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ABSTRACT
Open-domain multi-turn conversations mainly have three fea-
tures, which are hierarchical semantic structure, redundant in-
formation, and long-term dependency. Grounded on these,
selecting relevant context becomes a challenge step for multi-
turn dialogue generation. However, existing methods cannot
differentiate both useful words and utterances in long dis-
tances from a response. Besides, previous work just performs
context selection based on a state in the decoder, which lacks
a global guidance and could lead some focuses on irrelevant
or unnecessary information. In this paper, we propose a novel
model with hierarchical self-attention mechanism and distant
supervision to not only detect relevant words and utterances in
short and long distances, but also discern related information
globally when decoding. Experimental results on two public
datasets of both automatic and human evaluations show that
our model significantly outperforms other baselines in terms
of fluency, coherence, and informativeness.

Index Terms— Open-domain Dialogue Generation, Con-
text Selection, Hierarchical and Global Perspective

1. INTRODUCTION

Open-domain multi-turn dialogue generation has gained in-
creasing attentions in recent years, as it is more accordant
with real scenarios and aims to produce customized re-
sponses. In general, an open-domain multi-turn conversation
has following features: (1) The context (including the query
and previous utterances in our paper) is in a hierarchical struc-
ture, which means it consists of some utterances, and each
utterance contains several words. (2) At most cases, many
contents of the context are redundant and irrelevant to the
response. (3) Some related information (utterances or words)
and the response are in a long-term dependency relation.
Therefore, Context Selection, detecting the relevant context
based on which to generate a more coherent and informative
response, is a key point in multi-turn dialogue generation.

Based on feature (1), the hierarchical recurrent encoder-
decoder network (HRED) [1] has been proposed. It encodes
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each utterance and the whole context at two levels, and is
widely applied to other methods for multi-turn dialogue gen-
eration. Then, hierarchical recurrent attention [2] and explicit
weighting [3, 4], memory networks [5] and self-attention
mechanism [6] have been introduced to match feature (2)
and (3), respectively. However, few work could cover all
these features simultaneously to fulfill context selection and
response generation tasks.

When it comes to Context Selection, existing methods can
be categorised into two ways: (1) Detecting related utterances
measured by the similarity between query and each previous
utterance [3, 4]. (2) Applying the attention mechanism from a
local perspective, i.e., based solely on the current state in de-
coder with the Maximum Likelihood Estimation (MLE) loss
[4, 6]. The similarity measurement in the former cannot se-
lect word-level context, while the guidance from the local per-
spective in the latter would make the model choose some de-
viated context and produce an inappropriate response [7, 8, 9].

To tackle the above mentioned problems, we propose
HiSA-GDS, a modified Transformer model with Hierarchical
Self-Attention and Globally Distant Supervision. To the best
of our knowledge, it is the first time to design these two
modules for open-domain dialogue generation. Specifically,
we use Transformer encoder to encode each utterance in the
context. During training, the response is firstly processed by
a masked self-attention layer, and then a word-word attention
aggregates related word information in each utterance indi-
vidually. After that, we conduct utterance-level self-attention
to get context-sensitive representations of aggregated infor-
mation from last layer. Then, we calculate the attention
weights between utterance-level outputs of the previous layer
and the masked response representation. Finally, we generate
the corresponding response based on the fusion of selected
information at both word and utterance levels. Besides, to
provide a global guidance of decoding, we import a distant
supervision module which utilizes the similarity score be-
tween the response and each contextual utterance measured
by a pre-trained sentence-embedding model. All parameters
are learned based on the global Distant Supervision and local
MLE in an end-to-end framework.

Experimental results on two public datasets along with
further discussions show that HiSA-GDS significantly outper-
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Fig. 1. Architecture of HiSA-GDS. The white dashed box
is Transformer encoder, while the gray one is the modified
Transformer decoder. The residual connection and layer nor-
malization are omitted for brevity. “WPE” and “UPE” repre-
sent word position encoding and utterance position encoding.
The upper right corner shows the globally distant supervision
that is only introduced to the N -th layer of decoder.

forms other baselines and is capable to generate more fluent,
coherent, and informative responses.

