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Abstract—We study a wireless ad-hoc sensor network (WASN)
where N sensors gather data from the surrounding environment
and transmit their sensed information to M fusion centers
(FCs) via multi-hop wireless communications. This node de-
ployment problem is formulated as an optimization problem to
make a trade-off between the sensing uncertainty and energy
consumption of the network. Our primary goal is to find an
optimal deployment of sensors and FCs to minimize a Lagrange
combination of the sensing uncertainty and energy consumption.
To support arbitrary routing protocols in WASNs, the routing-
dependent necessary conditions for the optimal deployment are
explored. Based on these necessary conditions, we propose a
routing-aware Lloyd algorithm to optimize node deployment.
Simulation results show that, on average, the proposed algorithm
outperforms the existing deployment algorithms.

Index Terms—node deployment, wireless ad-hoc sensor net-
works, Lloyd algorithm, optimization.

I. INTRODUCTION

Recent developments in wireless communications, digital

electronics and computational power have enabled a large

number of applications of wireless ad-hoc sensor networks

(WASNs) in various fields such as agriculture, industry and

military. In a general WASN, spatially dispersed and dedicated

sensors collect data, e.g. temperature, sound, pressure and

radio signals from the physical environment, and then forward

the gathered information to one or more fusion centers (FCs)

via wireless communications.

In order to collect accurate data from the physical sur-

roundings, high sensing quality or sensitivity is required. In

general, sensing quality diminishes as the distance between the

sensor and target point increases [1]–[6]. Thus, two distance-

dependent measures, i.e., sensing coverage [1], [7]–[10] and

sensing uncertainty [2], [11]–[16] are widely studied in the

literature to evaluate the sensing quality. In the binary coverage

model [1], [7]–[10], each sensor node can only detect the

events within the sensing radius Rs. Then, sensing coverage

represents the percentage of events that is covered by at least

one sensor [1], [7]–[9]. But when the number of sensors is

large enough, such that the full coverage can be achieved,

coverage degree [10], i.e., the minimum number of sensors

that any event can be detected by, is a better sensing quality

measure. Another common model, centroidal Voronoi tessella-

tion, formulates the sensing quality as a source coding problem

with sensing uncertainty as its distortion [2], [11]–[16].

Energy efficiency is another key metric in WASNs as it is

inconvenient or even infeasible to recharge the batteries of

numerous and densely deployed sensors. In general, wireless

communication, sensing and data processing are three primary

energy consumption components of a node. However, in many

WASN applications, wireless communication among nodes is

more power hungry compared to other components [17], [18].

Therefore, wireless communication dominates the node energy

consumption in practice.

There are four primary energy saving methods for WASNs

in the literature: (1) topology control [19], [20], in which un-

necessary energy consumption is reduced by properly switch-

ing the nodes’ states (sleeping or working); (2) clustering

[21], [22] which is used to balance the energy consumption

among nodes in one-hop communication models by iteratively

selecting cluster heads; (3) energy-efficient routing [23]–[25],

a widely used method that attempts to find the optimal

routing paths to forward data to FCs while the communication

cost between two nodes are held fixed; and (4) deployment

optimization that plays an important role in the energy con-

sumption of WASNs since the communication cost between

two nodes depends on their distance. Our previous works

[26], [27] proposed Lloyd-like algorithms to save communi-

cation energy in homogeneous and heterogeneous WASNs by

optimizing the node deployment. Nonetheless, a pre-existing

network infrastructure, which only includes two-hop commu-

nications, is a basic assumption in [26], [27]. Compared to

one-hop and two-hop communications, the generalized multi-

hop communications can, on average, reduce the transmission

distance and save more energy. However, to the best of our

knowledge, the optimal node deployment with generalized

multi-hop communications in WASNs is still an open problem.

In this paper, we study the node deployment problem

in WASNs with arbitrary multi-hop routing algorithms. Our

primary goal is to find the optimal FC and sensor deployment

to minimize both sensing uncertainty and total energy con-

sumption of the network. By deriving the routing-dependent

necessary conditions of the optimal deployments in such

WASNs, we design a Lloyd-like algorithm to deploy nodes.

