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ABSTRACT

In this paper, we study the problem of jointly routing and scheduling
traffic in an energy harvesting network. To this end, we leverage
stochastic dual descent methods to propose a generalization of the
well-known backpressure algorithm to energy harvesting networks.
We name this policy energy harvesting backpressure (EH-BP) and
show that it satisfies the fundamental property of backpressure-type
algorithms. Namely, if given data arrival rates can be supported by
given energy arrival rates and some routing-scheduling policy, they
can be supported by the EH-BP policy. Numerical results attest to
the properties of the proposed policy.

Index Terms— Energy harvesting, wireless networks, backpres-
sure, routing, scheduling.

1. INTRODUCTION

Recently, Energy Harvesting (EH) has emerged as a technology ca-
pable of allowing network nodes to replenish their batteries using
environmental energy sources—such as, solar radiation, radio waves
or vibration [1]. This, in turn, potentially allows the network nodes
to operate for an infinite lifetime. However, the intermittent and
random nature of the energy supply makes it necessary to take a
new approach to the design of communication policies. This has led
to a great deal of research interest in EH-powered communication,
with problems ranging from throughput maximization [2–5], source-
channel coding [6–8], estimation [9–11] and others being studied
(see [12] for a comprehensive overview).

A problem that often arises in wireless networks is the need to
route information through the neighboring nodes. In this regard, the
design of both routing and scheduling algorithms for energy harvest-
ing networks has been previously considered in the literature. For ex-
ample, the authors in [13] propose an EH-aware routing scheme that
is asymptotically optimal with respect to the network size. In [14],
the authors adress the EH scheduling problem for both single-hop
and multi-hop networks, and provide a joint admission control and
routing policy. In the same line, the authors in [15] propose a policy
which improves on the multi-hop performance bounds of [14].

In this paper, we study the problem of jointly routing and
scheduling data packets in an energy harvesting network. Each node
independently generates traffic for delivery to a specific destination
and collaborates with the other nodes in the network to ensure the
delivery of all data packets. In this way, each node decides the next
suitable hop of for each packet in its queue (routing), and when
to transmit it (scheduling). The solution to this problem—when
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Fig. 1. Example of a communications network.

the nodes are not EH-powered—is given by the backpressure (BP)
algorithm [16].

The works [14] and [15] considered a similar problem which
consists in finding admission control and resource allocation poli-
cies that satisfy network stability and energy causality while attain-
ing close to optimal network utility. In this work, instead, our goal
is to find stabilizing policies given the data rates. Also, while pre-
vious works [14, 15] require the data and energy arrival process to
be i.i.d. or Markov, we only require them to be ergodic, which is
a weaker requirement. Furthermore, our approach to the problem
is also markedly different. While the works [14] and [15] relied
on queueing theory and Lyapunov drift arguments to find stabiliz-
ing policies, we instead interpret the scheduling and routing prob-
lem as a stochastic optimization problem. This allows us to resort
to a modified dual stochastic subgradient descent algorithm [17, 18]
to solve the joint routing-scheduling problem. In the proposed algo-
rithm, which we denote by energy harvesting backpressure (EH-BP),
the nodes track the pressure of the information flows by computing
the difference between the Lagrange multipliers associated to their
queue stability constraints and the ones of their neighbors (instead
of their data queues as in the classical BP algorithm). Then, the
Lagrange multipliers associated with the energy harvesting process
reduce the pressure when the stored energy in the node decreases.
Hence, we identify a direct relationship between the values of the
dual variables and the battery and data queues they represent. Fi-
nally, we asses the performance of the EH-BP algorithm by means
of simulations.