2. APPROACH

The input is a context containing n utterances {Xi}ni=1, and
each utterance is defined as Xi = {xi,1, ..., xi,|Xi|}, where
|Xi| is the length of the i-th utterance and xi,m is the m-th
word of Xi. Our goal is to select relevant context consisting
of utterances and words, and then generate a response Y =
{y1, y2, ..., y|Y |} by utilizing the related information, where
|Y | is the length of response Y .

2.1. Encoder

We consider each utterance independently, and given an ut-
terance Xi, the input representation of word xi,j is the sum
of its word embedding and position encoding: I(xi,j) =
WE(xi,j) + WPE(xi,j), where WE(xi,j) and WPE(xi,j)
represent word and word position embedding, respectively.
The input embedding is then fed into Transformer encoder
with N layers. The final encoding of Xi is the output from
the N -th layer, E(N)

i . Please refer to [10] for more details.

2.2. Hierarchical Self-Attention based Decoder

The decoder also contains N layers, and each layer is com-
posed of five sub-layers. The first sub-layer is a masked self-
attention, which is defined as:

M
(l)
t = MHA(D

(l−1)
t ,D

(l−1)
t ,D

(l−1)
t ), (1)

where MHA is the multi-head attention function, D(l−1)
t de-

notes the input representation of the l-th layer, and M
(l)
t de-

notes the output of masked self-attention at the l-th layer.
D

(0)
t is the concatenated result of all words before time step t

in the response and each word is also represented as the sum
of its word embedding and position encoding.

The second sub-layer is a word-word attention that sum-
marizes word-level response-related information from each
utterance Xi into a vector at a specific decoding time:

U
(l)
t,i = MHA(fw(M

(l)
t ),E

(N)
i ,E

(N)
i ), (2)

where fw is a linear transformation.
The third sub-layer is an utterance-level self-attention. In-

spired by Zhang et al. [6], we also utilize the self-attention
mechanism to capture the long-term dependency of utterance-
level information. Similar to word position encoding, we add
utterance position encoding (UPE) to U

(l)
t,i , and denote the

sum result as Ũ(l)
t,i . The output of this sub-layer is calculated

as:
H

(l)
t = MHA(Ũ

(l)
t , Ũ

(l)
t , Ũ

(l)
t ), (3)

where Ũ
(l)
t = [Ũ

(l)
t,1, Ũ

(l)
t,2, ..., Ũ

(l)
t,n]. Then, the fourth sub-

layer is a word-utterance attention layer to find out utterance-
level relevant information which is defined as:

C
(l)
t = fl(MHA(fu(M

(l)
t ),H

(l)
t ,H

(l)
t )), (4)

where fl and fu are linear transformations, and fl is used for
changing the output dimension. The last sub-layer is a feed-
forward neural network (FFN):

F
(l)
t = FFN(C

(l)
t ). (5)

Each of above mentioned sub-layer is followed by a nor-
malization layer and a residual connection. Finally, we use a
fusion gate to regulate the relevant information at word level
(U(l)

t,n) and utterance level (F(l)
t ):

λt = σ(Wg[U
(l)
t,n,F

(l)
t ]), (6)

D
(l)
t = λt ∗ F(l)

t + (1− λt) ∗U(l)
t,n, (7)

where Wg is parameter metric, σ is the sigmoid activation
function, and ∗ means the point-wise product.