The rest of this paper is organized as follows: In Section II,

we introduce the system model and problem formulation. In

Section III, we study the optimal FC and sensor deployment

for a given routing algorithm. A numerical algorithm is pro-

posed in Section IV to optimize the node deployment. Section
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V presents the experimental results and Section VI concludes

the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a wireless ad-hoc sensor network consisting

of M FCs and N sensors over a target region Ω ∈ R
2. For

convenience, we define IS = {1, . . . , N} to be the set of node

indices for sensors and IF = {N + 1, . . . , N +M} to be the

set of node indices for FCs. When i ∈ IS , Node i refers to

Sensor i; however, when i ∈ IF , Node i refers to FC (i−N).
Let P = (p1, . . . , pN , pN+1, . . . , pN+M )T ∈ R

(N+M)×2 be

the node deployment, where pi ∈ Ω is Node i’s location.

Throughout this paper, we assume that each event is sensed by

only one sensor. Therefore, for each node deployment P, there

exists a cell partitioning W = (W1, . . . ,WN )T comprised of

N disjoint subsets of R2 whose union is Ω, and each sensor,

say i, only monitors the events occurred in the cell Wi ⊆
Ω. The spatial density function that reflects the frequency of

random events taking place over the target region Ω is denoted

via a continuous and differentiable function f(ω) : Ω → R
+.

Let Γ(W) = (Γ1(W), . . . ,ΓN (W))
T ∈ R

N where Γi(W)
is the amount of data generated at Node (Sensor) i in the

unit time. Since Sensor i detects the events in the region Wi,

Γi(W) is proportional to the volume of Wi, i.e., Γi(W) =
κ
∫

Wi
f(ω)dω where κ is a constant, [26].

According to [23], this WASN can be modeled as a directed

acyclic graph G(IS
⋃
IF , E) where E is the set of directed

links (n, k) such that n ∈ IS and k ∈ IS
⋃
IF . In particular,

sensors and FCs are source nodes and sink nodes of this

network, respectively, and there is no cycle in the flow network

since each cycle can be eliminated by reducing the flows along

the cycle without influencing the in-flow and out-flow links

to that cycle. We define F = [Fi,j ]N×(N+M) to be the flow

matrix, where Fi,j is the amount of data transmitted through

the link (i, j) in the unit time. Since F depends on the cell

partitioning W, we can define the normalized flow matrix as

follows:

S =

N+M
︷ ︸︸ ︷









s1,1 s1,2 · · · s1,N+M















N,

s2,1 s2,2 · · · s2,N+M

...
...

. . .
...

sN,1 sN,2 · · · sN,N+M

(1)

where si,j ,
Fi,j

∑N+M
j=1 Fi,j

is the data ratio that Node i

transmits to Node j. The normalized flow matrix S satisfies

the following properties:

(a) si,j ∈ [0, 1];1

(b)
∑N+M

j=1 si,j = 1, ∀i ∈ {1, . . . , N};

1For time-invariant routing algorithms, such as Bellman-Ford Algorithm
[24], [25], the flows construct a tree-structured graph in which each node has
only one successor. Under such a circumstance, the normalized flow from
Node i to Node j is either 0 or 1, i.e., si,j ∈ {0, 1}. However, the time-
variant routing algorithms, such as Flow Augmentation Algorithm [23], will
generate different flows during different time periods. As a result, the overall
normalized flow from Node i to Node j can be a real number between 0 and
1, i.e., si,j ∈ [0, 1].

(c) No cycle: if there exists a path l0 → l1 → · · · → lK , i.e.,
∏K

k=1 slk−1,lk > 0, then we have slK ,l0 = 0. In particular,

sii = 0, ∀i ∈ {1, . . . , N}.

Since the flow Fi,j can be determined by the cell partition-

ing W and normalized flow matrix S, in the remaining of

this paper we use F(W,S) instead of F. Let Fi(W,S) ,
∑N+M

j=1 Fi,j(W,S) be the total flow originated from Node

i. Since the in-flow to each sensor, say i, should be equal

to the out-flow, we have
∑N

j=1 Fj,i(W,S) + Γi(W) =
∑N+M

j=1 Fi,j(W,S). In what follows, we provide an example

to elucidate how to calculate F (W,S) in terms of W and S.

