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Abstract—Data transmission over multiple-hop networks is
impaired by random deleterious events, and characterizing the
probability of error for the end-to-end transmission is challenging
as the size of networks grows. Adams et al. showed that, when
re-encoding at intermediate nodes is enabled, coded transmission
over tandem/parallel links can be reduced to a single equivalent
link with a specified probability function. Although iterative
application of the tandem/parallel reduction techniques in al-
ternation can simplify the task, they are generally not sufficient
to reduce an arbitrary network to a single link. In this paper,
we propose upper- and lower- bounding processes to bound the
end-to-end probability distribution of a network by combining
the parallel/tandem link reduction with the structure of flows
over the network. We evaluate the performance of the proposed
bounding methods at the 99% success rate of end-to-end data
transmission over randomly generated acyclic networks. The
numerical results demonstrate that our bounding approaches
enable us to characterize a network by a single probability
function to a very good precision.

Index Terms—network reduction, multi-hop networks, net-
work coding, coded transmission

I. INTRODUCTION

Data transmission over large networks is impaired by ran-

dom deleterious events, such as packet losses caused by

congestion and decoding errors owing to noise or collision.

Reliable end-to-end transmission relies largely on various

acknowledgement and retransmission schemes at the cost

of transmission efficiency, since packet-wise (or block-wise)

acknowledgement is needed on a end-to-end or even link-by-

link basis. Numerous research efforts have been devoted to

characterizing the fundamental limits of data transmission over

lossy networks and to improving its efficiency from different

aspects. We only list a very sparse sampling here. Dana et al.

in [1] consider the use of linear network coding over packets

and construct a network model based on correlated erasure

links. Assuming the destination node has side information

on each packet loss event and allowing packets broadcast

from one node to its neighbors, the authors show that linear

network codes achieve the capacity of such networks. Lun et

al. in [2] propose a framework to translate a lossy unicast or

multicast network into a lossless packet network by applying

random linear network coding (RLNC) [3] and performing

RLNC re-encoding at intermediate nodes. Assuming indepen-

dent Poisson packet arrivals at each node and the number of

∗N. Sweeting was a student with Hunter College High School, New York.

packets is large, the probability of RLNC decoding error is

characterized by the delay, rate, and the network capacity.

Unlike [1], no side information is required to achieve capacity.

While [2] does not consider the practical constraint of buffer

size at intermediate nodes, Haeupler and Médard show in

[4] that RLNC is asymptotically capacity-achieving even if

intermediate nodes may only store one coded packet. Xiao

et al. in [5] investigate the delay in packet erasure networks

where RLNC is used in a rateless fashion, and its performance

is upper bounded by a single packet erasure link generated

based on all of the links in the minimum cut.

In general, if we choose a block of bits as the basic

data unit for transmission, the behavior of each link in a

network is simply characterized by a probability function that

associates the probability of error with the number of data units

transmitted within unit time. This data unit is most analogous

to a packet, although the size of packets may vary depending

on the link quality: a packet may carry several data units, and

a data unit may be split into several packets. Hereafter we

simply use packet when we actually refer to the data unit.

Considering the network abstraction where the maximum

data rate and packet loss probability across each link are

limited by local constraints, and assuming that packet losses

are independent, it is interesting to ask whether the behavior

of data transmission over an entire network or a collection of

links can be fully described by a single probability function.

In [6] Adams et al. have proven that links which are connected

in tandem or in parallel can be reduced to a single equivalent

link with a specified probability function. These two reduction

operations serve to make networks simpler to model and

study, but are not sufficient to reduce an arbitrary network. To

tackle this difficulty, we propose upper- and lower- bounding

methods by combining the parallel/tandem link reduction with

the structure of data flows over the underlying networks. Nu-

merical results over randomly generated networks demonstrate

the effectiveness of the proposed methods.