2.3. Globally Distant Supervision

Previous attention-based models achieve context selection
from a local perspective, i.e., they try to generate one token
at a time based solely on the current decoding state, which
would detect deviated context and mislead the further gener-
ation. Besides, we do not have manual annotations to provide
direct signals for selection. To address these problems, we
design a globally distant supervision module to help deter-
mine relevant information, which provides a global guidance



for the response generation process. Firstly, we apply a high
quality pre-trained sentence-embedding model to encode
contextual utterance Xi and response Y into vectors, denoted
as xi and y. Then, we use the dot product to measure the
semantic relevance between xi and y [11], and compute the
selection probability as follows:

P (x = xi|y) =
exp(xi · y)∑n

j=1 exp (xj · y)
. (8)

2.4. Training Objective

We utilize three loss functions in our training process. The
first one is MLE loss which is defined as:

LMLE(θ) = −
1

|Y |

|Y |∑
t=1

logp(yt|y<t, {Xi}ni=1; θ), (9)

where θ represents the model parameters, and y<t denotes the
previously generated words. Since MLE loss only provides
local (token-wise) supervision, inspired by Ren et al. [12]
and Zhan et al. [13], we apply the Kullback-Leibler diver-
gence (KL) loss and the Maximum Causal Entropy (MCE)
loss for globally distant supervision. KL loss measures the
distance between two distributions: P (x|y), which is the dis-
tant ground-truth supervision described in Equation 8, and
Q(x|y) = 1

|Y |
∑|Y |

t=1 C
(N)
t , which is the average sum of es-

timated probabilities at all steps from the output of word-
utterance attention sub-layer in the last decoder layer. We
denote the KL loss as:

LKL(θ) = KL(P (x|y)||Q(x|y); θ). (10)

Then, we use MCE loss to alleviate the negative effects of
noises caused by imprecise Q(x|y):

LMCE(θ) =
1

|Y |

|Y |∑
t=1

∑
w∈V

P (yt = w)logP (yt = w), (11)

where V denotes the vocabulary. Finally, our overall loss is a
linear combination of these three loss functions:

L(θ) = LMLE(θ) + η1LKL(θ) + η2LMCE(θ), (12)

where hyper-parameters η1 and η2 govern the relative impor-
tance of different loss terms.

3. EXPERIMENT SETTINGS

Datasets: We evaluate the performance on two public datasets:
Ubuntu Dialogue Corpus [14] (Ubuntu) and JD Customer
Service Corpus [15] (JDDC).
Baselines: (1) Seq2Seq with Attention Mechanism (S2SA)
[16], and we concatenate all context utterances as a long se-
quence; (2) Hierarchical Recurrent Encoder-Decoder (HRED)

[1]; (3) Variational HRED (VHRED) [17] with word drop
and KL annealing, and the word drop ratio equals to 0.25;
(4) Static Attention based Decoding Network (Static) [4]; (5)
Hierarchical Recurrent Attention Network (HRAN) [18]; (6)
Transformer [10], and we concatenate all context utterances
into a long sequence; (7) Relevant Contexts Detection with
Self-Attention Model (ReCoSa) [6]. They all focus on multi-
turn conversations, and ReCoSa is a state-of-the-art model
on both Ubuntu and JDDC. For ablation study, HiSA is our
model without the globally distant supervision.
Hyper-parameters: The utterance padding length is set to
30, and the maximum conversation length is 10. The hidden
size of encoder and decoder is 512, and the number of lay-
ers is 4 for encoder and 2 for decoder. The head number of
multi-head attention is set to 8. The high-quality pre-trained
sentence-embedding model we used is Infersent [19]/Familia
[20] for Ubuntu/JDDC. These models are both pre-trained on
large-scale datasets in either English or Chinese, and perform
well on our datasets. For optimization, we use Adam [21]
with a learning rate of 0.0001 with gradient clipping. Hyper-
parameters in Equation 12 are set to 1.
Performance Measures: For automatic evaluation, we use 4
groups of metrics: (1) BLEU-2 [22]; (2) Embedding-based
Metrics (Average, Greedy, and Extrema) [17]; (3) Coher-
ence [23] that evaluates the semantic coherence between the
context and response; (4) Distinct-2 [24]. For human eval-
uation, we utilize the side-by-side human comparison. We
invite 7 postgraduate students as annotators. To each anno-
tator, we show a context with two generated responses, one
from HiSA-GDS and the other from a baseline model, but the
annotators do not know the order. Then we ask annotators to
judge which one wins based on fluency, coherence, and infor-
mativeness. Please refer to [18] for more details. Agreements
among the annotators are calculated using Fleiss’ kappa.

