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Abstract—Massive machine-type communication (mMTC) has
been regarded as one of the most important use scenarios in
the fifth generation (5G) and beyond wireless networks, which
demands scalable access for a large number of devices. While
grant-free random access has emerged as a promising mechanism
for massive access, its potential has not been fully unleashed.
Particularly, the two key tasks in massive access systems, namely,
user activity detection and data detection, were handled sep-
arately in most existing studies, which ignored the common
sparsity pattern in the received pilot and data signal. Moreover,
error detection and correction in the payload data provide
additional mechanisms for performance improvement. In this
paper, we propose a data-assisted activity detection framework,
which aims at supporting more active users by reducing the
activity detection error, consisting of false alarm and missed
detection errors. Specifically, after an initial activity detection
step based on the pilot symbols, the false alarm users are filtered
by applying energy detection for the data symbols; once data
symbols of some active users have been successfully decoded,
their effect in activity detection will be resolved via successive
pilot interference cancellation, which reduces the missed detection
error. Simulation results show that the proposed algorithm
effectively increases the activity detection accuracy, and it is able
to support ∼ 20% more active users compared to a conventional
method in some sample scenarios.

Index Terms—Internet-of-Things (IoT), massive connectivity,
grant-free massive access, data-assisted user activity detection,
approximate message passing (AMP).

I. INTRODUCTION

The proliferation of the Internet of Things (IoT), such as

connected health, smart home, and intelligent manufacturing,

is prompting a rapid revolution of wireless communications.

In order to support a massive number of connected devices,

massive machine-type communications (mMTC) has become

one of the three generic services offered by the fifth generation

(5G) wireless networks [1]. A unique feature of mMTC is

that, while a huge amount of devices are connected, only a

proportion of them sporadically become active, normally with

a small amount of data to transmit [2].

Nevertheless, uplink access in legacy wireless networks is

generally controlled by grant-based access schemes, where

each user first transmits a scheduling request to the base

station (BS) and cannot start its data transmission until a

grant is received. Although the grant-based access schemes

reserve dedicated resources for each user that avoids potential
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collisions, long latency and significant signalling overhead will

be incurred with a large number of devices [3], [4].

Grant-free random access, where users can transmit data

without waiting for approval from the BS [5], provides a

promising solution for mMTC. In its protocols, the BS needs

to detect the set of active users and estimate their channel

conditions based on the received pilot signal, before per-

forming data reception operations. Due to the vast amount

of devices, users can only be assigned with non-orthogonal

pilots, which makes it highly challenging for accurate active

user identification and channel estimation at the BS. As a

result, accommodating the maximum number of active devices

with minimum degradation of communication performance is

widely acknowledged as one of the most fundamental design

considerations for grant-free massive access [3], [6], [7].

Because of the sporadic traffic pattern of the connected

devices, detecting the set of active users turns out to be

a compressive sensing problem, for which, many efficient

algorithms were developed [8]. In [9], a joint user activity

detection and data detection algorithm was proposed for grant-

free non-orthogonal multiple access (NOMA) by exploiting

the temporal correlations of user activities. A similar problem

was later revisited using approximate message passing (AMP)

and expectation maximization (EM) in [10]. However, these

works assume full channel state information (CSI) available

at the BSs, which is practicallly infeasible since most of the

users are inactive without transmitting their pilots to the BS.

Therefore, joint activity detection and channel estimation has

attracted significant attentions most recently [11], [12]. In [11],

a joint design of activity detection and channel estimation was

proposed based on AMP for massive multi-input multi-output

(MIMO) systems, and it was shown that the activity detection

error can be arbitrarily small in the asymptotic regime. In

addition, a user activity detection and channel estimation

approach was developed in [12] by leveraging the joint sparsity

from both the spatial and frequency domains. This approach

obviates the need of knowing the number of devices.

However, prior works on grant-free massive access mostly

follow a separate design approach, i.e., the activity pattern

and CSI are estimated without incorporating any information

encoded in the received data symbols. In this way, it only

utilizes the sparse activity pattern from the received pilot

signal, which limits the activity detection accuracy and the

data transmission reliability. An important but easily neglected
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observation in grant-free random access is that the same user

activity pattern replicates in the received data symbols, which

can be exploited to improve the activity detection accuracy

for accommodating more connected devices. This inspires the

design of a data-assisted activity detection framework in this

paper, where the false alarm and missed detection error can

both be suppressed. It is worthwhile to note that this idea was

initially proposed for a single-antenna NOMA-based massive

access system [13], which, however, cannot be easily extended

for multi-antenna receptions.

