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ABSTRACT

This paper presents a general framework for generatingigrego-
rithms for solving convex constraint satisfaction probdeior sparse
solutions by mapping the satisfaction problem into one @fpbr
traversal on a rooted tree of unknown topology. For everywatk
of the tree an initial set of generally dense feasible sohgtiis pro-
cessed in such a way that the sparsity of each solution iseseaith
each generation unveiled. The specific computation peddrat
any particular child node is shown to correspond to an emhgdxf
a polytope into the polytope received from that nodes pafesteral
issues related to pre-walk order selection, computatioo@plexity
and tractability, and the use of heuristic and/or side mfation is
discussed. An example of a single-path, depth-first algoribn a
tree with randomized vertex reduction and a run-time patcten
algorithm is presented in the context of sparse lowpass di#sign.

guarantees degrade when the conditions are violated baosabatis-
fied has been the focus of much attention in the literatupe@ally
surrounding the performance of greedy methods. In faciedye
methods often provably result in a maximally sparse satufiar
particular classes of problenis [3]. A well-known strategyolves
incrementally decreasing the sparsity of a single soluitioaccor-
dance with a suitable error metric until a particular stogyiriterion
is met. For example, (orthogonal) matching pursuit is a wetbf
this type [4]. Another strategy, encompassing methods asdter-
ative Hard Thresholding (IHT), Subspace Pursuit, and Cesgive
Sampling Matching Pursuit (CoSaMP), iteratively threslsaliense
solutions to a predetermined sparsity level while simdtarsly at-
tempting to decrease an error metfic([5. 6, 7]. The framevpoek
sented in this paper fundamentally differs from these egiies in
that the sparsity of many solutions is monotonically inseshvia
tree-based processing while feasibility with respect tdlHg main-

Index Terms— sparse constraint satisfaction, tree-search, incretgined at every stage. In addition, advanced knowledge wiori

mental refinement, sparse filter design

1. INTRODUCTION

Sparsity principles, in a broad sense, have been and certiinbe
associated with desirable properties spanning a wide rahges-
ciplines including sampling theory, model-order reductithe de-
sign of power efficient systems, architectures for deemiagr etc.
From the compressive sensing paradigm to the design ofesfikrs
ters, solving a convex constraint satisfaction problemaanaxi-
mally sparse solution is computationally difficult in geaidd]. This
paper focuses attention to the class of sparse constraisfiastion
problems which are readily described using a non-conveinigd-
tion problem of the form

2 € argmin |zlo @)

assumptions on optimal sparsity levels or patterns is riptired.

Several problems of broad interest to the signal processing
munity and elsewhere do not meet the constraint qualifioatif
compressive sensing, an example of which is presented tio8e:
in the context of sparse lowpass filter design. Specialitgatithms
that make use of heuristics and/or side information arenofte-
signed and lead to sufficiently sparse solutions for thesblpms.
The class of algorithms proposed in this paper does notmequch
constraint qualifications and is therefore of use when suetifica-
tions either fail or cannot be verified. Further, any sideinfation
or heuristic knowledge of the sparsity pattern of an optisadlition
is easily incorporated into an algorithm of this frameworikhwonly
minimal adjustment.

In Section 2 the general framework for generating greeds-tre
search algorithms which solve problems of the general digss
scribed by Eq[L is presented. In this presentation, a nurmber
computational tools each node must be equipped with areibdedc

where|- [|o indicates the number of non-zero coordinates in its arguand example routines are provided for each. We concludepthis
ment andS is a generally convex set. Conventional sparse recovergentation with a discussion emphasizing the consequefiseseral

methods used in compressive sampling and elsewhere canduor
categorized into one of two classes: convex optimizatigorthms
and greedy iterative methods. Whé&rsatisfies particular constraint
qualification conditions, e.g., the restricted isometrygarty, Eq[IL
and a convex relaxation of the objective function to theorm have
been shown to produce identical solutions [2]. The verificabf
such qualifications, however, is often itself a computatiynex-
pensive or intractable task.

