
ar
X

iv
:1

50
2.

01
22

0v
1 

 [c
s.

D
S

]  
4 

F
eb

 2
01

5

UNVEILING THE TREE:
A CONVEX FRAMEWORK FOR SPARSE PROBLEMS

Tarek A. Lahlou Alan V. Oppenheim

Digital Signal Processing Group
Massachusetts Institute of Technology

ABSTRACT

This paper presents a general framework for generating greedy algo-
rithms for solving convex constraint satisfaction problems for sparse
solutions by mapping the satisfaction problem into one of graph
traversal on a rooted tree of unknown topology. For every pre-walk
of the tree an initial set of generally dense feasible solutions is pro-
cessed in such a way that the sparsity of each solution increases with
each generation unveiled. The specific computation performed at
any particular child node is shown to correspond to an embedding of
a polytope into the polytope received from that nodes parent. Several
issues related to pre-walk order selection, computationalcomplexity
and tractability, and the use of heuristic and/or side information is
discussed. An example of a single-path, depth-first algorithm on a
tree with randomized vertex reduction and a run-time path selection
algorithm is presented in the context of sparse lowpass filter design.

Index Terms— sparse constraint satisfaction, tree-search, incre-
mental refinement, sparse filter design

1. INTRODUCTION

Sparsity principles, in a broad sense, have been and continue to be
associated with desirable properties spanning a wide rangeof dis-
ciplines including sampling theory, model-order reduction, the de-
sign of power efficient systems, architectures for deep learning, etc.
From the compressive sensing paradigm to the design of sparse fil-
ters, solving a convex constraint satisfaction problem fora maxi-
mally sparse solution is computationally difficult in general [1]. This
paper focuses attention to the class of sparse constraint satisfaction
problems which are readily described using a non-convex optimiza-
tion problem of the form

x̂ ∈ argmin
x∈S
‖x‖0 (1)

where‖·‖0 indicates the number of non-zero coordinates in its argu-
ment andS is a generally convex set. Conventional sparse recovery
methods used in compressive sampling and elsewhere can be broadly
categorized into one of two classes: convex optimization algorithms
and greedy iterative methods. WhenS satisfies particular constraint
qualification conditions, e.g., the restricted isometry property, Eq. 1
and a convex relaxation of the objective function to the1-norm have
been shown to produce identical solutions [2]. The verification of
such qualifications, however, is often itself a computationally ex-
pensive or intractable task.

Understanding the conditions under which various optimality
guarantees can be made as well as the gracefulness with whichsuch

The authors wish to thank Analog Devices, Bose Corporation,and Texas
Instruments for their support of innovative research at MITand within the
Digital Signal Processing Group.

guarantees degrade when the conditions are violated but almost satis-
fied has been the focus of much attention in the literature, especially
surrounding the performance of greedy methods. In fact, greedy
methods often provably result in a maximally sparse solution for
particular classes of problems [3]. A well-known strategy involves
incrementally decreasing the sparsity of a single solutionin accor-
dance with a suitable error metric until a particular stopping criterion
is met. For example, (orthogonal) matching pursuit is a method of
this type [4]. Another strategy, encompassing methods suchas Iter-
ative Hard Thresholding (IHT), Subspace Pursuit, and Compressive
Sampling Matching Pursuit (CoSaMP), iteratively thresholds dense
solutions to a predetermined sparsity level while simultaneously at-
tempting to decrease an error metric [5, 6, 7]. The frameworkpre-
sented in this paper fundamentally differs from these strategies in
that the sparsity of many solutions is monotonically increased via
tree-based processing while feasibility with respect to Eq. 1 is main-
tained at every stage. In addition, advanced knowledge ora priori
assumptions on optimal sparsity levels or patterns is not required.

Several problems of broad interest to the signal processingcom-
munity and elsewhere do not meet the constraint qualifications of
compressive sensing, an example of which is presented in Section 3
in the context of sparse lowpass filter design. Specialized algorithms
that make use of heuristics and/or side information are often de-
signed and lead to sufficiently sparse solutions for these problems.
The class of algorithms proposed in this paper does not require such
constraint qualifications and is therefore of use when such qualifica-
tions either fail or cannot be verified. Further, any side information
or heuristic knowledge of the sparsity pattern of an optimalsolution
is easily incorporated into an algorithm of this framework with only
minimal adjustment.