In this paper, we endeavor to reduce the activity detection

error by leveraging valuable information obtained in data sym-

bols. The proposed data-aided activity detection framework

contains three basic modules, namely, an initial estimator, a

false alarm corrector and a missed detection corrector. On one

hand, to minimize the false alarm error, energy detection is ap-

plied in the false alarm corrector to filter inactive users that are

incorrectly determined as active. On the other hand, inspired

by the successive interference cancellation (SIC) detection, the

missed detection corrector progressively increases the sparsity

level of the received pilot signal to reduce the probability of

missed detection. Simulation results shows that the proposed

framework is able to achieve noticeable improvements in terms

of both user activity detection accuracy and data detection

error. Moreover, about 20% more active users can be supported

by the proposed framework in sample scenarios, compared to

that achieved by the separate design.

The rest of this paper is organized as follows. We introduce

the system model and two basic tasks of grant-free access in

Section II. A data-assisted user activity detection framework

is developed in Section III. Simulation results are presented

in Section IV, and we conclude this paper in Section V.

Notations: We use lower-case letters, bold-face lower-case

letters, bold-face upper-case letters, and math calligraphy let-

ters to denote scalars, vectors, matrices, and sets, respectively.

Besides, the conjugate transpose of a matrix M is denoted as

MH and the complex Gaussian distribution with mean µ and

covariance matrix Σ is denoted by CN (µ,Σ). In addition,

the indicator function and the Kronecker product are denoted

as 1(·) and ⊗, respectively. We use vec(·) to denote the

vectorization operator and let vec−1(·) denote its inverse.

II. SYSTEM MODEL

A. Signal Model

We consider an uplink cellular system as shown in Fig.

1, where a large number of mobile users are simultaneously

served by a BS. The scenarios where the mobile users have

sporadic uplink data traffic (e.g., the IoT and mMTC) are

of particular interests, where only a small fraction of the

users have data to transmit and become active at each time

instant. The active probabilities of different users are assumed

to be identical, and they are denoted as p. We denote the set

of mobile users as N , {1, · · · , N}, and use the activity

indicator un ∈ {0, 1} to represent whether a user is active

for transmission, i.e., un = 1 indicates the user is active and

un = 0 if it is inactive. The set of active users is represented

by Ξ , {j ∈ N|uj = 1} with its cardinality denoted as K

(K ≤ N ). For simplicity, the BS is assumed to have M receive

antennas while each user transmits with a single antenna.

We adopt the quasi-static block fading channel model,

where the channel condition remains unchanged within a

transmission block spanning T symbol intervals, and changes

independently across different coherence blocks. The uplink

channel vector from user n to the BS, denoted as hn, is

modeled as fn =
√
βnαn, ∀n, where αn and βn stand for the

small-scale and large-scale fading coefficients, respectively.

Besides, the users are assumed to be static and thus βn is

known at the BS.

Fig. 1. System model and the adopted grant-free random access scheme.

A grant-free random access scheme as shown in Fig. 1, is

adopted for uplink transmissions, where a transmission block

is divided into two phases: The first phase contains L symbols

that are reserved for pilot transmission and the remaining Ld ,

T−L symbols are used for payload data delivery in the second

phase. We consider the massive random access scenarios, i.e.,

L < N , in which, assigning orthogonal pilot sequences to

all the users is infeasible. To overcome this issue, each user

is instead assigned with a unique pilot sequence
√
Lan with

an , [an,1, · · · , an,L]T and an,l ∼ CN
(

0, 1
L

)

[7]. It can be

verified that {an}Nn=1 achieves asymptotic orthogonality when

L is sufficiently large. By defining Ap as [a1, · · · , aN ], the

received pilot signal Yp ∈ CL×M at the BS in the first phase

can be expressed as follows:

Yp =
√

LρApH+Np, (1)

where ρ is the user transmit power, H , [h1, ...,hN ]T

denotes the effective channel matrix with hn , unfn, and

Np = [np,1, ...,np,L]
T

is the Gaussian noise with zero mean

and variance σ2 for each element.