The rest of this paper is organized as follows. In Sec. II

we describe the system model and the parallel/tandem link

reduction methods. We focus on flows over cuts in Sec. III

to construct cut-based upper and lower bounds. Our node-

reduction based upper bounds are presented in Sec. IV, and

routing-based lower bounds are in Sec. V. We present the

numerical results in Sec. VI and conclude in Sec. VII.

This paper has been accepted for publication in Proc. IEEE ICC 2015, London, UK, Jun. 2015. Copyright will be transferred to IEEE without notice.
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Fig. 1. Two links in tandem (left) and in parallel (right).

II. SYSTEM MODEL

We represent a network by its underlying directed graph

N {V , E} where V is the set all vertices and E is the collection

of edges. For some u, v ∈ V , data transmission from u to v is

possible if and only if (u, v) ∈ E . If there are multiple edges

among two nodes, we apply subscripts to distinguish them.

For each v ∈ V , we denote the parents set of v by

I(v) , {u ∈ V|(u, v) ∈ E} ,

the children set of v by

O(v) , {u ∈ V|(v, u) ∈ E} ,

and the set of edges incident to v by

E(v) , {e ∈ E|e = (u, v), or e = (v, u) for some u ∈ V} .

In this paper we only focus on a single unicast transmission

over acyclic networks. Extension to more general setups are

left to future work. Under this scenario, the networks we are

investigating in this paper have the following properties.

• For the source node vs and the destination node vd, we

have |I(vs)|=0, |O(vs)|>0 and |O(vd)|=0, |I(vd)|>0.

• Every node is reachable from vs and reverse-reachable

from vd (Otherwise the node and its connected edges

can be removed from the graph).

• For link ei∈E , ni denotes the maximum number of

packets that can be transmitted over the link within the

time constraint, and ξi is the probability that a packet is

dropped independently at random.

Therefore data transmission over ei ∈ E is characterized either

by the Probability Mass Function (PMF) λi ∈ [0, 1]ni+1 or by

the Complementary Cumulative Distribution Function (CCDF)

Λi ∈ [0, 1]ni+1, where λi(k) describes the probability that

link ei can successfully transmit exactly k packets per delay

constraint, and Λi(k) describes the probability that at least k
packets are successfully transmitted. Given (ni, ξi), the PMF

λi is defined by a binomial distribution, i.e.,

λi(k) =

{

(

ni

k

)

ξni−k
i (1− ξi)

k, for 0 ≤ k ≤ ni

0, otherwise.
(1)

We can easily convert PMFs to/from CCDFs via the following

one-to-one mapping

Λi(k) =

ni
∑

j=k

λi(j), λi(k) = Λi(k)− Λi(k + 1), (2)

where Λi(k) = 0, ∀k > ni by default.

The tandem/parallel reduction techniques developed in [6]

state that we can describe a two-link tandem/parallel network,
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Fig. 2. The smallest network where the tandem/parallel link reduction fails.

as shown in Fig. 1, by a single PDF/CCDF. Define S, S1, and

S2 the number of packets successfully transmitted across the

network, and across the two individual links, respectively. The

tandem network can be described by a single CCDF

Λ(k) , P (S ≥ k) = P (min{S1, S2} ≥ k)

= P (S1 ≥ k)P (S2 ≥ k) = Λ1(k)Λ2(k),

or equivalently, Λ=Λ1⊙Λ2 where ⊙ denotes element-wise

multiplication (Hadamard product) after zero-padding the

shorter of the two CCDFs. Similarly, the parallel network with

PMFs λ1 and λ2 can be described by a single PMF

λ(k) , P (S = k) = P (S1 + S2 = k)

=

k
∑

j=0

P (S1 = j)P (S2 = k − j) =

k
∑

j=0

λ1(j)λ2(k − j),

or equivalently λ=λ1∗λ2 where ∗ denotes convolution.