In Section 2 the general framework for generating greedy tree-
search algorithms which solve problems of the general classde-
scribed by Eq. 1 is presented. In this presentation, a numberof
computational tools each node must be equipped with are described
and example routines are provided for each. We conclude thispre-
sentation with a discussion emphasizing the consequences of several
critical design decisions. Finally, in Section 3, an example algorithm
adhering to the general framework is presented and evaluated.

1.1. Notation and nomenclature

Vectors will be denoted using an underscore and vector superscripts
will be used to index vectors as opposed to indexing vector elements,
i.e. x(a)

1 andx(a)
2 represent distinct coordinates of the same vector.

For simplicity of exposition we proceed assuming all vectors are in
R

N , extensions to complex-valued and/orN1×N2-dimensional vec-
tor spaces follow readily. In order to avoid confusion we henceforth
restrict the wordnode to only mean a graph vertex and reserve the
use of the termvertex to that of a polytope.

http://arxiv.org/abs/1502.01220v1


2. UNVEILING THE TREE

The general strategy underlying the framework described inthis sec-
tion is to convert the convex constraint satisfaction problem in Eq. 1
to a problem of graph traversal on a rooted tree. Every node then
processes a set of elements belonging toS , either received from ini-
tialization or a parent node, in order to produce a new set of elements
which also belong toS but have fewer non-zero coordinates. Using
this set of elements the node unveils if it has children of itsown; if
so it may pass its set of solutions to one or more of its children and
the process repeats. The topology of the tree directly relates to the
sparsity of feasible solutions in two ways: (i) the number ofnon-zero
coordinates in the set of feasible solutions decreases witheach suc-
cessive generation of the tree and (ii) siblings of each group possess
feasible elements with distinct sparsity patterns.

2.1. Initializing the root node

We begin by equipping the root node with a setP of M possibly
distinct elements drawn from the feasible setS in Eq. 1, i.e.

P =
{
x
(i) : x(i) ∈ S , 1 ≤ i ≤M

}
(2)

where eachx(i) is generally dense. Note thatP is the vertex repre-
sentation of a particular polytope embedded withinS , i.e. the convex
hull of the elements ofP forms a closed convex polytope contained
within S . For problems whereS is defined or naturally described
using half-space representation, i.e. as a finite collection of linear
equality and inequality constraints, standard vertex enumeration al-
gorithms may be directly used to populateP [8]. Alternatively, the
use of convex programs with random or systematically chosenobjec-
tive functions can be used to obtain either well-spread vertices ofS
or elements with other desirable properties. As will becomeevident
shortly, any greedy algorithm adhering to the proposed framework
will not be able to obtain an optimal solution to Eq. 1 which iscon-
tained inS but not in the convex hull ofP1.

A pertinent question at this stage involes the selection of the de-
sign parameterM . To address this issue we refer to [9] in which a
cyclic polytope in anN -dimensional space withv vertices is shown
to achieve the maximum number of obtainable facetsk. Therefore,
the corresponding dual polytope maximizes the number of vertices

for a fixed number of facets wherev = O(k⌊
N
2 ⌋). This result ren-

ders complete vertex enumeration ofS computationally intractable
in practice without imposing additional structure. We defer further
comments on computational complexity to Section 2.2.3.

2.2. Incremental sparsity: computation at each node

Each node of the tree, after having received a convex polytopeP in
vertex representation from its parent node (or initialization for the
root), is equipped with three primary functions: (i)UNVEIL CHIL -
DREN, (ii) VANISHCOORDINATE, and (iii) REDUCECOMPLEXITY.
In what follows we say that a node vanishes coordinated when the
result of its processing produces a new polytopeP ′ such that

xd = 0, ∀x ∈ P ′
. (3)

Further, each node of the tree satisfies the following property: for ev-
eryx ∈ P ′, xk = 0 for all coordinatesk vanished along the unique
path to the root. In addition, every node in generationg contains a
set of feasible solutionsx to Eq. 1 which satisfy‖x‖0 ≤ N − g.

1This discludes algorithms which successfully transform leaves into par-
ents by drawing additional elements fromS, as described in Section 2.2.1.