Example 1. We consider a WASN with three sensor nodes

and one FC, i.e., N = 3 and M = 1. The parameter κ

is set to 4. For a cell partitioning W with cell volumes

v1(W ) = v2(W ) = 0.25, v3(W ) = 0.5, and the normalized

flow matrix S =





0 0.5 0.5 0


0 0 0.4 0.6
0 0 0 1

, the correspond-

ing flow network is illustrated in Fig. 1.

Fig. 1. Example 1

The amount of data generated from each sensor node can be

calculated as: Γ1(W)=κv1(W)= 1, Γ2(W)=κv2(W)= 1,

and Γ3(W)=κv3(W)=2. As a leaf node, Sensor 1 does not

receive data from any other sensor nodes, and only transmits

its sensed data; thus, F1(W,S) = Γ1(W) = 1. The flows

from Sensor 1 are then F1,2(W,S) = s1,2×F1(W,S) = 0.5
and F1,3(W,S)=s1,3×F1(W,S)=0.5, respectively. Sensor

2’s flows come from F1,2(W,S) and the data gathered from

the region W2. Hence, F2(W,S) = Γ2(W)+F1,2(W,S) =
1.5. Therefore, the flows from Sensor 2 are F2,3(W,S) =
s2,3×F2(W,S) = 0.6 and F2,4(W,S) = s2,4×F2(W,S) =
0.9. Similarly, for Sensor 3, we have F3(W,S) = Γ3(W)+
F1,3(W,S)+F2,3(W,S)=3.1; hence, the unique flow from

Sensor 3 is F3,4(W,S)=s3,4 × F3(W,S)=3.1.

Now, we have enough materials to formulate the energy

consumption in a WASN. In general, FCs are equipped with

reliable energy sources and their energy consumption is not the

main concern. In what follows, we focus on the sensor energy

consumption. The average power consumption (Watts) through

link (i, j) consists of two components: average-transmitter-

power, P
T

i,j , and average-receiver-power, P
R

i,j . Sensor i’s

average-transmitter-power through link (i, j) can be expressed



as P
T

i,j = PT
i,j × ri,j , where PT

i,j is Sensor i’s instant-

transmitter-power through link (i, j), and ri,j is the link-busy-

ratio, i.e., the percentage of time that data is going through

link (i, j). To achieve a reliable communication between

two nodes, the instant-transmission-power (Joules/second) re-

quired for Node i to transmit data to Node j should be set

to PT
i,j = ξi,j ||pi − pj ||α, where ||.|| denotes the Euclidean

distance, α is the path-loss parameter, ξi,j is a constant

determined by Node i’s antenna gain, Node j’s antenna gain,

and Node j’s SNR threshold. In this paper, we consider free-

space path-loss, i.e., α = 2 and homogeneous sensors and

FCs, i.e., ξi,j = ξ. Therefore, the instant-transmitter-power

through link (i, j) is modeled as PT
i,j = ξ||pi − pj ||2. It

is reasonable to assume that the link (i, j) has idle time,

and it is busy only when there is data to transmit from

Node i to Node j. Hence, link (i, j)’s link-busy-ratio can be

written as
Fi,j(W,S)×T/ζi,j

T =
Fi,j(W,S)

ζi,j
, where ζi,j is the

instant-data-rate through link (i, j) which is determined by

the bandwidth of (i, j). In this paper, we assume that all

links have the same bandwidth, i.e., ζi,j = ζ. Therefore,

Sensor i’s average-transmitter-power through link (i, j) can

be rewritten as P
T

i,j = β||pi− pj||2Fi,j(W,S), where β = ξ
ζ .

According to [28], Sensor j’s average-receiver-power through

link (i, j) can be modeled as P
R

i,j = ρFi,j(W,S), where ρ is

a constant coefficient for receiving data. In sum, the average

power consumption over link (i, j) can be written as

Pi,j(P,W,S) = P
T

i,j + P
R

i,j

=

{(
β||pi − pj ||2 + ρ

)
Fi,j(W,S), j ∈ IS

(
β||pi − pj ||2

)
Fi,j(W,S), j ∈ IF

(2)

and the total power consumption can be written as

P(P,W,S) =

N∑

i=1

N+M∑

j=1

Pi,j(P,W,S)

=

N∑

i=1





N+M∑

j=1

β||pi−pj||
2Fi,j(W,S)+ρ

N∑

j=1

Fi,j(W,S)



 .