III. FLOW-CUT BOUNDS

The two-link tandem/parallel reduction techniques can be

straightforwardly extended to multiple links by induction. We

can iteratively apply the tandem- and parallel-link reduction

techniques in alternation to simplify the calculation of end-

to-end PMFs/CCDFs. We should note, however, that the

tandem/parallel reduction operations will not simplify arbitrary

networks to a single distribution. Fig. 2 depicts a simple

network that cannot be simplified in this way; no two links

form a purely parallel or tandem structure, because of link

e3. Indeed, this network is the smallest network (in terms of

the number of nodes/edges) that can’t be fully reduced. As

the number of nodes and edges grows, the possibility that the

tandem/parallel reduction operations are sufficient for network

reduction will decrease. We therefore need new approaches to

tackle general network topologies that can’t be fully reduced.

Definition 1 (Upper and Lower Bounds of a CCDF): Let S
be the number of successfully delivered packets and Λ be its

CCDF, if for all non-negative integers k < E[S], we have

ΛL(k) ≤ Λ(k) ≤ ΛU (k), (3)

then ΛL is a lower bound and ΛU is an upper bound.

This definition only focus on k < E[S], motivated by the

fact we are only interested in operation regimes where the rate

of successful is large (say larger than 50%).

Definition 2 (Flow across a Cut): Let C be a cut of the

directed acyclic graph and E(C) be the set of edges that cross

C from the source side to the destination side. The flow across



the cut C, defined as the number of successfully delivered

packets over the cut C within unit time, is therefore

SC =
∑

i∈E(C)

Si.

Assuming E(C)={1, 2, . . . ,m}, its associated PMF λC is

λC = λ1 ∗ λ2 ∗ · · · ∗ λm, (4)

where the equality is due to the parallel-link reduction by

regarding links in E(C) as a parallel network.

Proposition 1: Let Cd, d = 1, 2, . . . , c, be all the cuts

separating the source node vs and the destination node vd,

each associated with a flow SCd
and a CCDF ΛCd

, and define

Λall−cuts , ΛC1
⊙ ΛC2

⊙ · · · ⊙ ΛCc
.

Λvs→vd , which describes the end-to-end data transmission, is

lower bounded by Λall−cuts and upper bounded by ΛCd
, ∀d.

Proof: Denoting D the number of successfully received

data units at the destination node vd, we have

D = min{SC1
, SC2

, . . . , SCc
},

where the equality comes from the fact that information

passing through the network goes through every cut in order

to to reach the destination. Therefore any cut Cd, ∀d provides

a valid upper bound ΛCd
. To prove the lower bound, we need

to show that for all non-negative integers k < E[D] where

E[D] is the mean associated with ΛD, we have

Λall−cuts(k) ≤ ΛD(k). (5)

Intuitively, Λall−cuts neglects the dependence between all cuts

and therefore represents a tandem network by connecting all

cuts in serial. The formal proof of (5) is in Appendix A.

We refer to Λall−cuts as the All-Cuts lower bound and

ΛCmin
as the Min-Cut upper bound, where Cmin is the cut

whose average throughput is smallest among all cuts.

Remark 1: It is interesting to compare our Min-Cut upper

bound to the one proposed in [5, Proposition 1], where all

the erasure links (ni, ξi) crossed by the minimum cut are

modeled by a single erasure channel (n, ξ), where n=
∑

i ni

and ξ=
∑

i
ni

n
ξi. From Proposition 2 we can see that [5,

Proposition 1] is accurate up to the first moment (the mean)

n(1− ξ) but provides a larger variance nξ(1− ξ).
Proposition 2: Given s independent binomial random vari-

ables Xi ∼ B(ni, 1− ξi), i = 1, . . . , s, and denoting

X =
s
∑

i=1

Xi, n =
s
∑

i=1

ni, ξ =
s
∑

i=1

ni

n
ξi,

we have

E(X) = n(1− ξ), Var(X) ≤ nξ(1− ξ), (6)

where the equality holds if and only if ξ1 = . . . = ξs.