Pseudocode 1A subroutine which determines the setI of potential
children for a given set of feasible solutionsP .

function UNVEIL CHILDREN(P)

I ←
{
d : ∃ x(+), x(−) ∈ P s.t.x(+)

d > 0 andx(−)
d < 0

}

end function

Pseudocode 2A subroutine which populatesP ′ using elements of
P by vanishing coordinated using Eq. 4 forℓ = 2.

function VANISHCOORDINATE(P ,d)
for eachx(+) ∈ P with x

(+)
d > 0 do

for eachx(−) ∈ P with x
(−)
d < 0 do

P ′ ←

(
x
(+)
d

x
(+)
d

−x
(−)
d

)
x(+) +

(
−x

(−)
d

x
(+)
d

−x
(−)
d

)
x(−)

end for
end for

end function

2.2.1. UNVEIL CHILDREN

A fundamental ability required of each node in order to unveil the
tree is to identify which, if any, offspring said node can produce.
Stated another way, each node needs to be equipped with a subrou-
tine which identifies the set of coordinates it can vanish given the
polytopeP received from its parent node. A sufficient condition for
a particular node to vanish coordinated requires its received poly-
topeP to contain at least one elementx(+) such thatx(+)

d > 0 and

at least one elementx(−) such thatx(−)
d < 0. When this condition is

satisfied, we refer to the potential offspring as childd. Let I denote
the set of all such possible children for a given node, then that node
may produce a maximum of|I| children. Pseudocode 1 describes
the subroutineUNVEIL CHILDREN which generatesI for a givenP .
A node is then classified as a leaf of the tree provided that it cannot
generate any children, i.e.|I| = 0.

Termination criteria for algorithms adhering to the framework
proposed in this paper include, but are not limited to, identifying ei-
ther the longest or a sufficiently long path from the root to a leaf.
Subtree exploration, i.e. transforming a leaf node into a parent, is
sometimes achievable by drawing additional elements fromS . For
example, by drawing elements using a convex program where the
objective function is designed to target the sign of a specific coordi-
nate while simultaneously imposing additional constraints to vanish
all coordinates along the direct path to the root.

2.2.2. VANISHCOORDINATE

Consider a node having received polytopeP and fix somed ∈ I
which we wish to vanish in the sense of Eq. 3. The general strategy
by which the setP ′ is populated is presented next. In order to ensure
that elements ofP ′ maintain feasibility with respect to Eq. 1 and
simultaneously satisfy Eq. 3, we make explicit use of the properties
of a convex combination. Specifically, letx(1), · · · , x(ℓ) ∈ P , then

x
′ =

ℓ∑

i=1

αix
(i) ∈ P for

ℓ∑

i=1

αi = 1, αi ≥ 0. (4)

It is straightforward to then show that given the qualification ford to
be an element ofI, there exists a set of linear combination weights
α1, . . . , αℓ satisfying Eq. 4 such thatx′

d = 0. Any such combination
for which this holds may then be used to systematically generate an
element ofP ′.



Fig. 1. An example depicting two generations of a partially unveiled
tree (left) and a cross-section of the polytope embeddings (right) cor-
responding to the highlighted walk from the root node to child 6 to
child 2.

Pseudocode 2 contains the subroutineVANISHCOORDINATE

which generates this polytope using Eq. 4 withℓ = 2 and a proper
selection of the weightsα1 andα2. In addition, Eq. 4 implies both
that the coordinates previously vanished in generatingP remain van-
ished during the population ofP ′ and that sincex(+)

d 6= x
(−)
d 6= 0

thenP ′ ⊆ P , i.e.P ′ is embedded withinP .
Depicted on the left of Figure 1 is two generations of a partially

unveiled tree. LetP ,P1, andP2 denote the polytopes on the high-
lighted path belonging to nodes “root node”,x(6) (child 6), andx(2)

(child 2), respectively. A cross-section of the polytope embedding
P2 ⊆ P1 ⊆ P ⊆ S is depicted on the right. Also depicted is a
different walk, i.e. “root node” tox(2) (child 2) tox(6) (child 6),
ending with a set of vertices belonging to a different group of sib-
lings demonstrating another set of elements with the same sparsity
pattern as the elements ofP2.