Understanding the conditions under which various optitpali
guarantees can be made as well as the gracefulness with suibh
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critical design decisions. Finally, in Section 3, an exasrglforithm
adhering to the general framework is presented and evaluate

1.1. Notation and nomenclature

Vectors will be denoted using an underscore and vector soppts

will be used to index vectors as opposed to indexing vecwnehts,

ie. gg‘” andgg‘) represent distinct coordinates of the same vector.
For simplicity of exposition we proceed assuming all vestare in
RY, extensions to complex-valued and/6r x N»-dimensional vec-
tor spaces follow readily. In order to avoid confusion wedefarth
restrict the worchode to only mean a graph vertex and reserve the
use of the ternvertex to that of a polytope.
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2. UNVEILING THE TREE

The general strategy underlying the framework describ¢disrsec-
tion is to convert the convex constraint satisfaction peabin Eq[1

to a problem of graph traversal on a rooted tree. Every noee th

processes a set of elements belonging teither received from ini-
tialization or a parent node, in order to produce a new sdeofients

Pseudocode 1A subroutine which determines the §ebf potential
children for a given set of feasible solutiofs

function UNVEIL CHILDREN(P)
T+ {d: 3z 2 e Pstal > 0andz| ) < 0}
end function

which also belong t& but have fewer non-zero coordinates. Using Pseudocode 2\ subroutine which populateB’ using elements of

this set of elements the node unveils if it has children obvim; if
S0 it may pass its set of solutions to one or more of its chiléned
the process repeats. The topology of the tree directlyeslat the
sparsity of feasible solutions in two ways: (i) the numbenarfi-zero
coordinates in the set of feasible solutions decreaseseaith suc-
cessive generation of the tree and (ii) siblings of eachgpmssess
feasible elements with distinct sparsity patterns.

2.1. Initializing the root node

We begin by equipping the root node with a $&tof M possibly
distinct elements drawn from the feasible §eh Eq.[1, i.e.

@)

where each:¥ is generally dense. Note th&tis the vertex repre-
sentation of a particular polytope embedded witfijie. the convex

P:{g(i):gmeS,lgiSM}

‘P by vanishing coordinaté using Eq[% for = 2.
function VANISHCOORDINATE(P, d)
for eachz*) € P with 2™ > 0 do
for eachz(~) € P with z{” < 0do

) -
/ _Za (+) _TZy (=)
P ()< ()=
end for

end for
end function

2.2.1. UNVEILCHILDREN

A fundamental ability required of each node in order to uhtres
tree is to identify which, if any, offspring said node can guoe.
Stated another way, each node needs to be equipped with@usubr

hull of the elements oP forms a closed convex polytope contained tine which identifies the set of coordinates it can vanistegithe
within S. For problems where is defined or naturally described polytopeP received from its parent node. A sufficient condition for

using half-space representation, i.e. as a finite colleaiolinear
equality and inequality constraints, standard vertex esration al-
gorithms may be directly used to popula®e[8]. Alternatively, the
use of convex programs with random or systematically chobg@t-
tive functions can be used to obtain either well-spreadogstofS
or elements with other desirable properties. As will becavident
shortly, any greedy algorithm adhering to the proposed éwmonk
will not be able to obtain an optimal solution to Edj. 1 whiclea-
tained inS but not in the convex hull offl.

A pertinent question at this stage involes the selectiohefie-

a particular node to vanish coordinataequires its received poly-
tope to contain at least one elemerit™) such that:;"” > 0 and

at least one element ) such thatz’, ) < 0. When this condition is
satisfied, we refer to the potential offspring as child_et Z denote
the set of all such possible children for a given node, thanribde
may produce a maximum df| children. Pseudocodég 1 describes
the subroutinesNVEIL CHILDREN which generate$ for a givenP.
A node is then classified as a leaf of the tree provided tharihot
generate any children, i.éZ] = 0.

Termination criteria for algorithms adhering to the franoekv

sign parametef/. To address this issue we refer {to [9] in which a proposed in this paper include, but are not limited to, iging ei-

cyclic polytope in anV-dimensional space with vertices is shown
to achieve the maximum number of obtainable faéet3 herefore,
the corresponding dual polytope maximizes the number dfcesr

for a fixed number of facets whete= (’)(k:L%J ). This result ren-
ders complete vertex enumeration®itomputationally intractable
in practice without imposing additional structure. We ddtether
comments on computational complexity to Section 2.2.3.