(3)

According to [2], [11]–[16], for a given node deployment

P and cell partitioning W, the sensing uncertainty can be

formulated as:

H(P,W) =

N∑

n=1

∫

Wn(P)

‖pn − ω‖2f(ω)dω. (4)

Taking sensing uncertainty and energy consumption into con-

sideration, the objective (cost) function is then defined as the

Lagrangian function of Eqs. (3) and (4):

D(P,W,S) = H(P,W) + λP(P,W,S)

=

N∑

i=1

∫

Wi

‖pi − ω‖2f(ω)dω + λρ

N∑

i=1

N∑

j=1

Fi,j(W,S)

+
N∑

i=1

N+M∑

j=1

(
λβ||pi−pj||

2
)
Fi,j(W,S),

(5)

where λ ≥ 0 is the Lagrangian multiplier. Our main goal

in this paper is to minimize the cost function defined in (5)

over the node deployment P, cell partitioning W, and the

normalized flow matrix S.

III. OPTIMAL NODE DEPLOYMENT IN WASNS

In this section, we study the optimality conditions for node

deployment P, cell partitioning W and the normalized flow

matrix S to minimize the objective function defined in (5). Let

ei,j(P) ,
P i,j(P,W,S)

Fi,j(W,S)
=

{

β||pi−pj||2+ρ, j ∈ IS

β||pi−pj||2, j ∈ IF
(6)

be the Link (i, j)’s energy cost (Joules/bit). Without loss

of generality, we assume that Sensor i’s sensing data goes

through Ki paths {L
(i)
k (S)}k∈{1,...,Ki}, where L

(i)
k (S) =

l
(i)
k,0 → l

(i)
k,1 → · · · → l

(i)

k,J
(i)
k

, l
(i)
k,0 = i, l

(i)

k,J
(i)
k

∈ IF , and J
(i)
k is

the number of nodes on the k-th path except Node i. Then, the

data rate (bit/s) and the path cost (Joules/bit) corresponding to

the k-th path can be written as

µ
(i)
k (W,S) = Fi(W,S)

J
(i)
k∏

j=1

s
l
(i)
k,j−1,l

(i)
k,j

(7)

and

e
(i)
k (P,S) =

J
(i)
k∑

j=1

e
l
(i)
k,j−1,l

(i)
k,j

(P) (8)

respectively. Note that
∑

k µ
(i)
k (W,S) = Fi(W,S) which

means the data from Node i eventually reach a FC. Sensor

i’s power coefficient, denoted as gi(P,S), is then defined to

be the energy consumption (Joules/bit) for transmitting 1 bit

data from Sensor i to the FCs, i.e, we have2:

gi(P,S) =

∑Ki

k=1 µ
(i)
k (W,S)e

(i)
k (P,S)

Fi(W,S)

=

Ki∑

k=1





J
(i)
k∏

j=1

s
l
(i)
k,j−1,l

(i)
k,j





J
(i)
k∑

j=1

β
∥
∥
∥pl(i)

k,j−1

− p
l
(i)
k,j

∥
∥
∥

2

+ρ
(

J
(i)
k −1

)







 .

(9)

In what follows, we provide an example to clarify how to

calculate the sensor power coefficients.

Example 2. Consider the WASN described in Fig. 1, and

let P = ((0, 0), (0, 1), (1, 0), (1, 1)), β = 1 and ρ = 1. We

aim to find Sensor 1’s power coefficient g1(P,S). The link

energy costs for this network can be calculated as e1,2(P) =
e1,3(P) = 2, e2,3(P) = 3, and e2,4(P) = e3,4(P) = 1.

Note that Sensor 1’s data goes through the following 3 paths:

L
(1)
1 (S)=1→2→4, L

(1)
2 (S)=1→3→4, and L

(1)
3 (S)=1→

2→3→4. The data rate through the above paths are, respec-

tively, µ
(1)
1 (W,S) = F1(W,S)×s1,2×s2,4 = 0.3F1(W,S),

µ
(1)
2 (W,S) = F1(W,S)× s1,3 × s3,4 = 0.5F1(W,S), and

µ
(1)
3 (W,S) = F1(W,S)×s1,2×s2,3×s3,4 = 0.2F1(W,S).