In the data transmission phase, each active user transmits

s (s < Ld) coded symbols, which is denoted as sn ∈ X s×1.

Here, X is the set of constellation points with the normalized

average power. For the set of inactive users, sn is set to be

a zero vector for notation consistency. Since the number of

active users in the system may far exceed the number of

receive antennas at the BS, in order to avoid the system from

being overloaded [14], we multiply the coded symbols by a

precoding matrix for each user [15] as follows

cn = Pnsn, (2)



where cn is the precoded symbols and Pn ∈ CLd×s is the

precoding matrix with full column-rank. Thus, the received

data signal at the BS, denoted as Yd ∈ CM×Ld , can be

expressed as follows:

Yd =
√
ρ

N
∑

n=1

hnc
T
n +Nd =

√
ρ
∑

j∈Ξ

hjs
T
j P

T
j +Nd, (3)

where Nd = [nd,1, ...,nd,Ld
] is the Gaussian noise with the

same distribution as Np. We denote yd = vec (Yd), and let

Bn , Pn ⊗ hn. As a result, the received data signal in (3)

can be rewritten as the following expression:

yd =
√
ρBaxa +Nd, (4)

where Ba , [{Bj}j∈Ξ] and xa ,
[

{sTj }j∈Ξ

]

.

B. User Activity and Data Detection

User activity detection and data detection are the two most

critical tasks in grant-free massive access. Prior studies on

massive connectivity typically adopted a two-stage separate

design as shown in Fig. 2(a) [10], [16], [17]. Specifically,

in the first stage, activity detection and channel estimation

are performed based on the received pilot signal, which can

be accomplished by exploiting the sparsity of the effective

channel matrix using compressive sensing techniques [3]. The

estimated user activity pattern and CSI are then used for data

detection in the second stage.

With limited resources available for pilot transmissions, it is

challenging to obtain accurate knowledge of the user activity

pattern at the BS. In fact, missed detection, i.e., an active user

is not detected at all, and false alarm, i.e., an inactive user

is determined as active, are two major sources that contribute

to the user activity detection error. On one hand, data of the

miss-detected users is not decoded, leading to a one-hundred

percent data error for these users; On the other hand, false

alarm shall degrade the data detection accuracy, since the data

detector also attempts to decode data for the false alarm users,

which is equivalent to introducing interference to the active

users. Therefore, improving the activity detection accuracy is

of the utmost importance to the communication performance

in massive access systems.

A key observation of the grant-free access scheme is that,

both the transmitted pilots and data symbols are distorted by

the same wireless fading channel. In other words, the received

pilot and data signals share the same sparsity pattern, which

could be exploited to improve the activity detection accuracy.

Nevertheless, this aspect was largely overlooked by existing

studies, which motivates our investigation on data-assisted

activity detection approaches. In the next section, we will

customize dedicated methods to handle the two kinds of errors,

in order to reduce the overall user activity detection error for

reliable communications.

III. THE PROPOSED FRAMEWORK

In this section, we propose a data-assisted activity detection

framework to improve the activity detection accuracy. A flow

(a) Separate design of user activity and data detection.

(b) The data-assisted activity detection framework.

Fig. 2. The separate design and data-assisted design for massive access.

chart of the proposed framework is shown in Fig. 2(b), which

contains an initial estimator, a false alarm corrector, and a

missed detection corrector. For each transmission block, the

initial estimator performs preliminary estimation on the CSI

and the user activity pattern for subsequent data detection.

This is essentially the separate design as shown in Fig. 2(a).

Based on the initial data symbol estimates, the false alarm

corrector performs energy detection to filter part of the false

alarm users. This step is inspired by the intuition that the

average magnitudes of the detected data symbols of the false

alarm users shall be much smaller than those of the active

users. Then, with the updated user activity pattern, the channel

matrices and data symbols are re-estimated for processing in

the missed detection corrector. In particular, the design of

the missed detection corrector leverages the SIC techniques

to further refine the activity detection result. In contrast to

conventional SIC algorithms that remove interference from the

received data signal, interference in the received pilot signal

is eliminated by identifying a subset of users whose payload

data can be successfully decoded in each iteration.