2.2. Incremental sparsity: computation at each node

Each node of the tree, after having received a convex padyfom

vertex representation from its parent node (or initial@atfor the
root), is equipped with three primary functions: (NVEIL CHIL-

DREN, (ii) VANISHCOORDINATE, and (iiij) REDUCECOMPLEXITY.

In what follows we say that a node vanishes coordiniatehen the
result of its processing produces a new polytéesuch that

Ve € P ?3)

Further, each node of the tree satisfies the following ptgpéor ev-
eryz € P', z,, = 0 for all coordinates: vanished along the unique
path to the root. In addition, every node in generagotontains a
set of feasible solutions to Eq.[1 which satisfyjz|o < N — g.

gd:07

1This discludes algorithms which successfully transforavés into par-
ents by drawing additional elements frénas described in Section 2.2.1.

ther the longest or a sufficiently long path from the root teaf.
Subtree exploration, i.e. transforming a leaf node into remia is
sometimes achievable by drawing additional elements {Sonfror
example, by drawing elements using a convex program where th
objective function is designed to target the sign of a specdordi-
nate while simultaneously imposing additional constsatntvanish

all coordinates along the direct path to the root.

2.2.2. VANISHCOORDINATE

Consider a node having received polytgpeand fix somed € 7
which we wish to vanish in the sense of Efj. 3. The generakglyat
by which the seP”’ is populated is presented next. In order to ensure
that elements of?’ maintain feasibility with respect to Ef] 1 and
simultaneously satisfy Eff] 3, we make explicit use of thepprties

of a convex combination. Specifically, let!), - - -, z® € P, then

¢ ¢
f— Z iz’ e P for Z a; =1,a; >0. 4)
i=1 i=1

Itis straightforward to then show that given the qualificatior d to

be an element af, there exists a set of linear combination weights
ai, . .., ag satisfying Eq such that, = 0. Any such combination
for which this holds may then be used to systematically gepean
element ofP’.
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Fig. 1. An example depicting two generations of a partially ureeil
tree (left) and a cross-section of the polytope embeddingjst] cor-
responding to the highlighted walk from the root node toailto
child 2.

Pseudocod&]2 contains the subroutimeniSHCOORDINATE
which generates this polytope using Eh. 4 witk- 2 and a proper
selection of the weighta; andas. In addition, Eq[% implies both
that the coordinates previously vanished in genergfimgmain van-
ished during the population @’ and that sin0@<d+) # ggf) #0
thenP’ C P, i.e. P’ is embedded withirP.

Depicted on the left of Figure 1 is two generations of a phytia
unveiled tree. Le®, P, andP» denote the polytopes on the high-
lighted path belonging to nodes “root node*® (child 6), andz®
(child 2), respectively. A cross-section of the polytopebeniding
P2 C P1 C P C S is depicted on the right. Also depicted is a
different walk, i.e. “root node” taz® (child 2) toz(® (child 6),
ending with a set of vertices belonging to a different grotigib-
lings demonstrating another set of elements with the samrsisp
pattern as the elements Bf.

2.2.3. REDUCECOMPLEXITY

The computational complexity required to compute all passéle-
ments of P’ as described by the example routiwenisHCOORDI-
NATE in Pseudocode 2 is generally intractable, especially fobpr
lems with long root-to-leaf distances. Indeed, #edenote the re-
ceived polytope of a node and IM(iJr) > 0 denote the number of

elementse € P satisfyingz,; > 0 andMé’) > 0 the number of el-
ements satisfying,, < 0 for somed € Z. Further, letP’ denote the
result of vanishing coordinaté usingvANISHCOORDINATE. Then

P’ results in
Mg =My My~ ®)

possibly repeated vertices. It immediately follows thattibtal num-
ber of vertices generated for a given node in generajicnon the
order of O(M?**)
ing M vertices. By limiting the number of vertices used to gererat
an embedded polytope with coordinatezanished, the problem of
tree traversal remains computationally tractable. Théxicitly at
the expense of excluding regions of the polytdpen forming P’
where the maximally sparse solution may reside.

A simple procedure to control the computational burden elhea
node is described in Pseudocdde 3 where the funatienuce
CoMPLEXITY limits the number of vertices satisfying, > 0 and
z, < 0to M < MY and M!™ < M7, respectively. In
our experience with several examples, the number of unigtteces
generated bywAaNISHCOORDINATE is smaller thanM;, especially
in later generations of the tree. This heuristic may helplguhe

dynamic selection 01\7(5” and]\Aéf(i’) for a particular problem.