2. SYSTEM MODEL

Consider a communication network given by the graph G = (N , E),
where N is the set of N nodes in the network and E ⊆ N × N
is the set of communication links, such that if node i is capable of
communicating with node j, we have (i, j) ∈ E . Moreover, we



define the neighborhood of node i as the set Ni = {j|(i, j) ∈ E}.
The network supports K information flows (which we index by the
set K), where for a flow k ∈ K, the destination node is denoted by
Nk

(dest). At a time slot t, each k ∈ K flow at the i-th node generates
aki [t] packets to be delivered to the node Nk

(dest). This packet arrival
process is assumed to be stationary with mean E

[
aki [t]

]
= aki . At

the same time, the i-th node routes rkij [t] packets to its neighbors j ∈
Ni, while simultaneously being routed rkji[t] packets. For simplicity,
at each time slot, we restrict each node to route one single packet
to its neighbors. Therefore, the nodes have the following routing
constraint ∑

k∈K

∑
j∈Ni

rkij [t] ≤ 1, i ∈ N . (1)

Furthermore, each node in the network keeps track of the number of
packets awaiting to be transmitted for each flow. Denoting by qki [t]
the k-th flow data queue at the i-th node and time slot t, the evolution
of the queue is given by

qki [t+ 1] = qki [t] + aki [t] +
∑
j∈Ni

rkji[t]−
∑
j∈Ni

rkij [t], (2)

for all i ∈ N and k ∈ K. We consider that the network nodes are
powered by energy harvesting. At time slot t, the i-th node harvests
ei[t] units of energy, where the energy harvesting process is assumed
to be stationary with mean E

[
ei[t]

]
= ei. We consider a normal-

ized energy harvesting process, where the routing of one packet con-
sumes one unit of energy. Furthermore, we consider packet trans-
mission to be the only energy-consuming action taken by the nodes.
Under these conditions and denoting by bi[t] the energy stored in
the i-th node’s battery at time t, the following energy causality con-
straint must be satisfied for all time slots∑

k∈K

∑
j∈Ni

rkij [t] ≤ bi[t], i ∈ N . (3)

Additionally, we consider that nodes have a finite battery of capacity
bmax
i . Then, we can write the battery dynamics as

bi[t+ 1] =

[
bi[t]−

∑
k∈K

∑
j∈Ni

rkij [t] + ei[t]

]bmax
i

0

, i ∈ N . (4)

where [·]b
max
i

0 denotes the projection to the interval [0, bmax
i ]. Our

goal is to determine routing policies rkij [t] such that the queues (2)
remain stable while satisfying the routing (1) and energy causality
(3) constraints. By grouping the all the queues in a vector q[t] =
{qi[t]}, we say that the routing policies rkij [t] guarantee stability if
there exists Q such that for some arbitrary time T we have

Pr

{
max
t≥T
‖q[t]‖ ≤ Q|q(T )

}
= 1. (5)

This is to say that, almost surely, no queue becomes arbitrarily large.
In turn, we can guarantee this if the average rate at which packets en-
ter the queues is lower than the rate at which they exit them. In order
to formulate this problem, let us denote the ergodic limits of pro-
cesses aki [t], r

k
ij [t] and ei[t] by aki , rkij , and ei, respectively. Then,

by defining the routing weights wki , we can pose the following net-

work throughput maximization problem

maximize∑
k,j

rkij≤1

∑
i∈N

∑
k∈K

∑
j∈Ni

wki r
k
ij (6a)

subject to aki ≤
∑
j∈Ni

rkij −
∑
j∈Ni

rkji, k ∈ K, i ∈ N (6b)

∑
k∈K

∑
j∈Ni

rkij ≤ ei, i ∈ N (6c)

where we have left the routing constraints (1) implicit, and the opti-
mization is over the nonnegative routing variables rkij ≥ 0. Further-
more, we have substituted the per time slot constraints (1) and (3)
for average ones. If there exists routing variables rkij satisfying con-
straint (6b), then the queue evolution (2) follows a supermartingale,
and the stability condition (5) is then guaranteed by the martingale
convergence theorem [19]. Then, assuming data and energy arrival
rates satisfying (6b) and (6c) exist, we will design an algorithm such
that the instantaneous routing variables rkij [t] satisfy E[rkij [t]] = rkij
and the constraints (1) and (3) are satisfied for all time slots.