2The term Fi(W,S) is canceled in Eq. (9), indicating that power coeffi-
cient gi(P,S) is independent of W.



Moreover, we can calculate the path costs using Eq. (8)

as follows: e
(1)
1 (P) = e1,2(P) + e2,4(P) = 3, e

(1)
2 (P) =

e1,3(P) + e3,4(P) = 3, and e
(1)
3 (P) = e1,2(P) + e2,3(P) +

e3,4(P) = 6. Then, Sensor 1’s power coefficient is g1(P,S) =
0.3× 3 + 0.5× 3 + 0.2× 6 = 3.6.

Note that the average power consumption for transmitting

Sensor i’s data is gi(P,S)Γi(W) = gi(P,S)κ
∫

Wi
f(ω)dω.

Thus, the total power consumption (3) can be rewritten as:

P(P,W,S) =

N∑

i=1

gi(P,S)κ

∫

Wi

f(ω)dω. (10)

Therefore, the cost function in (5) can be rewritten as:

D(P,W,S) = H(P,W) + λP(P,W,S)

=

N∑

i=1

∫

Wi

(
‖pi − ω‖2 + λκgi(P,S)

)
f(ω)dω.

(11)

Given the node deployment P and normalized flow matrix

S, the optimal cell partitioning, also referred to as power

diagrams in [30], is equal to:

Vi(P,S) ={ω|‖pi − ω‖2 + λκgi(P,S) ≤

‖pj − ω‖2 + λκgj(P,S), ∀j 6= i}, i ∈ IS .
(12)

Moreover, given the link costs {eij(P)}s and generated sens-

ing data rates {Γi(W)}s, the total power consumption can

be minimized by Bellman-Ford Algorithm [24], [25]. For

convenience, we represent the functionality of Bellman-Ford

Algorithm by R(P,W), where P and W are inputs and S

is the output, i.e., R(P,W) = argminS P(P,W,S). Since

sensing uncertainty H(P,W) is independent of S, we have:

R(P,W) = argmin
S

H(P,W) + βP(P,W,S)

= argmin
S

D(P,W,S)
(13)

The optimal flow matrix for the given P and W is then

F(W,R(P,W)). The following theorem provides the nec-

essary conditions for the optimal deployment.

Theorem 1. The necessary conditions for the optimal deploy-

ments in the WASNs with the cost defined by Eq. (5) are

p∗i =
c∗i v

∗
i +λβ

∑N+M
j=1 F ∗

i,jp
∗
j+λβ

∑N
j=1F

∗
j,ip

∗
j

v∗i + λβ
(
∑N+M

j=1 F ∗
i,j +

∑N
j=1 F

∗
j,i

) , ∀i ∈ IS (14)

p∗i =

∑N
j=1 F

∗
j,ip

∗
j

∑N
j=1 F

∗
j,i

, ∀i ∈ IF (15)

W
∗ = V(P∗,S∗), (16)

S
∗ = R(P∗,W∗), (17)

where p∗i is the optimal location for Node i, W
∗ is the

optimal cell partitioning, S∗ is the optimal normalized flow

matrix, v∗i (P
∗,S∗) =

∫

Vi(P∗,S∗)
f(ω)dω is the Lebesgue

measure (volume) of Vi(P
∗,S∗), c∗i =

∫

Vi(P
∗,S∗)

ωf(ω)dω

v∗
i (P

∗,S∗) is the

geometric centroid of Vi(P
∗,S∗), and F ∗

i,j = Fi,j(W
∗,S∗)

is the optimal flow from Node i to Node j.