Proof: Since Xi are independent, we have

E(X) =
s
∑

i=1

E(Xi) =
s
∑

i=1

ni(1− ξi) = n(1 − ξ), (7)

Var(X) =
s
∑

i=1

Var(Xi) =
s
∑

i=1

niξi(1 − ξi). (8)

W.l.o.g., assuming 0 ≤ ξ1 ≤ · · · ≤ ξs ≤ 1, we have 1 ≥
1−ξ1 ≥ · · · ≥ 1−ξs ≥ 0. By the Chebyshev Sum Inequality,

1

n

s
∑

i=1

niξi(1−ξi) ≤

(

1

n

s
∑

i=1

niξi

)(

1

n

s
∑

j=1

nj(1−ξj)

)

,

= ξ

(

1−
s

∑

j=1

nj

n
ξj

)

= ξ(1− ξ), (9)

where the equality holds if and only if ξ1= · · ·=ξs. Substitut-

ing (8) into (9) and multiplying both sides by n, we get (6).

IV. NETWORK REDUCTION UPPER BOUNDS

We can also generate upper bounds by first altering the

network structure while preserving its minimum cut, and then

applying parallel/tandem link reduction. Firstly, we define the

node reduction operations more precisely.

Definition 3: The 1n-node reduction function f(N , v),
where v has I(v) = {vin} and O(v) = {o1, o2, · · · , on},

maps N {V , E} to N ′ {V ′, E ′}, where

V ′ = V \ {v} and E ′ = (E \ E(v))
⋃

(

n
⋃

i=1

(vin, oi)
)

.

We associate each new link (vin, oi) with a CCDF

Λvin→oi = Λvin→v ⊙ Λv→vi .

Definition 4: The n1-node reduction function g(N , v),
where v has O(v) = {vout} and I(v) = {i1, i2, · · · , in},

maps N {V , E} to N ′ {V ′, E ′}, where

V ′ = V \ {v} and E ′ = (E \ E(v))
⋃

(

n
⋃

k=1

(ik, vout)
)

.

We associate each new link (ik, vout) with a CCDF

Λik→vout
= Λik→v ⊙ Λv→vout

.

A node v is said to be 1n-reducible if it has |I(v)| = 1,
or n1-reducible if it has |O(v)| = 1. The 1n/n1-node

reduction operations can be visualized as in Fig. 3, where a

1n- (n1-)reducible node is firstly identified, then copied with

its incoming (outgoing) edge, and finally removed by applying

tandem-link reduction.

Proposition 3: For network N , f(N , v) and g(N , v) pro-

vide upper bounds.

Proof: It suffices to notice that for any transmission task

supported by N , we can find a corresponding transmission

protocol on the reduced network with the same or relaxed

constraints, due to the underlying node/edge duplication oper-

ation by f(N , v) and g(N , v).
Proposition 4: Any unicast acyclic network N has at least

one node v such that v is 1n-reducible and at least one node

u such that u is n1-reducible.

Proof: See the appendix B.

We can fully reduce a network to a single link by re-

peatedly applying 1n/n1-node reduction and tandem/parallel

link reductions, and hence provide upper bounds for the
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Fig. 3. The 1n node-reduction function f(N , B) (left) and the n1 node-
reduction function g(N , C) (right) before removing the auxiliary nodes by
tandem-link reduction.

original network. Disadvantages are the potentially relaxed

transmission constraints at the reduced nodes and that it does

not tell us in which order these 1n/n1-reducible nodes should

be reduced. We propose two strategies to select the node to

be first reduced: the 1n/n1-reducible node with the highest

incoming/outgoing edge capacity (termed NR-Abs bound) or

the one with highest ratio between incoming and outgoing link

capacity (termed NR-Ratio bound).

Definition 5: The capacity ratio of a 1n/n1-reducible

node v is defined based on the average throughput across its

incoming/outgoing edges, i.e.,

Cv =
C(vin,v)

∑n

i=1 C(v,oi)
or Cv =

∑n

k=1 C(ik,v)

C(v,vout)
.

Proposition 5: If Cv ≥ 1 for some 1n/n1-reducible node

v, the minimum cut of the NR-Ratio reduced network is the

same as that of the original network.