3. STOCHASTIC BACKPRESSURE ALGORITHM

Let us define the vector r = {rkij} collecting the routing variables
and the vector λ = {γki , βi} collecting all the queue multipliers γki
and battery multipliers βi. Then, we can write the Lagrangian of the
optimization problem (6) as follows

L(r,λ) =
∑
i∈N

∑
k∈K

∑
j∈Ni

wki r
k
ij

+
∑
k∈K

∑
i∈N

γki

∑
j∈Ni

rkij −
∑
j∈Ni

rkji − aki


+
∑
i∈N

βi

ei −∑
k∈K

∑
j∈Ni

rkij

 . (7)

The Lagrange dual function is then given by

g(λ) = max
r≥0
L(r,λ), (8)

and we can reorder the Lagrangian (7) to allow for a separate maxi-
mization over network nodes, where each node only needs the queue
multipliers of its neighboring nodes. The routing variables can then
be obtained as follows

rkij := argmax∑
k,j

rkij≤1

∑
k∈K

∑
j∈Ni

rkij

(
wki + γki − γkj − βi

)
, (9)

for i ∈ N . An immediate problem that arises when trying to solve
this problem is that network nodes have no knowledge of the data
arrival rates aki nor the energy harvesting rates ei. Nonetheless, the
nodes observe the instantaneous rates aki [t] and ei[t], hence we can
resort to using these instantaneous variables. To solve (9) it suffices
to find the flow over the neighboring nodes with the largest differ-
ential wki + γki [t]− γkj [t]− βi[t] and if it is positive, set its routing
variable rkij [t] to one while the other variables are kept to zero.

Now, since the dual function (8) is convex, we can perform a
stochastic subgradient descent by defining the following dual up-
dates

γki [t+ 1] :=

γki [t] + aki [t] +
∑
j∈Ni

rkji[t]−
∑
j∈Ni

rkij [t]

γ
k,max
i

0

(10)



Algorithm 1 Energy Harvesting Backpressure Algorithm.

1: Initialize: Set γki [0] := 0 and βi[0] := bmax
i .

2: Step 1: Determine route-scheduling decision.
3: k?ij := argmaxk

(
wki + γki [t]− γkj [t]− βi[t]

)
4: r

k?ij
ij [t] := I

(
wki + γki [t]− γkj [t]− βi[t] > 0

)
5: Step 2: Update dual variables.

6: γki [t+ 1] :=

[
γki [t] + aki [t] +

∑
j∈Ni

rkji[t]−
∑
j∈Ni

rkij [t]

]γk,max
i

0

7: βi[t+ 1] :=

[
βi[t]− ei[t] +

∑
k∈K

∑
j∈Ni

rkij [t]

]bmax
i

0

8: Step 3: For all neighbors j ∈ Ni, send dual variables γki [t+ 1]
and receive dual variables γkj [t+ 1].

9: Step 4: Set t := t+ 1 and go to Step 1.

βi[t+ 1] :=

βi[t]− ei[t] +∑
k∈K

∑
j∈Ni

rkij [t]

bmax
i

0

(11)

where we have used a unit step size and projected the multipliers to a
restricted interval. Denote by γk,?i and β?i the optimal Lagrange mul-
tipliers associated with constraint (6b) and (6c), respectively. Then
if γk,?i ∈ [0, γk,max

i ] and β?i ∈ [0, βmax
i ] the ergodic limit con-

vergence of the dual updates (10) and (11) to these optimal values
can be ensured. For compactness, we collect the dual updates in the
vector λ[t + 1] := [λ[t]− s[t]]λmax

0 , where s[t] corresponds to the
vector collecting the stochastic subgradients and λmax the thresh-
olds {γk,max

i , βmax
i }. Then, the convergence condition is given by

λ? ∈ [0,λmax], where λ? is the vector collecting all the optimal
Lagrange multipliers.

With these definitions in place, we can draw a comparison be-
tween the dual updates and the original queue and battery dynam-
ics. First, notice that the the dual update (10) acts as a thresholded
version of the data queue (2). And, in a similar way, the dual up-
date (11) mirrors the battery dynamics (4), as they can be written as
bi[t] = bmax

i −βi[t]. Then, an appropriate choice of battery capacity
can be made in order to satisfy the energy causality constraints (3).

Proposition 1 (Energy Causality). Let the battery capacity satisfy
bmax
i ≥ wki + γk,max

i , for all i, k, then Algorithm 1 satisfies the
energy consumption causality constraint (3) for all time slots.

