the property (18), thenB∗ * B. Furthermore, as

B∗ is the optimal solution to a1 link-disjoint graph, the cost
of G(V ,B∗ ∪ A) is lower than the one ofG(V , E). Besides,
given thatA produces a1 link-disjoint graph, thenB∗ ∪A is
a feasible solution to a2 link-disjoint paths. Therefore,X2

ij is
not the optimal solution which demonstrate that the optimal
solution satisfy (18).

Now assume that the property hold for ak− 1 link-disjoint
graph. A similar approach is used to show the property. By
definition of ak link-disjoint graph, the removal of one edge
from each vertex results in ak−1 link-disjoint graph. Let the
sets be divided in two setAk andBk = E \ Ak such thatAk

is defined in a same manner as in (19) andAk as in (20), i.e.,
A = {A ∈ P(E) | X1

ij 6= 1,∀ eij ∈ A and (21)

K(G(V , E \A)) = k − 1},

Using an argument similar to the one employed in the
previous paragraph, it is easy to see thatA 6= ∅. LetB∗

k be the
optimal solution to the planning withk−1 link-disjoint paths.
Hence, asXk

ij violates the property and thatB∗
k is the optimal

solution, thenB∗
k * Bk andπ(G(V ,B∗

k ∪Ak)) ≥ π(G(V , E)).
Finally, as G(V ,B∗

k ∪ Ak) is a k link-disjoint graph, the
property is shown to apply to allk < M which concludes
the proof.

From the analysis above, to produce ak link-disjoint
paths network, connections are added to ak − 1 link-disjoint
system. Furthermore, from the analysis above, removing the
connections similar to thek − 1 link-disjoint system, i.e.,
{eij ∈ E | Xk−1

ij = 1}, results in a connected network.
Therefore, to produce the optimal solution to ak link-disjoint
paths network, the connections that should be added are
those that produce a connected a network at minimum cost
while prohibiting already existing connections. To solve the
problem, this section designs Algorithm 2 as an extension of
the Algorithm 1 proposed in [19]. The fundamental difference
is that the newly designed algorithm prohibits connections
existing inXk−1

ij . As the proof follows similar steps than the
one used in demonstrating Theorem 1 in [14], they are omitted
in this paper.

Finally, to conclude the proof it is sufficient to notice that
prohibiting a given connection is similar to defining its weight
as infinity. In fact, it is enough to show that there exists at
least another link between any two arbitrary clustersZ and
Z ′ with a weight π(Z,Z ′) < ∞ to show the equivalence
between Algorithm 1 and Algorithm 2.
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