Pseudocode 3A function which reduces the computational com-
plexity required to vanishing coordinateusing VANISHCOORDI-
NATE.
function REDUCECOMPLEXITY(P,d)
P+ at most]/w\d(l“ unique vertices fronP with 2, > 0
P+ at most]/w\é’) unique vertices fronP with z;, < 0
end function

Pseudocode An example of a single-path pre-walk coordinate se-
lection rule for runtime execution.
function SELECTCOORDINATE(P,T)
d'  argmax{z € P: ;> 0} - {z € P: z; < 0}

end function

2.3. Tree-search protocols

A number of instrumental design decisions informed by thabpr
lem at hand must be made when crafting a greedy algorithmeof th
general framework presented in this paper. For exampleitieatr
decision involves selection of the tree traversal protedaich will

be implemented, e.g., a depth-first or breadth-first sedtais.deci-
sion is obfuscated by the fact that the trees topology is owknat
the outset. When considering a breadth-first search, it pitant

to understand that while the width of the treg at generatiory, i.e.

the total number of nodes across generatipis upper bounded by

(6)

where wo 1, the details of the problem at hand may signifi-
cantly restrict the width for a number of reasons resultingreadth-
first protocols which are much more computationally attvacthan
those implied by Eq.]6.

In considering depth-first protocols, the selection ofesittarun-
time order selection algorithm or a predetermined order degpend
critically upon the availability of heuristics or side imfoation. For
example, using the indices of a magnitude soiftetbrm relaxation
of Eq.0 or any other available side information may resukadtu-
tions of higher sparsity or earlier identification of deepves. Pseu-
docode 4 presents an example run-time elimination ordemstb
tine SELECTCOORDINATE for a depth-first protocol which uses no
heuristic or side information but generally aims to seledrdinates
to vanish which maximize the number of nodes in the embedded
polytopeP’ produced using/ANISH COORDINATE.

wg =wg—1(N —g+1)

2.4. Subtree exploration

Techniques which are agnostic to the details of the pagiqoiob-

where the root nodes polytope was populated USygp ot hand but attempt to restart the tree upon discoveryeaffaor

even more generally determine if there are children othem those
identified usinguNVEIL CHILDREN on a particular nodes polytope
during runtime, can easily be incorporated into the desigmalgo-
rithm to allow further exploration of the trees topology. Veéger to
such a routine as a subtree exploration routine. One subhitpe,
as mentioned previously in Section 2.1.1, is to attemptansform
leaves into parent nodes and depends directly upon the d¢ampu
tional ease at which additional elementsSofmay be drawn with the
addition of appropriately vanished coordinates. The ctdssgo-
rithms as described until now is easily modified such thaehgpes
of subtree exploration attempts can be made at either ticeaisy
of a leaf node or after no node in the unveiled tree has uneeglo
children.



Another subtree exploration technique, which may be used té\lgorithm 1 A single-path, depth-first algorithm with randomized

both trim branches and identify unexplored children, imesl end-
ing the exploration down a given nodehaving received polytope
P, in a fixed generatiory for which another nodé in the same
generation has received polytope with elements consisting of the
same sparsity pattern. Denote the union of the vectors irvibe
polytopes a,us, i.€.

Pob={z |2 € PoOrz € Py}

@)

and assign this polytope to node Then the algorithm continues
from nodeb and exploration is discontinued through nadeThis

technique is equivalent to searching for potential chitdnedes in-
0

side the convex hull of the two polytopes.

3. NUMERICAL EXAMPLE

Maximally sparse filters, despite being a computationalfficdlt
design problem, result in systems which have demonstratiena
tages as compared to dense systems with respect to a nunibac-of
tical metrics[[10]. Although sparse filter design formuthte half-
space representation does meet the constraint qualifisatibthe
compressive sensing framework, many well-known existiegigh

methods have a similar flavor to those used in compressive sen

ing, i.e. they are broadly classified as greedy iterativerilyms
which make use of, e.g., weightdéenorm linear programs [11]. A

vertex reduction and a run-time order selection subroutine

Z < UNVEILCHILDREN(P)

while Z # () do
d < SELECTCOORDINATE(P,T)
P < REDUCECOMPLEXITY(P,d)
P < VANISHCOORDINATE(P, d)
7 <+ UNVEIL CHILDREN(P)

end while

Fig. 2. An impulse response corresponding to one sparse solution

generated using Algorithm 1. Zero valued coefficients arekath
with red x’s.