We will elaborate different modules of the proposed frame-

work in the following subsections. For better expositions, we

use the superscript “(i)” to denote the iteration number, and

refer the operations of the initial estimator as the 0-th iteration.

Besides, the intermediate variables N (0), K(0), Y
(0)
p , y

(0)
d and

N (0) are initialized as N , K , Yp, yd and N , respectively.

A. The Initial Estimator

The initial estimator applies the AMP-based algorithm pro-

posed in [10] to jointly estimate the CSI and user activity pat-

tern, based on which, data symbol detection is performed. In



particular, with Y
(i)
p as the input1, the AMP-based algorithm

obtains the channel estimates for the users in N (i), denoted as

Ĥ(i) =
[

{ĥ(i)
j }j∈N (i)

]

, and the user activity pattern is derived

by thresholding, i.e., the set of active users is determined as

K̂(i)
a ,

{

j ∈ N (i)|φ(ĥ(i)
j ) ≥ θ

(i)
j

}

, where φ(·) is a known

function and θ
(i)
j is the decision threshold for user j.

We define Ĥ
(i)
a ,

[

{ĥ(i)
j }

j∈K̂
(i)
a

]

and B̂
(i)
a in a way similar

to Ba in (4). By using the MMSE equalizer, the estimated data

symbols for the users in K̂(i)
a , are obtained via the following

expression:

D̂(i)
a = vec−1

[

(

B̂(i)H
a B̂(i)

a +
σ2

ρ
I

)−1

B̂(i)H
a y

(i)
d

]

, (5)

where D̂
(i)
a ,

[

{d̂(i)
a,j}j∈K̂

(i)
a

]

with d̂
(i)
a,j ,

[

{d̂(i)
a,(j,m)}sm=1

]

and d̂
(i)
a,(j,m) is the m-th estimated data symbol of user j.

B. The False Alarm Corrector

In the i-th iteration, the false alarm corrector filters the

inactive users from K̂(i−1)
a , which is obtained from the initial

estimator if i = 1 and the missed detection corrector in the

previous iteration if i ≥ 2. We borrow the idea of energy

detection for spectrum sensing in cognitive radio networks

[18] to design the false alarm corrector. This is because if

the estimated data symbols of a user have small average

magnitudes, this user is likely to be a false alarm user.

Specifically, in the false alarm corrector, a user that was

detected as active in the previous iteration is determined as a

false alarm user if the following criteria is satisfied:

s
∑

m=1

1
(

|d̂(i−1)
a,(j,m)| ∈ (0, θF1) ∪ (θF2 ,+∞)

)

≥ θF3 , ∀j ∈ K̂(i−1)
a .

(6)

In (6), θF1 , θF2 and θF3 are empirical threshold values, where

θF1 is to ensure the average estimated data symbol energy

of an active user is sufficiently large, while θF2 is designed

for reducing the sensitivity of the false alarm corrector to the

channel estimation error. Therefore, the updated estimate of

the user activity pattern is given by Q̂(i)
a , K̂(i−1)

a \
{

j ∈
K̂(i−1)

a |∑s

m=1 1
(

|d̂(i−1)
a,(j,m)| ∈ (0, θF1) ∪ (θF2 ,+∞)

)

≥ θF3

}

.

C. The Missed Detection Corrector

1) Overview: While the false alarm corrector is able to

reduce the chances of including inactive users in K̂(i−1)
a , it

cannot effectively handle the missed detection users. In this

subsection, we design a missed detection corrector to minimize

the number of active users that cannot be found in previous

steps. Our design is motivated by the SIC techniques for

multi-user detection [19], where data from different users

are detected sequentially, and interference in the received

1In this subsection, we retain the superscript “(i)” as the key steps in the
initial estimator that are reused in the missed detection corrector as will be
discussed in Section III-D, in which the iteration number is greater than zero.

data signal is iteratively removed for decoding data of the

remaining users. However, as our objective is to reduce the

missed detection error, we propose to perform SIC for the

received pilot signal instead in the missed detection corrector.