2.2.3. REDUCECOMPLEXITY

The computational complexity required to compute all possible ele-
ments ofP ′ as described by the example routineVANISHCOORDI-
NATE in Pseudocode 2 is generally intractable, especially for prob-
lems with long root-to-leaf distances. Indeed, letP denote the re-
ceived polytope of a node and letM (+)

d > 0 denote the number of

elementsx ∈ P satisfyingxd > 0 andM (−)
d > 0 the number of el-

ements satisfyingxd < 0 for somed ∈ I. Further, letP ′ denote the
result of vanishing coordinated usingVANISHCOORDINATE. Then
P ′ results in

M
′
d = M

(+)
d M

(−)
d (5)

possibly repeated vertices. It immediately follows that the total num-
ber of vertices generated for a given node in generationg is on the
order ofO(M2g ) where the root nodes polytope was populated us-
ingM vertices. By limiting the number of vertices used to generate
an embedded polytope with coordinated vanished, the problem of
tree traversal remains computationally tractable. This isexplicitly at
the expense of excluding regions of the polytopeP in forming P ′

where the maximally sparse solution may reside.
A simple procedure to control the computational burden at each

node is described in Pseudocode 3 where the functionREDUCE-
COMPLEXITY limits the number of vertices satisfyingxd > 0 and
xd < 0 to M̂

(+)
d < M

(+)
d andM̂ (−)

d < M
(−)
d , respectively. In

our experience with several examples, the number of unique vertices
generated byVANISHCOORDINATE is smaller thanM ′

d, especially
in later generations of the tree. This heuristic may help guide the
dynamic selection of̂M (+)

d andM̂ (−)
d for a particular problem.

Pseudocode 3A function which reduces the computational com-
plexity required to vanishing coordinated using VANISHCOORDI-
NATE.

function REDUCECOMPLEXITY(P ,d)
P ′ ← at mostM̂ (+)

d unique vertices fromP with xd > 0

P ′ ← at mostM̂ (−)
d unique vertices fromP with xd < 0

end function

Pseudocode 4An example of a single-path pre-walk coordinate se-
lection rule for runtime execution.

function SELECTCOORDINATE(P,I)
d′ ← argmax

d∈I
|{x ∈ P : xd > 0}| · |{x ∈ P : xd < 0}|

end function

2.3. Tree-search protocols

A number of instrumental design decisions informed by the prob-
lem at hand must be made when crafting a greedy algorithm of the
general framework presented in this paper. For example, a critical
decision involves selection of the tree traversal protocolwhich will
be implemented, e.g., a depth-first or breadth-first search.This deci-
sion is obfuscated by the fact that the trees topology is unknown at
the outset. When considering a breadth-first search, it is important
to understand that while the width of the treewg at generationg, i.e.
the total number of nodes across generationg, is upper bounded by

wg = wg−1(N − g + 1) (6)

wherew0 = 1, the details of the problem at hand may signifi-
cantly restrict the width for a number of reasons resulting in breadth-
first protocols which are much more computationally attractive than
those implied by Eq. 6.

In considering depth-first protocols, the selection of either a run-
time order selection algorithm or a predetermined order maydepend
critically upon the availability of heuristics or side information. For
example, using the indices of a magnitude sorted1-norm relaxation
of Eq. 1 or any other available side information may result insolu-
tions of higher sparsity or earlier identification of deep leaves. Pseu-
docode 4 presents an example run-time elimination order subrou-
tine SELECTCOORDINATE for a depth-first protocol which uses no
heuristic or side information but generally aims to select coordinates
to vanish which maximize the number of nodes in the embedded
polytopeP ′ produced usingVANISHCOORDINATE.

2.4. Subtree exploration

Techniques which are agnostic to the details of the particular prob-
lem at hand but attempt to restart the tree upon discovery of aleaf, or
even more generally determine if there are children other than those
identified usingUNVEIL CHILDREN on a particular nodes polytope
during runtime, can easily be incorporated into the design of an algo-
rithm to allow further exploration of the trees topology. Werefer to
such a routine as a subtree exploration routine. One such technique,
as mentioned previously in Section 2.1.1, is to attempt to transform
leaves into parent nodes and depends directly upon the computa-
tional ease at which additional elements ofS may be drawn with the
addition of appropriately vanished coordinates. The classof algo-
rithms as described until now is easily modified such that these types
of subtree exploration attempts can be made at either the discovery
of a leaf node or after no node in the unveiled tree has unexplored
children.



Another subtree exploration technique, which may be used to
both trim branches and identify unexplored children, involves end-
ing the exploration down a given nodea having received polytope
Pa in a fixed generationg for which another nodeb in the same
generation has received polytopePb with elements consisting of the
same sparsity pattern. Denote the union of the vectors in thetwo
polytopes asPa∪b, i.e.

Pa∪b = {x | x ∈ Pa or x ∈ Pb} (7)

and assign this polytope to nodeb. Then the algorithm continues
from nodeb and exploration is discontinued through nodea. This
technique is equivalent to searching for potential children nodes in-
side the convex hull of the two polytopes.