4. RESULTS AND DISCUSSION

Automatic Evaluation Results: As shown in Table 1, our
model outperforms all baselines significantly on both Ubuntu
and JDDC (significance tests, p-value < 0.01) by achieving
the highest scores in almost all automatic metrics. Compared
with existing baseline models, our model demonstrates its
ability of generating relevant and appropriate responses. This
is supported by the fact that results of our proposed model
have gained improvements on BLEU-2, Embedding-based
Metrics, and Coherence. Besides, we also achieve higher
Distinct-2 score, which indicates that HiSA-GDS can gener-
ate more informative responses.
Human Evaluation Results: These results are shown in Ta-
ble 2. We observe that HiSA-GDS outperforms all baseline
models on both Ubuntu and JDDC. Specifically, the percent-
age of “win” is always larger than that of “loss”. Take Ubuntu
dataset as an example. Compared with VHRED and Trans-
former, HiSA-GDS achieves preference gains with 48%,



Model Ubuntu JDDC
B-2 D-2 Avg Ext Gre Coh B-2 D-2 Avg Ext Gre Coh

S2SA [16] 0.896 6.104 46.323 28.851 39.209 48.117 4.233 3.609 53.901 36.493 37.578 46.176
HRED [1] 3.853 6.661 57.972 34.007 41.462 63.173 9.405 11.762 63.191 46.714 43.295 57.183

VHRED [17] 3.677 8.098 57.251 32.024 41.808 61.464 6.367 15.184 62.436 43.337 41.787 63.924
Static [4] 1.581 3.586 51.055 36.193 53.983 69.748 2.285 3.738 60.820 38.047 35.367 65.938

HRAN [18] 3.880 7.402 56.763 33.501 41.584 67.635 5.962 16.365 63.064 43.439 42.389 62.391
Transformer [10] 3.697 7.278 53.463 36.353 42.763 69.970 5.389 5.185 68.336 48.284 41.103 67.485

ReCoSa [6] 3.872 9.406 59.368 35.834 41.835 71.922 5.962 6.594 61.085 41.473 42.942 71.374
HiSA 4.021 9.598 63.527 36.208 40.598 72.261 6.986 14.804 66.103 43.715 45.081 73.286

HiSA-GDS 7.351 10.934 68.283 41.468 50.382 75.823 7.127 15.823 73.952 52.502 49.477 74.281

Table 1. Automatic evaluation results on Ubuntu and JDDC (%). The metrics BLEU-2, Distinct-2, Average, Extrema, Greedy
and Coherence are abbreviated as B-2, D-2, Avg, Ext, Gre, and Coh, respectively.

Dataset Model HiSA-GDS vs. kappaWin Loss Tie

Ubuntu

S2SA [16] 58% 12% 30% 0.468
HRED [1] 46% 19% 35% 0.531

VHRED [17] 48% 20% 32% 0.493
Static [4] 51% 17% 32% 0.596

HRAN [18] 42% 9% 49% 0.424
Transformer [10] 44% 19% 37% 0.474

ReCoSa [6] 40% 6% 54% 0.528

JDDC

S2SA [16] 53% 24% 23% 0.547
HRED [1] 56% 16% 34% 0.468

VHRED [17] 52% 19% 29% 0.453
Static [4] 48% 11% 41% 0.518

HRAN [18] 50% 22% 28% 0.495
Transformer [10] 51% 29% 20% 0.447

ReCoSa [6] 45% 27% 28% 0.461

Table 2. Human evaluation between HiSA-GDS and other
baselines on Ubuntu and JDDC.