Proof omitted here since it is intuitive to see that the minimum

cut is always preserved in NR-Ratio when Cv ≥ 1.

We can create a hybrid approach with some predetermined

threshold t: applying NR-Ratio to reduce all nodes with Cv >
t and then apply NR-Abs reduction for the remaining 1n/n1-

reducible nodes. Choosing t = 0 will be identical to NR-Ratio

and choosing t = ∞ will be identical to NR-Abs.

V. FORD-FULKERSON BASED LOWER BOUNDS

The Ford-Fulkerson algorithm [7] computes the optimal

routing paths in a flow network. To adapt the algorithm for

our purposes, we use the average throughput of each link as

the flow value, apply the Ford-Fulkerson algorithm to find

all the feasible flows, and then split the network into disjoint

paths using conservation of flow as shown in Fig. 4. Each

path forms a tandem network, and all paths form a parallel

network. Then we can use the basic reduction operations to

reduce the network into a single link. Given a path with flow

yj in its tandem network, a link that originated from edge

ei inherits its erasure probability ξi and a share of its rate

n′
i,j =

[

yj

1−ξi

]

to ensure integrality constraint. This approach

is termed FF-Flow, as shown in Fig. 4 (middle). We can also

split a link according to the shares of each flow that pass

through it, i.e., n′
i,j =

[

yj∑
k yk

ni

]

where
∑

k yk is the total

flow that passes through the link ei. This approach is named

FF-Split and illustrated in Fig. 4 (right).
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Fig. 4. An example network (upper left, ni shown along the edges) with
packet erasure probability ξ = 0.1 on all links, its flow graph generated
by Ford-Fulkerson algorithm (lower left, with 3 disjoint flows 9, 4.5, 3.6),
and the reconstructed networks for the lower bounds FF-Flow (middle) and
FF-Split (right, numbers in red indicate the difference).

Intuitively, the Ford-Fulkerson algorithm-based reduction

yields lower bounds because the algorithm provides us with

a network protocol on the original network that can produce

the corresponding probability function.

VI. NUMERICAL ILLUSTRATION

To understand the general performance of all our proposed

upper and lower bounds, we evaluate their end-to-end proba-

bility function over the 4-node irreducible network and over

randomly generated networks. For a predefined network size

(in nodes), the probability that there is a directed edge from

one node to the other is set to 1/2 and the rate of each link

is uniformly chosen from [100, 1000] with erasure probability

randomly chosen from within a predefined range. Once the

network has been populated, networks with cycles or isolated

nodes will be discarded. Furthermore, we only focus on cases

where tandem/parallel reduction are not sufficient as we would

not need these bounding methods otherwise.

A. Error Probability over a Four-Node Test Network

We simulate the end-to-end error probability via 107 Monte-

Carlo trials over the smallest irreducible network where all

links have the same erasure probability ξ=0.1 but different

rates, indicated by the numbers along the corresponding edges

as in Fig. 5. In this test network, the NR-Abs bound and the

NR-Ratio bound generated as in Fig. 3 are tighter than the Min-

Cut upper bound. The FF-Flow lower bound is identical to

FF-Split and they are better than the All-Cuts in some regions.

B. Random Networks: Gap from the Best Upper/Lower Bound

To evaluate the tightness of our bounds in general network

settings, we compare their performance over randomly gen-

erated acyclic networks by the highest end-to-end data rate

they can support with no less than 99% success probability.

We call the corresponding rate K99. In Fig. 6 we evaluate

the K99 of all the lower bounds against the best upper bound

(i.e., the smallest K99 produced by all the upper bounds) and
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Fig. 6. Ratio between our three lower bounds and the best upper bound when
evaluated at 99% success probability. Each error bar indicates the mean and
the range of the corresponding ratio, which is based on 1000 trials over
randomly generated acyclic networks. For each trial, the number of nodes is
indicated on the abscissa and each directed edge ei is generated at probability
1/2 with randomly chosen rate ni ∈ [100, 1000] and erasure probability ξi ∈
[1%, 3%] (upper), ξi ∈ [3%, 5%] (middle), and ξi ∈ [3%, 10%] (lower).

plot the mean value and the corresponding range based on

1000 trials for each network size and erasure probability range.