3. NUMERICAL EXAMPLE

Maximally sparse filters, despite being a computationally difficult
design problem, result in systems which have demonstrable advan-
tages as compared to dense systems with respect to a number ofprac-
tical metrics [10]. Although sparse filter design formulated in half-
space representation does meet the constraint qualifications of the
compressive sensing framework, many well-known existing design
methods have a similar flavor to those used in compressive sens-
ing, i.e. they are broadly classified as greedy iterative algorithms
which make use of, e.g., weighted1-norm linear programs [11]. A
fair comparison with methods such as IHT and CoSaMP cannot be
made in part due to various assumptions being violated. Further ap-
proaches, such as non-convex programs, have been used to produce
filters with very sparse impulse responses [12]. The use of alterna-
tive convexity principles has also been previously appliedto filter
design, e.g., in [13] an initial design is iteratively projected between
two convex sets resulting in a final design satisfying the constraints
of both sets but is not explicitly optimal with respect to anymetric.

In this section we generate an example algorithm adhering to
the general framework proposed in Section 2 and apply it toward
the design of a sparse, causal, Type I linear-phase finite-impulse-
response lowpass filterh[n] with support[0, 2N ]. In particular, let
Ωpb andΩsb denote the respective passband and stopband where

Ωpb = {ωk : ωk ∈ [−ωpb, ωpb]} (8)

and
Ωsb = {ωk : ωk ∈ [−π,−ωsb] ∪ [ωsb, π]} (9)

for 0 < ωpb < ωsb < π and 1 ≤ k ≤ K whereK is chosen
to sufficiently sample the frequency axis with respect to thefilter
support. We impose frequency-domain attenuation constraints such
that a candidate impulse response is said to be feasible if its Fourier
transform amplitude deviates no more thanδpb andδsb from the ideal
amplitude response over the passband and stopband, respectively.
Let the ideal amplitude response, denoted byD(ω), be unity onΩpb

and zero onΩsb. Then, using the notation in Eq. 1, the feasible set
S is written as

S = {x ∈ R
N : |T (ω, x)−D (ω)| ≤ δpb, ω ∈ Ωpb, (10)

|T (ω, x)−D (ω)| ≤ δsb, ω ∈ Ωsb}

where

T (ω, x) =

N∑

k=1

xk cos (ω (k − 1)) (11)

andx1 = h[0] andxk = 2h[k − 1] for 2 ≤ k ≤ N . The design
example as formulated in this section is easily extended to describe

Algorithm 1 A single-path, depth-first algorithm with randomized
vertex reduction and a run-time order selection subroutine.
I ← UNVEIL CHILDREN(P)

while I 6= ∅ do
d← SELECTCOORDINATE(P,I)
P ← REDUCECOMPLEXITY(P,d)
P ← VANISHCOORDINATE(P ,d)
I ← UNVEIL CHILDREN(P)

end while

0

0.1

0.2

Fig. 2. An impulse response corresponding to one sparse solution
generated using Algorithm 1. Zero valued coefficients are marked
with red x’s.

other classes of filters possibly including additional constraints, e.g.,
in [14] a number of common filter constraints are formulated as
closed convex sets. The design specifications, similar to those found
in an example in [10], are chosen as follows: passband cutofffre-
quencyωpb = 0.20π, stopband cutoff frequencyωsb = 0.25π, pass-
band rippleδpb = 0.01 (linear), stopband rippleδsb = 0.1 (linear),
and support parameterN = 31.

Algorithm 1 describes a generic single-path depth-first algo-
rithm using the example run-time order selection subroutine SE-
LECTCOORDINATE from Pseudocode 4. In order to apply Algo-
rithm 1 to the sparse filter design problem, the root nodes initial
polytopeP is populated usingM = 500 vertices drawn fromS .
The vertices are in particular selected by solving a sequence of linear
programs where the coefficients of the objective vector are chosen
uniformly in [−1, 1]. In order to retain tractability, the subroutine
REDUCECOMPLEXITY is used withM̂ (+), M̂ (−) ≤ 500 at each
generation, i.e. the polytopeP cannot exceed250, 000 vertices at
any given generation. The algorithm, as described, does notattempt
subtree exploration, i.e. no attempt is made to draw furthersamples
in order to transform a leaf into a parent and thus the termination
criterion is the discovery of a leaf. A randomly selected element of
the leaf nodes polytope, transformed into an impulse responseh[n],
is depicted in Figure 2. The length of the root-to-leaf walk for this
example is15 and is directly related to the sparsity of the obtained
impulse response.