51%, and 44%, respectively. We check responses generated
by our model with “win” and find that they are more rele-
vant to contextual utterances. The kappa scores indicate that
annotators come to a “Moderate agreement” on judgement.
Discussion of Hierarchical Self-Attention: To validate the
effectiveness of hierarchical self-attention mechanism, we
present the heatmap of an example in Figure 2. In this ex-
ample, there are seven contextual utterances, and for each
utterance, importance of each word is indicated with the
depth of blue color on the right part. Besides, we also show
an utterance-level attention visualization on the left part. An
utterance is more important when the red color is lighter. For
example, the third and seventh utterances, i.e., X3 and X7,
are more important than the others. The importance of a word
(horizontal heatmap on the right of X1 to X7) or an utterance
(vertical heatmap on the left of X1 to X7) is calculated as
the average value of different heads. From the word-level
visualization, we find that words including “订单(order)”,
“今天(today)”, and “送货(deliver)” are selected to be more
relevant. Overall, the results are in accordance with humans’
judgement and have achieved the goal of our proposed model.
Discussion of GDS: Since GDS is only utilized during the
training process, we calculate the relevance score between
each contextual utterance and the ground-truth response. Af-

Fig. 2. Left: Utterance-level multi-head attention visualiza-
tion of HiSA-GDS in the word-utterance attention layer. 0 to
7 are the index of each head. Right: Word-level attention vi-
sualization in the word-word attention layer. The importance
of a word (horizontal blue heatmap) or an utterance (vertical
red heatmap) is calculated as the average value of all heads.

ter applying Familia [20] over the entire conversation, the rel-
evance scores are 0.1502, 0.1388, 0.1602, 0.1548, 0.0979,
0.1343, and 0.1638 for X1 to X7, which is consistent with
humans’ intuition. Besides, inspired by Zhang et al. [6],
we randomly sample 300 context-response pairs from JDDC.
Three annotators who are postgraduate students are invited
to label each context. If a contextual utterance is related to
the response, then it is labeled as 1. The kappa value is 0.568,
which indicates the moderate consistency among different an-
notators. We then pick out samples that is labeled the same by
at least two annotators, and then calculate the kappa value be-
tween humans’ judgement and the outputs from Familia [20]
on these cases. The value 0.863 reflects “Substantial agree-
ment” between them.

5. CONCLUSION

In this paper, we propose a novel model for open-domain dia-
logue generation, HiSA-GDS, which conducts context selec-
tion in a hierarchical and global perspective. The hierarchi-
cal self-attention is introduced to capture relevant context at
both word and utterance levels. We also design a globally
distant supervision module to guide the response generation
at decoding. Experiments show that HiSA-GDS can generate
more fluent, coherent, and informative responses.



6. REFERENCES

[1] Iulian V Serban, Alessandro Sordoni, Yoshua Bengio,
Aaron Courville, and Joelle Pineau, “Building end-to-
end dialogue systems using generative hierarchical neu-
ral network models,” in AAAI, 2016, pp. 3776–3783.

[2] Jian Song, Kailai Zhang, Xuesi Zhou, and Ji Wu,
“HKA: A hierarchical knowledge attention mechanism
for multi-turn dialogue system,” in ICASSP, 2020, pp.
3512–3516.

[3] Zhiliang Tian, Rui Yan, Lili Mou, Yiping Song, Yan-
song Feng, and Dongyan Zhao, “How to make context
more useful? an empirical study on context-aware neu-
ral conversational models,” in ACL, 2017, pp. 231–236.

[4] Weinan Zhang, Yiming Cui, Yifa Wang, Qingfu Zhu,
Lingzhi Li, Lianqiang Zhou, and Ting Liu, “Context-
sensitive generation of open-domain conversational re-
sponses,” in COLING, 2018, pp. 2437–2447.

[5] Hongshen Chen, Zhaochun Ren, Jiliang Tang, Yi-
hong Eric Zhao, and Dawei Yin, “Hierarchical vari-
ational memory network for dialogue generation,” in
WWW, 2018, pp. 1653–1662.