Proof. In order to satisfy (3), we must certify that no transmission
occurs when there is no available energy in the battery. That is,
rkij = 0 for all j, k if bi[t] = 0. Then, it suffices the ensure that
wki +γ

k
i [t]−γkj [t]−βi[t] < 0 for all t. When bi[t] = 0, the battery

dual update takes the value βi[t] = bmax
i and by the dual update

(10), the difference γki [t] − γkj [t] is upper bounded by γk,max
i . We

can write wki +γ
k,max
i −bmax

i ≤ 0, and since bmax
i ≥ wki +γk,max

i ,
this ensures that the maximization in (9) leads to rkij = 0. Hence,
ensuring no transmission occurs. �

This proposition attests to the existence of a tradeoff between the
weights wki and the battery requirements bmax

i of the node. A node
with negative weight will have more packets being queued while,
at the same time, requiring a smaller battery. On the contrary, a
positive weight wki will lead to smaller queues while increasing the
battery requirements. Setting the weight to zero leads to the classical
backpressure algorithm, adapted to the energy harvesting scenario.
In this case, by Proposition 1 the threshold of both multipliers can
be chosen to be equal, i.e. γk,max

i = bmax
i .

4. STABILITY ANALYSIS

In this section, we establish the stability properties of the proposed
EH-BP algorithm. In order to prove the queue stability of problem
(6) when solved by Algorithm 1 we first need the following lemma

Lemma 2. Consider the dual updates of Algorithm 1 given by (10)
and (11), and let E

[
‖s[t]‖2|λ[t]

]
≤ S2 be a bound on the second

moment of the norm of the stochastic subgradients s[t]. Assume that
the dual variable λ[T ] is given for an arbitrary time T and define as
λbest[t] := argminλ[l] g(λ[l]) the dual variable leading to the best
value of the of the dual function for the interval l ∈ [T, t]. Then, if
λ? ∈ [0,λmax], we have

lim
t→∞

g(λbest[t]|λ[T ]) ≤ g(λ?) +
S2

2
a.s (12)

Proof. Omitted due to space limitations. �

This lemma states that with probability one the gap between the
dual function and its optimal value closes to S2/2 at least once as
t increases. Moreover, since we can choose T arbitrarily, we can
conclude that this gap closes an infinite amount of times. We will
use this lemma to prove the feasibility of Algorithm 1.

Proposition 3 (Feasibility). Assume there exist strictly feasible rout-
ing variables rkij such that

∑
j∈Ni

rkij −
∑
j∈Ni

rkji − aki > C

and ei −
∑
k∈K

∑
j∈Ni

rkij > C, for some C > 0. Further-
more, assume the optimal dual variables satisfy λ? ∈ [0,λmax] and

let λmax >
(
g(λ?) + S2/2−

∑
i∈N

∑
k∈K

∑
j∈Ni

wki r
k
ij

)
/C

element-wise. Then, the constraints (6b) and (6c) are almost surely
satisfied by Algorithm 1.

Proof. First, let us collect the feasible routing variables in the vec-
tor r0 = {rkij}. Then, if there exist strictly feasible variables rkij
we can bound the value of the dual function g(λ) as follows. The
dual function is defined as the maximum over primal variables
g(λ) = maxr≥0 L(r,λ), hence g(λ) ≥ L(r0,λ) and using the∑
j∈Ni

rkij−
∑
j∈Ni

rkji−aki > C and ei−
∑
k∈K

∑
j∈Ni

rkij > C
terms establish the following bound

g(λ) ≥
∑
i∈N

∑
k∈K

∑
j∈Ni

wki r
k
ij + CλT1. (13)

Then, by reordering terms we obtain the following upper bound on
the dual variables

λ ≤ 1

C

g(λ)−∑
i∈N

∑
k∈K

∑
j∈Ni

wki r
k
ij

 . (14)

By Lemma 2 we can certify the existence of a time t ≥ T0 for which
g(λ[t]) ≤ g(λ?) + S2/2. Hence, we write

λ[t] ≤ 1

C

g(λ?) + S2

2
−
∑
i∈N

∑
k∈K

∑
j∈Ni

wki r
k
ij

 t ≥ T0.