Variations and extensions to Algorithm 1 follow immediately,
such as utilizing alternative order selection rules as a function of the
current sparsity level or pattern. For example, a natural alternative
is to select a fixed ordering prior to runtime corresponding to the
indices of the magnitude-sorted coefficients of the solution to the1-
norm relaxation of Eq. 1. In comparing these two path selection rules
for a number of examples, the order selection rule in Pseudocode 4
tends to result in sparser impulse responses. This may in part be un-
derstood by the fact that thresholding the1-norm solution generally
does not degrade gracefully from the frequency-domain constraints.
Using subtree extensions and other variations generally resulted in
impulse responses of different sparsity levels and patterns.



4. REFERENCES

[1] Y. S. Song and Y. H. Lee, “Design of sparse fir filters based on
branch-and-bound algorithm,” inCircuits and Systems, 1997.
Proceedings of the 40th Midwest Symposium on, Aug 1997,
vol. 2, pp. 1445–1448 vol.2.

[2] D. Donoho, “Compressed sensing,”IEEE Trans. Inform. The-
ory, vol. 52, pp. 1289–1306, 2006.

[3] D. Needell, J. Tropp, and R. Vershynin, “Greedy signal recov-
ery review,” in42nd Asilomar Conference on Signals, Systems
and Computers. IEEE, 2008, pp. 1048–1050.

[4] Y. C. Pati, R. Rezaiifar, Y. C. Pati R. Rezaiifar, and P. S.Krish-
naprasad, “Orthogonal matching pursuit: Recursive function
approximation with applications to wavelet decomposition,” in
Proceedings of the 27 th Annual Asilomar Conference on Sig-
nals, Systems, and Computers, 1993, pp. 40–44.

[5] T. Blumensath and M. E. Davies, “Iterative hard thresholding
for compressed sensing,”CoRR, vol. abs/0805.0510, 2008.

[6] W. Dai and O. Milenkovic, “Subspace pursuit for compressive
sensing: Closing the gap between performance and complex-
ity,” 2008.

[7] D. Needell and J. A. Tropp, “Cosamp: Iterative signal recovery
from incomplete and inaccurate samples,”Commun. ACM, vol.
53, no. 12, pp. 93–100, Dec. 2010.

[8] D. Avis and K. Fukuda, “A pivoting algorithm for convex hulls
and vertex enumeration of arrangements and polyhedra,”Dis-
crete and Computational Geometry, vol. 8, no. 1, pp. 295–313,
1992.

[9] P. McMullen, “Metrical and combinatorial properties ofcon-
vex polytopes,” Proc. of Int. Congr. of Mathematicians, pp.
491–495, 1974.

[10] T. Baran, D. Wei, and AV. Oppenheim, “Linear programming
algorithms for sparse filter design,”Signal Processing, IEEE
Transactions on, vol. 58, no. 3, pp. 1605–1617, March 2010.

[11] D. Wei and A. V. Oppenheim, “Sparsity maximization under
a quadratic constraint with applications in filter design,”in
Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE
International Conference on, March 2010, pp. 3686–3689.

[12] D. Wei, “Non-convex optimization for the design of sparse
fir filters,” in Statistical Signal Processing, 2009. SSP ’09.
IEEE/SP 15th Workshop on, Aug 2009, pp. 117–120.

[13] K.C. Haddad, H. Stark, and N.P. Galatsanos, “Constrained fir
filter design by the method of vector space projections,”Cir-
cuits and Systems II: Analog and Digital Signal Processing,
IEEE Transactions on, vol. 47, no. 8, pp. 714–725, Aug 2000.

[14] S. Parekh and P. Shah, “Nyquist filter design using pocs meth-
ods: Including constraints in design,” , no. arXiv:1305.3446
[cs.IT], 2013.


	1  Introduction
	1.1  Notation and nomenclature

	2  Unveiling the tree
	2.1  Initializing the root node
	2.2  Incremental sparsity: computation at each node
	2.2.1  unveilChildren
	2.2.2  vanishCoordinate
	2.2.3  reduceComplexity

	2.3  Tree-search protocols
	2.4  Subtree exploration

	3  Numerical example
	4  References