By identifying some users that are determined as active with

high confidence and remove their pilot data from the received

pilot signal in each iteration, we shall be able to increase the

sparsity level of the received pilot signal, which is beneficial

for accurate user activity detection and channel estimation in

next iterations.

Fig. 3. The structure of the missed detection corrector.

In particular, the missed detection corrector performs three

tasks as shown in Fig. 3, including i) Channel estimation, data

symbol detection and channel decoding; ii) Pilot interference

cancellation; and iii) User activity/symbol re-estimation. These

tasks will be elaborated in the sequel.
2) Channel estimation, symbol detection, and channel

decoding: With the updated estimate of the active user set

Q̂(i)
a from the false alarm corrector, the missed detection

corrector first re-estimates the channel vectors and performs

data symbol detection accordingly, both of which apply the

MMSE estimators. The estimated channel vectors of user j

is denoted as ȟ
(i)
j , and the detected symbol sequence on the

constellation, i.e., which constellation points are transmitted

in the symbol sequence, is denoted as š
(i)
a,j for user j. The

detected symbol sequence is then passed to a channel decoder,

which outputs the parity check result in addition to the decoded

data. We denote the set of users that pass the parity check as

P̂(i)
a , whose channel-decoded data is denoted as x̌

(i)
a,j , j ∈ P̂(i)

a .
3) Pilot interference cancellation and activity/symbol re-

estimation: After channel decoding, the missed detection

corrector selects a number of users from Q̂(i)
a based on

their parity check results. The pilots of the selected set of

users are then subtracted from the received pilot signal. Our

heuristics originate from a key theorem in compressive sensing

(See Theorem 1.3 in [20]). This theorem implies that for an

idealized user activity detection problem where the BS has

a single receive antenna and without the receive noise, if t

(t ≤ K) of the active users can be identified by an oracle, the

remaining K− t active users can also be accurately identified

from the interference-cancelled pilot signal as long as the

triplet (N,K,L) satisfies the following inequality:

L ≥ C(K − t) ln

(

N − t

K − t

)

, t = 0, 1, 2, · · · ,K, (7)

where C > 0 is a constant. Since the right-hand side of (7)

decreases with t, it means that if more active users can be



accurately found by an oracle, the perfect active user recovery

condition can be met more easily for the remaining users. In

other words, increasing the sparsity level in the received pilot

signal is useful to improve the activity detection performance.

Unfortunately, this conclusion is drawn by imposing strict

assumptions, which is rarely the case in practice.

To resolve this issue, the missed detection corrector selects

min{Sa, |P̂(i)
a |} users from Q̂(i)

a based on the channel decod-

ing results, and the set of selected users for pilot interference

cancellation in the i-th iteration, is denoted as M̂(i)
a . Here,

Sa is a preset parameter in the proposed framework. In case

that |P̂(i)
a | > Sa, the Sa users with the minimum Euclidean

distances between x̌
(i)
a,j and š

(i)
a,j are selected. Thereafter, the

pilot data of the selected set of users is subtracted from the

received pilot signal Y
(i−1)
p for the next iteration:

Y(i)
p = Y(i−1)

p −
√

Lρ
∑

j∈M̂
(i)
a

ȟ
(i)
j aTj , (8)

and Y
(i)
d is updated accordingly as follows:

Y
(i)
d = Y

(i−1)
d −√

ρ
∑

j∈M̂
(i)
a

x̌
(i)
a,jȟ

(i)
j . (9)

If P̂(i)
a = ∅, the proposed algorithm will be terminated and

the data decoding results of all users from Q̂(i)
a are deemed

as incorrect. Otherwise, the AMP-based algorithm adopted by

the initial estimator will be invoked again with Y
(i)
p , Y

(i)
d ,

N (i) = N (i−1)−|M̂(i)
a | and K(i) = K(i−1)−|M̂(i)

a | as input

for re-estimating the user activity pattern and data symbols

before calling the false alarm corrector in the next iteration.

IV. SIMULATION RESULTS

A. Simulation Settings and Baseline Schemes

We simulate a single-cell uplink cellular network with

N = 500 users to corroborate the effectiveness of the proposed

data-assisted user activity detection algorithm, where the users

are located on a circle with a radius of 500 m to the BS.