The proof of Theorem 1 is provided in Appendix A. Let

NP
i (S) , {j|Fj,i(W,S) > 0} be the set of Node i’s

predecessors, and NS
i (S) , {j|Fi,j(W,S) > 0} be the set

of Node i’s successors. Hence, Eqs. (14) and (15) can be

simplified as

p∗i =
c∗i v

∗
i +λβ

∑

j∈NS
i
(S∗)F

∗
i,jp

∗
j+λβ

∑

j∈NP
i
(S∗)F

∗
j,ip

∗
j

v∗i + λβ
(
∑

j∈NS
i
(S∗) F

∗
i,j +

∑

j∈NP
i
(S∗) F

∗
j,i

)

(18)

for each i ∈ IS , and

p∗i =

∑

j∈NP
i
(S∗) F

∗
j,ip

∗
j

∑

j∈NP
i (S∗) F

∗
j,i

(19)

for each i ∈ IF , respectively. In other words, Sensor i’s

optimal location is a linear combination of its geometric

centroid, predecessors, and successors while FC j’s optimal

location is a linear combination of its predecessors.

IV. ROUTING-AWARE LLOYD ALGORITHM

Before introducing our new Routing-aware Lloyd (RL) Al-

gorithm to solve the deployment problem, we quickly review

Lloyd Algorithm [29]. Lloyd Algorithm iterates between two

steps: (i) Voronoi partitioning and (ii) Moving each node to

the geometric centroid of its corresponding Voronoi region.

Based on Lloyd Algorithm, we use the necessary conditions

in Theorem 1 to design RL Algorithm and optimize the node

deployment in WASNs. Starting with a random initialization

for node deployment P in the target region Ω, first, we design

a quantizer with N (M ) points for the sensor density function

and place the sensors (FCs) on the corresponding centroids

to encourage an even distribution of sensors among FCs and

account for a possibly poor initial node deployment. RL

Algorithm then iterates between three steps: (i) Update node

locations according to Eqs. (14) and (15); (ii) Run Bellman-

Ford Algorithm to obtain the flow matrix F(P,W) and update

the normalized flow matrix S and sensor power coefficients

gi(P,S); and (iii) Calculate the cell partitioning according

to Eq. (16) and update the value of volumes vn and centroids

cn. The algorithm continues until the stop criterion is satisfied.

The details of RL Algorithm is provided in Algorithm 1.

Theorem 2. RL Algorithm is an iterative improvement al-

gorithm, i.e., the cost function is non-increasing and the

algorithm converges.

The proof of Theorem 2 is provided in Appendix B.

V. PERFORMANCE EVALUATION

In this section, we provide the experimental results for a

WASN including 4 FCs and 40 sensors. To make a fair com-

parison, we use the same target region and density function

as in [26], [27], i.e., Ω = [0, 10]2 and f(ω) = 1
∫

Ω
dA

= 0.01.

Other parameters are set as follows: β = 1, ρ = 0.1, κ = 1,

ǫ = 10−6.

Note that there is no existing work except our previous

paper [26] considering both sensing uncertainty and energy

consumption. Bellman-Ford Algorithm [24], [25] is the best



Algorithm 1 Routing-aware Lloyd Algorithm

Input: Target area Ω; density function f(·); initial node

deployment P0; Lagrange multiplier λ; stop threshold ǫ.

Output: Node deployment P; cell partition W; normalized

flow matrix S; cost function D(P,W,S).
1: Run Lloyd Algorithm for Sensors and update {pi}i∈IS

2: Run Lloyd Algorithm for FCs and update {pi}i∈IF

3: Initialize the normalized flow matrix S = [IN×N |0N×M ]
4: Calculate the power diagrams Vi(P,S), ∀i ∈ IS
5: Calculate the flow matrix F(W,S)
6: do

7: Calculate the old cost function Dold = D(P,W,S)
8: Calculate centroid ci and volume vi of Wi, ∀i ∈ IS
9: for i = 1 to N do

10: Move Sensor i to
civi+λβ

∑N+M
j=1 Fi,jpj+λβ

∑N
j=1Fj,ipj

vi+λβ(
∑N+M

j=1 Fi,j+
∑

N
j=1 Fj,i)

11: end for

12: for i = N + 1 to N +M do

13: Move FC i to

∑N
j=1Fj,ipj
∑

N
j=1 Fj,i

14: end for

15: Run Bellman-Ford algorithm and update the normal-

ized flow matrix i.e., S = R(P,W)
16: Calculate the flow matrix F(W,S) and sensor power

coefficients gi(P,S), ∀i ∈ IS
17: Update the power diagrams Vi(P,S), ∀i ∈ IS
18: Calculate the new cost function Dnew = D(P,W,S)
19: while Dold−Dnew