[6] Hainan Zhang, Yanyan Lan, Liang Pang, Jiafeng Guo,
and Xueqi Cheng, “Recosa: Detecting the relevant con-
texts with self-attention for multi-turn dialogue genera-
tion,” in ACL, 2019, pp. 3721–3730.

[7] Lei Shen, Yang Feng, and Haolan Zhan, “Modeling se-
mantic relationship in multi-turn conversations with hi-
erarchical latent variables,” in ACL, 2019, pp. 5497–
5502.

[8] Lei Shen and Yang Feng, “CDL: Curriculum dual learn-
ing for emotion-controllable response generation,” in
ACL, 2020, pp. 556–566.

[9] Lei Shen, Xiaoyu Guo, and Meng Chen, “Compose like
humans: Jointly improving the coherence and novelty
for modern chinese poetry generation,” in IJCNN, 2020,
pp. 1–8.

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser,
and Illia Polosukhin, “Attention is all you need,” in
NIPS, 2017, pp. 5998–6008.

[11] Rongzhong Lian, Min Xie, Fan Wang, Jinhua Peng, and
Hua Wu, “Learning to select knowledge for response
generation in dialog systems,” in IJCAI, 2019, pp. 5081–
5087.

[12] Pengjie Ren, Zhumin Chen, Christof Monz, Jun Ma,
and Maarten de Rijke, “Thinking globally, acting lo-
cally: Distantly supervised global-to-local knowledge

selection for background based conversation,” in AAAI,
2020, pp. 8697–8704.

[13] Haolan Zhan, Hainan Zhang, Hongshen Chen, Lei Shen,
Yanyan Lan, Zhuoye Ding, and Dawei Yin, “User-
inspired posterior network for recommendation reason
generation,” in SIGIR, 2020, pp. 1937–1940.

[14] Ryan Lowe, Nissan Pow, Iulian V Serban, and Joelle
Pineau, “The ubuntu dialogue corpus: A large dataset
for research in unstructured multi-turn dialogue sys-
tems,” in SIGDIAL, 2015, pp. 285–294.

[15] Meng Chen, Ruixue Liu, Lei Shen, Shaozu Yuan,
Jingyan Zhou, Youzheng Wu, Xiaodong He, and Bowen
Zhou, “The JDDC corpus: A large-scale multi-turn
chinese dialogue dataset for e-commerce customer ser-
vice,” in LREC, 2020, pp. 459–466.

[16] Ilya Sutskever, Oriol Vinyals, and Quoc V Le, “Se-
quence to sequence learning with neural networks,” in
NIPS, 2014, pp. 3104–3112.

[17] Iulian Vlad Serban, Alessandro Sordoni, Ryan Lowe,
Laurent Charlin, Joelle Pineau, Aaron Courville, and
Yoshua Bengio, “A hierarchical latent variable encoder-
decoder model for generating dialogues,” in AAAI,
2017, pp. 3295–3301.

[18] Chen Xing, Yu Wu, Wei Wu, Yalou Huang, and Ming
Zhou, “Hierarchical recurrent attention network for re-
sponse generation,” in AAAI, 2018, pp. 5610–5617.

[19] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loı̈c
Barrault, and Antoine Bordes, “Supervised learning
of universal sentence representations from natural lan-
guage inference data,” in EMNLP, 2017, pp. 670–680.

[20] Di Jiang, Yuanfeng Song, Rongzhong Lian, Siqi Bao,
Jinhua Peng, Huang He, and Hua Wu, “Familia: A Con-
figurable Topic Modeling Framework for Industrial Text
Engineering,” arXiv preprint arXiv:1808.03733, 2018.

[21] Diederick P Kingma and Jimmy Ba, “Adam: A method
for stochastic optimization,” in ICLR, 2015.

[22] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu, “BLEU: a method for automatic evaluation of
machine translation,” in ACL, 2002, pp. 311–318.
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