Each element of the precoding matrix Pn is sampled from

the complex Gaussian distribution with zero mean and unit

variance. In addition, we apply an idealized channel coding

scheme, where perfect data recovery is assumed to be feasible

if the symbol error in each block is below 20%. It is worthy

mentioning that the proposed algorithm is readily applicable

for practical channel coding schemes, such as the low-density

parity-check codes (LDPC) [21]. The simulation results are

averaged over 107 independent realizations. Other critical

parameters used in simulations are summarized in TABLE I.

We adopt three baseline schemes for comparisons:

• Separate design: This scheme was proposed in [10],

where channel estimation and user activity detection are

first performed using the AMP-based algorithm as stated

in Section III-A. After that, data symbols are detected

using an MMSE estimator.

• The proposed algorithm with false alarm correction

only: The main purpose of comparing this scheme is to

TABLE I
SIMULATION PARAMETERS

Parameters Values Parameters Values

M 32 L 100
Ld 70 s 5
βn −116.78 dB αn CN (0, IM )
θF1

0.2 θF2
2

θF3
3 Sa 20

Bandwidth 1 MHz Modulation QPSK
Transmit power 23 dBm Noise power density -169 dBm/Hz

reveal the impacts of the false alarm users on the system

performance, including the activity detection error and

data error. Specifically, we execute the proposed frame-

work without invoking the missed detection corrector in

this baseline scheme.

• Perfect knowledge of the user activity pattern: This

scheme assumes perfect knowledge of the user activity

pattern and consequently, channel estimation and data

detection can be performed for the active users as those

in conventional uplink cellular networks. However, as

the user activity pattern cannot be known as prior, this

scheme is unachievable in practice but can serve as a

valuable performance upper bound.

B. Results

We first evaluate the user activity detection error rate,

including the false alarm and missed detection probabilities,

depicted in Fig. 4. As seen from this figure, both the false

alarm and missed detection probabilities increase with the

number of active users. This is owing to the limited pilot

resources available for user activity detection. Besides, for

both the proposed framework and the separate design, it is

observed that the false alarm probabilities dominate, which

confirms the significance of the false alarm users to the

overall activity detection accuracy. In addition, compared

to the separate design, the proposed framework drastically

reduces both types of activity detection error, which verifies its

effectiveness in improving the activity detection performance

by fully utilizing the sparsity pattern encoded in the received

pilot and data signals. Moreover, we see that the performance

improvement achieved by the proposed framework compared

to the separate design is much more remarkable when K is

below 100, indicating that it is most effective when the traffic

load in the systems ranges from light to medium.

Next, we investigate the data error performance achieved

by different algorithms and show the relationship between the

block error rates (BLERs) and the number of active users in

Fig. 5. Similar to the user activity detection error, the BLERs

increase with the number of active users in the system. It is

also noticed that the false alarm users have a significant impact

on the BLER performance. For instance, when K = 100,

the proposed framework is able to reduce the BLER from

7× 10−3 to 4 × 10−3 by invoking the false alarm correction

only, while further applying the missed detection corrector

only secures an extra 14.3% BLER reduction. This matches
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Fig. 4. Activity detection error probability vs. the number of active users.

the results in Fig. 4, where false alarm dominates the activity

detection error. In addition, our proposed framework is able to

support a substantially larger amount of active users compared

to the baselines. For instance, if the BLER requirement is set

to be 10−3, the proposed data-assisted user activity detection

algorithm is capable of supporting fifteen additional users,

which is a more than 20%-improvement compared to the

separate design. This again validates the superiority of the

data-assisted design by fully exploiting the signal sparsity.
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V. CONCLUSIONS

In this paper, we proposed a data-assisted user activity de-

tection framework for massive random access. This framework

effectively exploits the common sparsity pattern in both the

received pilot and data signal, and thus boosts the performance

of massive access for mMTC applications. Simulation results

demonstrated that with the proposed framework, more than

20% of active users can access the network with sufficient

reliability. Based on this promising result, we advocate for

a holistic approach on designing massive random access

systems, by integrating the tasks of activity detection, channel

estimation, and data detection and fully exploiting the available

prior structure information. This calls for further investigations

on efficient algorithms and theoretical analysis.
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