Dold
≥ ǫ

routing algorithm to minimize the total energy consumption,

but it does not take node deployment into account. To compare

with Bellman-Ford Algorithm, we apply random deployment

and Lloyd Algorithm [29] for the node deployment part. Ran-

dom deployment + Bellman-Ford (RBF) employs Bellman-

Ford Algorithm on 100 random node deployments and selects

the best one. Similarly, Lloyd + Bellman-Ford (LBF) first

applies Lloyd Algorithm to both FCs and Sensors to obtain a

node deployment with small cost, and then employs Bellman-

Ford Algorithm to reduce the average power. Furthermore,

we compare RL with CL [26] which combines two Lloyd-

like algorithms to optimize the node deployment with one-hop

communications.

Performance comparisons3 for different values of

λ ∈ {0, 0.05, 0.15, 0.25, 0.5, 1, 1.5, 2, 3, 4, 5, 7, 10, 16} are

provided in Fig. 2. Note that CL and RL can adjust the node

deployment in terms of the Lagrangian multiplier λ while

RBF and LBF are independent of λ. In particular, since LBF

determines the node deployment by Lloyd Algorithm before

employing Bellman-Ford Algorithm, LBF’s performance

is almost independent of the initial deployments, and its

experimental results in Fig. 2 converge to a point with small

sensing uncertainty but large power consumption. Overall, the

proposed RL algorithm saves more energy or reduces more

3To better exhibit the performance of LBF, CL, RL, we do not show the
results of RBF with excessive powers (P > 6) in Fig. 2.

sensing uncertainty compared to other algorithms. It also

provides a trade-off between the average power and sensing

uncertainty.
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Fig. 2. Performance comparison for RBF, LBF, CL and RL algo-
rithms.

(a) (b)

(c) (d)
Fig. 3. Node deployments of different algorithms with λ = 0.25: (a)
RBF (b) LBF (c) CL (d) RL.

The node deployments of the four algorithms (RBF, LBF,

CL, and RL) in the WASN with λ = 0.25 are illustrated in

Figs. 3a, 3b, 3c, and 3d. FCs and sensors are denoted by five-

pointed stars and circles, respectively. Flows are denoted by

black dotted lines. As shown in Fig. 3, cell partitions in LBF,



CL and RL algorithms tend to have similar shapes; however,

RBF does not result in a similar pattern. Moreover, sensors

in Fig. 3b are placed on top of their corresponding centroids

while sensors in Fig. 3c are placed between their correspond-

ing FC and centroid. However, in Fig. 3d, location of each

sensor depends on its centroid, predecessors, and successors,

as provided in Theorem 1. Note that in Figs. 3b, 3c and 3d,

sensors inside each cluster tend to be close to each other

with their FC in the middle; however, the same relationship

does not appear in Fig. 3a. Besides, CL only uses one-hop

communications, i.e., sensors are directly connected to the FC

while other algorithms utilize multi-hop communications to

reduce the average power. The corresponding cost function

given λ = 0.25 for RBF, LBF, CL, and RL are, respectively,

1.87, 1.25, 1.17, 1.01; thus, our RL Algorithm achieves a

lower cost function and outperforms other algorithms.

VI. CONCLUSIONS AND DISCUSSION

In this paper, we formulated the node deployment in

WASNs as an optimization problem to make a trade-off

between sensing uncertainty and energy consumption. The

necessary conditions for the optimal deployment imply that

each sensor location should be a linear combination of its cen-

troid, predecessors and successors. Based on these necessary

conditions, we proposed a Lloyd-like algorithm to minimize

the total cost. Our experimental results show that the proposed

algorithm significantly reduces both sensing uncertainty and

energy consumption. Although we only considered Bellman-

Ford Algorithm as the routing algorithm in this paper, the

proposed system model in Section II can be applied to arbitrary

routing algorithms, such as Flow Augmentation Algorithm

[23] (a network lifetime maximization routing algorithm). The

optimal deployment with maximum network lifetime will be

our future work.