(15)

Now, recall that the feasibility conditions (6b) and (6c) are given by
the ergodic limits

lim
t→∞

1

t

t∑
l=1

∑
j∈Ni

rkij [l]−
∑
j∈Ni

rkji[l]− aki [l]

 ≥ 0, a.s (16)



lim
t→∞

1

t

t∑
l=1

ei[l]−∑
k∈K

∑
j∈Ni

rkij [l]

 ≥ 0, a.s (17)

which, by recalling that the constraints are simply the stochastic sub-
gradients of the problem, they can also be written in compact form
as

lim
t→∞

1

t

t∑
l=1

s[l] ≥ 0, a.s. (18)

We will prove feasibility by contradiction. Start by assuming that
equation (18) is unfeasible, so there exists a time t ≥ T1, for which
there is a δ > 0 constant such that

1

t

t∑
l=1

s[l] ≤ −δ. (19)

Furthermore, since the multiplier updates (10) and (11) are given by
λ[t+ 1] := [λ[t]− s[t]]λmax

0 , there is a time index T1 such that for
t ≥ T1 we have λ[t] = λmax. But we also have that λmax is lower
bounded by

λmax >
1

C

g(λ?) + S2

2
−
∑
i∈N

∑
k∈K

∑
j∈Ni

wki r
k
ij

 (20)

which is a contradiction of (15). Thus, the feasibility conditions (16)
and (17) are satisfied. �

Remark 4. We note that the requirement on λmax in the preced-
ing proposition is admittedly very loose. However, in the numerical
results section we will see that less conservative thresholds work ap-
propriately. Nonetheless, we leave the derivation of tighter bounds
for future work.

Finally, queue stability follows directly from the previous propo-
sition.

Corollary 5 (Queue Stability). Consider the conditions of Proposi-
tion 3, then the queues are stable in the sense of (5).

Proof. Denote by Fki [t] the sequence of nested σ-algebras measur-
ing qki [l] for l ∈ {0, . . . , t}. Then, since by Proposition 3 the ergodic
limits generated by Algorithm 1 satisfy

∑
j∈Ni

rkij −
∑
j∈Ni

rkji −
aki ≥ 0, the queue evolution (2) obeys the supermartingale expres-
sion E

[
qki [t+ 1]|Fki [t]

]
≤ qki [t]. By the supermartingale conver-

gence theorem [19, Theorem 5.2.9], the sequence qki [t] converges
almost surely, therefore satisfying the stability condition (5). �

5. NUMERICAL RESULTS

In this section we conduct numerical experiments to evaluate the
performance of the proposed EH-BP algorithm. We consider the
network shown in Figure 1, where the nodes 1 and 14 act as sink
nodes and the rest of the nodes support a single flow with packet
arrival rates of aki = 0.4. Moreover, we consider the nodes to be
harvesting energy at a rate of ei = 1 and storing it in a battery of
capacity bmax

i = 4. Also, we set the routing weights to wki = 0, and
hence set γk,max

i = bmax
i = 4.

First, we plot in Figure 2 the sample path of the total energy
in the network at each time slot, illustrating the variability in the
availability of energy due to energy harvesting process.
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Fig. 2. Total energy in the network at each time slot.
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Fig. 3. Total amount of packets queued in the network at each time
slot. Average values are shown in dashed lines.

In Figure 3 we plot a sample path of the total number of packets
queued in the network at each time slot. For comparison we also
show the backpressure algorithm (BP) when the nodes are powered
by an infinite energy supply (equivalent to Algorithm 1 when setting
βi[t] = 0). As expected both the EH-BP and BP policies stabilize
the queues. Nonetheless, an increase in the variance of the queue
dynamics as well as the average number of packets in the network
can be observed for the EH-BP policy. This is due to the random
nature of the energy harvesting process and as previously mentioned,
using a positive weights wki can lead to lower average packets in the
network at the expense of a larger battery capacity.

6. CONCLUSIONS

In this work, we have studied the problem of jointly routing and
scheduling traffic in energy harvesting networks. We have proposed
the energy harvesting backpressure (EH-BP) algorithm, which acts
as a generalization of the backpressure policy to energy harvesting
networks. Furthermore, we have provided theoretical guaranties on
its network stabilization properties properties, which we have also
validated by means of simulations.
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