The All-Cuts lower bound is always within 1% of the best

upper bound over random networks with different sizes and

erasure probability. The FF-Split lower bound improves FF-

Flow uniformly. FF-Split (FF-Flow) provides a gap of less

than 1% (2%) on average and less than 3% (6%) in the worst

case1, at least for the settings as we have demonstrated. Their

performances degrade slightly with increasing network size

and the erasure probability.

The Min-Cut upper bound provides a gap of less than one

percent, which is much better than the NR-Abs and the NR-

Ratio bounds over random networks as shown in Fig. 7, where

1The worse case is very rare since the variance is O(10−6).
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at 99% success probability over 1000 randomly generated acyclic networks
with edge erasure probability ξi ∈ [3%, 10%]. Multiple counts occur when
several bounds are identical.

the erasure probability is chosen from the range [3%, 10%].
Although NR-Abs and NR-Ratio may produce better bounds

than the Min-Cut, they may also relax the network constraints,

since even a highly varied network often does not provide

any nodes with a capacity ratio larger than 1. Therefore, they

provide a loose bound, as indicated by the excessive range

shown in Fig. 7 (above). Their mean and variance increase

as the size of networks grows. Performance for other erasure

probability ranges are similar and therefore omitted here.

C. Random Networks: Chances as the Best Bound

In Fig. 8 we count the instances in which each bounding

method produces the best bound, as measured by K99. With

very high probility All-Cuts provides the best lower bound

(> 95%) and Min-Cut provides the best upper bound (> 99%).

The FF-Split produces the best lower bound with about 20%
probability when network size is small. The NR-Abs and



the NR-Ratio upper bounds are the best upper bound with

high probability when the network constraints are preserved,

although the probability to produce a loose bound is also large,

as indicated by the large range in Fig. 7.

VII. CONCLUSIONS

In this work, we propose several lower and upper bounds to

characterize the end-to-end transmission probability function.

Our best lower bound yields a gap smaller than one percent in

throughput from the best upper bound over randomly gener-

ated acyclic networks. This justifies our efforts by describing

the end-to-end data transmission over lossy networks with a

single probability function to high precision.

There are several ways to improve our proposed upper and

lower bounds. For example, one can combine the Min-Cut and

the NR-Ratio upper bounds to construct a new upper bound:

we first reduce the network as in NR-Ratio until there is no

node with input-output capacity ratio higher than 1, and then

apply Min-Cut to the reduced network. We may also combine

the 1n/n1-node reduction and the All-Cuts lower bound to

provide a good approximation that always falls between the

Min-Cut upper bound and the All-Cuts lower bound. Other

approximations can be found in [8].

APPENDIX A

PROOF OF THE ALL-CUTS LOWER BOUND

If no edge appears in more than one cut, i.e., all Cd, ∀d are

independent, all the cuts form a tandem network. By tandem-

link reduction we have

ΛD = ΛC1
⊙ · · · ⊙ ΛCc

= Λall−cuts.

Assuming C1 and C2 share some common links, we introduce

three independent random variables Z0, Z1, Z2 such that

SC1
= Z0 + Z1, SC2

= Z0 + Z2,

where Z0 represents the flow over the common links and

Z1 and Z2 represent flows over the rest links in C1 and C2,

respectively. We have

ΛC1
(k)=P (Z0+Z1≥k)=

∑

i

P (Z1≥k−i|Z0=i)P (Z0=i)

=
∑

i

P (Z1≥k−i)P (Z0=i)=
∑

i

P (Z0=i)ΛZ1
(k−i),

where the second last equality comes from the fact that Z0

and Z1 are independent. Similarly we can show that

ΛC2
(k)=

∑

i

P (Z2≥k−i)P (Z0=i)=
∑

i

P (Z0=i)ΛZ2
(k−i).