other classes of filters possibly including additional ¢oaists, e.g.,

fair comparison with methods such as IHT and CoSaMP cannot bg [14] a number of common filter constraints are formulated a

made in part due to various assumptions being violated hEuetp-

proaches, such as non-convex programs, have been usedit@ero

filters with very sparse impulse respondes [12]. The usetefral-
tive convexity principles has also been previously appt@dilter
design, e.g., in [13] an initial design is iteratively prced between
two convex sets resulting in a final design satisfying thestraints
of both sets but is not explicitly optimal with respect to angtric.

closed convex sets. The design specifications, similam®etifiound
in an example in[[10], are chosen as follows: passband cfrff
quencyw,, = 0.207, stopband cutoff frequeneys, = 0.257, pass-
band rippled,, = 0.01 (linear), stopband ripplés, = 0.1 (linear),
and support parameté¥ = 31.

Algorithm 1 describes a generic single-path depth-firsbalg
rithm using the example run-time order selection subreutia-

In this section we generate an example algorithm adhering t9e -rcoorpINATE from Pseudocode 4. In order to apply Algo-
the general framework proposed in Section 2 and apply itmwa rjihm 1 to the sparse filter design problem, the root nodetaini

the design of a sparse, causal, Type | linear-phase finipedse-
response lowpass filtér[n] with support[0, 2N]. In particular, let

polytope P is populated using/ = 500 vertices drawn fromsS.
The vertices are in particular selected by solving a seqefiinear

€y andQ, denote the respective passband and stopband where rograms where the coefficients of the objective vector arsen

®)

Qpb = {Wk wg € [_wpb7wpb]}

and

)
for0 < wpp < wep < mwandl < k < K whereK is chosen
to sufficiently sample the frequency axis with respect tofther
support. We impose frequency-domain attenuation comgsrauch
that a candidate impulse response is said to be feasib&eRbitrier
transform amplitude deviates no more thignandd,, from the ideal
amplitude response over the passband and stopband, reslyect
Let the ideal amplitude response, denoted’ly), be unity on,;

st = {wki W € [—71'7 _wsb] U [WSZN ﬂ-]}

and zero orf2,. Then, using the notation in Elgl 1, the feasible set

S is written as

S={z e RN : |T (w,z) — D (w)]| < ppyw € Qpp,  (10)
|T (“')72) -D (w)| < 651}7‘*} S st}
where
N
T(w,z) = x4 cos (w(k — 1)) (11)
k=1

andz, = h[0] andz, = 2h[k — 1] for 2 < k < N. The design
example as formulated in this section is easily extendeca:soribe

uniformly in [—1,1]. In order to retain tractability, the subroutine

REDUCECOMPLEXITY is used withAZ(H), M(-) < 500 at each
generation, i.e. the polytopgE cannot exceed@50, 000 vertices at
any given generation. The algorithm, as described, doeattenpt
subtree exploration, i.e. no attempt is made to draw fushenples
in order to transform a leaf into a parent and thus the tertioina
criterion is the discovery of a leaf. A randomly selectedratat of
the leaf nodes polytope, transformed into an impulse resplom],
is depicted in Figure 2. The length of the root-to-leaf walk this

example isl5 and is directly related to the sparsity of the obtained

impulse response.

Variations and extensions to Algorithm 1 follow immedigtel
such as utilizing alternative order selection rules as atfan of the
current sparsity level or pattern. For example, a natutetétive
is to select a fixed ordering prior to runtime correspondinghte
indices of the magnitude-sorted coefficients of the sofutmthel-
norm relaxation of E.J1. In comparing these two path sedactiles
for a number of examples, the order selection rule in Psexdind
tends to result in sparser impulse responses. This may ifbeam-
derstood by the fact that thresholding th@orm solution generally
does not degrade gracefully from the frequency-domaintcainss.
Using subtree extensions and other variations generalyitesl in
impulse responses of different sparsity levels and pattern
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