APPENDIX A

PROOF OF THEOREM 1

Using parallel axis theorem, we can rewrite the cost function

in (5) as:

D(P,W,S) =

N∑

i=1

∫

Wi

‖ci − ω‖2f(ω)dω + ‖pi − ci‖
2vi

+λρ

N∑

i=1

N∑

j=1

Fi,j + λβ

N∑

i=1

N+M∑

j=1

||pi−pj||
2Fi,j ,

(20)

where Fi,j = Fi,j(W,S), vi =
∫

Wi
f(ω)dω is the Lebesgue

measure (volume) of Wi and ci =

∫

Wi
ωf(ω)dω

∫

Wi
f(ω)dω

is the centroid

of Wi. Let P∗ = (p∗1, . . . , p
∗
N+M )T , W∗ = (W ∗

1 , . . . ,W
∗
N )T ,

and S
∗ = [s∗i,j ] denote, respectively, the optimal node deploy-

ment, cell partitioning and normalized flow matrix. According

to [30], each cell in the power diagram is either empty or

a convex polygon; thus, we can take the gradient of the

objective function D (P,W,S) using Proposition A.1. in [31].

It is self-evident that the cost function in (5) is continuously

differentiable. Therefore, D(P,W,S) achieves zero-gradient

at the optimal point (P∗, W∗, S∗). The partial derivative of

(20) with respect to pi is provided in (21), on top of the next

page. By solving the zero-gradient equation, we obtain:

p∗i =







c∗i v
∗

i +λβ
N+M
∑

j=1

F∗

i,jp
∗

j+λβ
N
∑

j=1

F∗

j,ip
∗

j

v∗

i
+λβ

(

N+M
∑

j=1

F∗

i,j
+

N
∑

j=1

F∗

j,i

) , i ∈ IS

N
∑

j=1

F∗

j,ip
∗

j

N
∑

j=1

F∗

j,i

, i ∈ IF

(22)

where v∗i and c∗i are, respectively, the volume and centroid of

W ∗
i , and F ∗

i,j = Fi,j (W
∗,S∗).

As shown at the beginning of Sec. III, given the optimal

deployment P∗ and the optimal normalized flow matrix S
∗,

the optimal cell partitioning is given by the power diagram

W
∗ = V(P∗,S∗), indicating (16). Similarly, given the optimal

deployment P∗ and the optimal cell partitioning W
∗, the op-

timal normalized flow matrix is S
∗ = R(P∗,W∗), indicating

(17). Substituting (16) and (17) into (22), we get (14) and (15)

and the proof is complete. �

APPENDIX B

PROOF OF THEOREM 2

Note that when W, S, and {pj}j 6=i are fixed, the cost

function in (20) is a convex function of pi; thus, by solving

the zero-gradient equation, we have the following unique

minimizer:

pi =







civi+λβ
N+M
∑

j=1

Fi,jpj+λβ
N
∑

j=1

Fj,ipj

vi+λβ

(

N+M
∑

j=1

Fi,j+
N
∑

j=1

Fj,i

) , i ∈ IS

N
∑

j=1

Fj,ipj

N
∑

j=1

Fj,i

, i ∈ IF

(23)

where ci and vi are centroid and volume of Wi, respectively.

Therefore, moving sensors and FCs according to Lines 10

and 13 of Algorithm 1 does not increase the cost function.

Since R(P,W) is the optimal normalized flow matrix for a

given node deployment P and cell partitioning W, updating

S according to Line 15 of Algorithm 1 does not increase

the cost function either. As mentioned earlier, given the node

deployment P and normalized flow matrix S, the optimal

cell partitioning is given by the power diagram V (P,S);
hence, updating the cell partitioning according to Line 17 of

Algorithm 1 also does not increase the cost function. Since

the parameters P, W and S are updated only in Lines 10,

13, 15 and 17 of RL Algorithm, the cost function is non-

increasing. In addition, the cost function is lower bounded by

0, i.e., D (P,W,S) ≥ 0. As a result, RL Algorithm is an

iterative improvement algorithm and it converges. �



∂D(P,W,S)

∂pi
=







2(pi − ci)vi + 2λβ
N+M∑

j=1

(pi − pj)Fi,j + 2λβ
N∑

j=1

(pi − pj)Fj,i, ∀i ∈ IS

2λβ
N∑

j=1

(pi − pj)Fj,i, ∀i ∈ IF

(21)
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