On the other hand, denoting Sm , min{SC1
, SC2

}, we have

ΛSm
(k) = P (Sm ≥ k) = P (min{Z1, Z2}+ Z0 ≥ k)

=
∑

i

P (Z1 ≥ k−i, Z2 ≥ k−i|Z0=i)P (Z0=i)

=
∑

i

P (Z0=i)ΛZ1
(k−i)ΛZ2

(k−i).

Since ΛZ1
(j) and ΛZ2

(j) are monotonically decreasing, we

can shown by following the Chebyshev Sum Inequality that for

all feasible k (as long as Λ(k) > 0),

ΛC1
(k)ΛC2

(k) ≤ ΛSm
(k).

By grouping cuts that share common links and rearranging

D in such a way that

D = min{· · ·min{min{SC1
, SC2

}, SC3
} · · ·SCc

},

we can apply the above results iteratively and prove (5).

APPENDIX B

PROOF OF PROPOSITION 4

Let us consider the nodes v∈O(vs). If there is only one such

node (call it v0), it must be 1n-reducible, since otherwise it

would have an input which is not the source. Say it is con-

nected to node u. If we trace the input of node u by traveling

in reverse along the edges of the network, we must eventually

reach the source, which means we must pass through v. Thus

u, which has v∈O(u), is part of some path originating at v.

This means we have found a cycle; a contradiction. Thus we

need only consider the case in which there are multiple nodes

v∈O(vs). Using the same reasoning as above, for each such v
we can trace a non-source input back to some other v′∈O(vs).
However, if we do the same for v′, we find that any input not

directly from the source must originate from some v′′∈O(vs).
If we continue this process, we must at some point reach a

repeated node, since the network is finite. This means we have

found a cycle, a contradiction. So there must be some v∈O(vs)
such that I(v)={vs}. We can make the completely analogous

“dual” argument using the sink to prove the existence of an

n1-reducible node.

ACKNOWLEDGMENT

This work was funded in part by the Swedish Research

Council (VR), the VT iDirect, and the MIT Wireless Center.

This material is based upon work supported by the Air Force

Office of Scientific Research (AFOSR) under award No.

FA9550-13-1-0023.

REFERENCES

[1] A. F. Dana, R. Gowaikar, R. Palanki, B. Hassibi, and M. Effros, “Capacity
of wireless erasure networks,” IEEE Transactions of Information Theory,
vol. 52, pp. 789–804, Mar. 2006.

[2] D. S. Lun, M. Médard, R. Koetter, and M. Effros, “On coding for reliable
communication over packet networks,” Physical Communication, vol. 1,
pp. 3–20, Mar. 2008.

[3] T. Ho, M. Médard, R. Koetter, M. Effros, D. R. Karger, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,” IEEE

Transactions of Information Theory, vol. 52, pp. 4413–4430, Oct. 2006.
[4] B. Haeupler and M. Médard, “One packet suffices - Highly efficient

packetized network coding with finite memory,” in Proceedings of IEEE

International Symposium on Information Theory (ISIT), Aug. 2011.
[5] M. Xiao, M. Médard, and T. Aulin, “Cross-layer design of rateless random

network codes for delay optimization,” IEEE Transactions Communica-
tions, vol. 59, pp. 3311–3322, Dec. 2011.

[6] D. C. Adams, J. Du, M. Médard, and C. Yu, “Delay constrained
throughput-reliability tradeoff in network-coded wireless systems,” in
Proceedings of IEEE Global Communications Conference (Globecom),
Dec. 2014.

[7] L. R. Ford Jr and D. R. Fulkerson, “Maximal flow through a network,”
Canadian Journal of Mathematics, vol. 8, pp. 399–404, Feb. 1956.

[8] N. Sweeting, Reduction of Arbitrary Networks: A Heuristic Approach,
Research Science Institute (RSI) Project Report, MIT, Jul. 2014.




