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ABSTRACT

This paper examines two issues of a statistical speech synthesis ap-
proach based Gaussian process (GP) regression. Although GP-based
speech synthesis can give higher performance in generating spectral
parameters than the HMM-based one, a number of issues still re-
main. In this paper, we incorporate global variance (GV) feature
to overcome over-smoothing problem into the parameter generation.
Furthermore, in order to utilize an appropriate kernel function in ac-
cordance with actual data, we propose an EM-based kernel hyperpa-
rameter optimization technique. Objective and subjective evaluation
results show that using GV and hyperparameter estimation enhanced
the performance in spectral feature generation.

Index Terms— statistical parametric speech synthesis, Gaus-
sian process, global variance, kernel hyperparameter

1. INTRODUCTION

In the last decade, statistical parametric speech synthesis frame-
work based on hidden Markov model (HMM) [1] has shown various
advantages such as flexibility to transforming voice characteris-
tics, robustness to language dependence, and realization of small
foot-print systems [2]. However, there still remain problems in
vocoding, which result from insufficient accuracy of acoustic mod-
eling and over-smoothing effect. Recently, for the purpose of more
accurate acoustic modeling, other approaches to the statistical para-
metric acoustic modeling have been proposed using deep neural
networks [3] and deep belief network-Gaussian process hybrid
model [4].

In this context, we have proposed an alternative speech synthe-
sis approach based on frame-level Gaussian process (GP) regres-
sion [5, 6]. In this approach, frame-level contextual features are
used as input features of GP regression [7], and acoustic features are
used as output features. To make computational cost feasible, we
adopted partially independent conditional (PIC) approximation [8]
and showed that the GP-based approach achieved comparable or bet-
ter performance compared with HMM-based approach in generation
of spectral feature trajectories [6]. This could be attributed to the
advantages of GPs, such as the flexibility to model complexity and
the robustness against over-fitting.

Although the GP-based speech synthesis is promising, there ex-
ist a number of issues for the realization of practical systems. One
of them is generation of acoustic feature trajectories from predictive
distribution. We used the predictive mean sequence as the generated
trajectories in the previous study [6]. However, it generally causes
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over-smoothing problem. In this study, therefore, we incorporate
an alternative way considering global variance (GV) [9] which has
been widely used to alleviate over-smoothing problem in the HMM-
based speech synthesis. Another issue is selection of hyperparameter
of kernel function used in GP. Fortunately, it is possible to use au-
tomatic hyperparameter optimization based on empirical Bayesian
approach for GP. In this paper, we apply it to the speech synthesis
framework using PIC approximation.

2. GP-BASED SPEECH SYNTHESIS

In the speech synthesis framework based on GP regression [5,6], we
consider GP in which an input variable xn is a contextual feature
set obtained by linguistic and phone boundary information, and an
output variable yn is an acoustic feature normalized into zero mean.
The correlation between two frames, whose input variables are x
and x′, are defined by a kernel function k(x,x′; θ), where θ is a hy-
perparameter vector of the kernel function. This enables frame-level
modeling of acoustic features without using dynamic features that
are used and essential in the HMM-based speech synthesis. Based
on GP regression framework [7], predictive distribution of test (syn-
thetic) data yT given training data y are inferred, which is given by
a Gaussian distribution

p(yT |y, θ) = N (yT ; µyT |y,ΣyT |y) (1)

and used for parameter trajectory generation. For example, we used
mean sequence µyT |y in the previous study [5].

One issue of GP-based speech synthesis is computational
cost. To reduce the computational cost, we have incorporated
partially independent conditional (PIC) approximation [8] into
GP-based acoustic modeling [6]. PIC approximation uses a la-
tent variable fM which is dependent on pseudo-data input features
{xm|m = 1, . . . , M}, where the pseudo-data size M is much
smaller than the number of frames in training data, N . The joint
distribution of fM is given by following Gaussian distribution.

p(fM |θ) = N (fM ;0,KM ) (2)

where KM is a covariance (Gram) matrix whose elements are ker-
nel values of pseudo-data input features, which is calculated by a
kernel function k(x,x′; θ). In PIC approximation, all training data
y is separated into several blocks {yBs}(s = 1, . . . , S), and it is as-
sumed that yB1 , . . . ,yBS are conditionally independent given fM .
By using this assumption, the joint probability of all training data



y = [y1 . . . yN ]> is defined by

p(y|θ) =

Z

p(y|fM , θ)p(fM |θ)dfM

=

Z S
Y

s=1

p(yBs |fM , θ)p(fM |θ)dfM (3)

where

p(yBs |fM , θ) = N (yBs ; µyBs |fM ,ΣyBs |fM ) (4)

µyBs |fM = KBsMK−1
M fM (5)

ΣyBs |fM = KBs − QBs + σ2
νI (6)

QBs = KBsMK−1
M KMBs . (7)

Here, KBsM = K>
MBs

represents the covariance matrix that ex-
presses the relationship between the block s and the pseudo-data,
and KBs and KM correspond to self-covariance matrices of the
block s and the pseudo-data, respectively. σ2

ν is a noise variance.
By marginalizing out the latent variable fM in (3), we get the fol-
lowing Gaussian distribution.

p(y|θ) = N (y;0,KPIC
N + σ2

νI) (8)

KPIC
N = QN + blkdiag(KN − QN )

=

2

6

6

6
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7

7
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5

(9)

where

QBiBj = KBiMK−1
M KMBj . (10)

PIC approximation adopts the independence assumption for test
(synthetic) data in the same way as that for the training data. The
predictive distribution of test data is expressed by a Gaussian distri-
bution. Let DT = {(xt, yt)|t = 1, . . . , T} be a test data set, and
yTs be a partial vector of yT , which consists of test data assigned
to the block s. Then, we obtain following predictive distribution for
the synthetic acoustic feature trajectory.

p(yT |y, θ) = N (yT ; µyT |y,ΣyT |y) (11)

µyT |y =
h

µ>
yT1 |y . . . µ>

yTS
|y

i>
(12)

ΣyT |y =

2

6

4

ΣyT1T1 |y · · · ΣyT1TS
|y

...
. . .

...
ΣyTST1 |y · · · ΣyTSTS

|y

3

7

5

. (13)

Here, let

KPIC
NTs

=
ˆ

QB1Ts · · · QBs−1Ts KBsTs

QBs+1Ts · · · QBSTs

˜

(14)

then the partial vector µyTS
|y and matrix ΣyTS

|y are given by

µyTs |y =
“

KPIC
NTs

”> “
KPIC

N + σ2
νI
”−1

y (15)

ΣyTiTj
|y = QTiTj + δTiTj (KTiTj − QTiTj + σ2

νI)

−
“

KPIC
NTi

”> “
KPIC

N + σ2
νI
”−1

KPIC
NTj

. (16)

Since the matrix
`

KPIC
N + σ2

νI
´

is the sum of the low rank matrix
QN and the block diagonal matrix, we can speed up the inversion of
`

KPIC
N + σ2

νI
´

using the Woodbury, Sherman & Morrison formula
[10]. When the maximum block size is B, the computational cost

for training results in O(S(B + M)3)), whereas GP without any
approximation methods needs O(N3) computational cost.

3. PARAMETER TRAJECTORY GENERATION USING
PREDICTIVE DISTRIBUTION WITH GV

A simple way to generate a speech parameter trajectory from the
predictive distribution is using the acoustic feature trajectory yT

that maximizes the likelihood of predictive distribution p(yT |y, θ).
Since the predictive distribution is a Gaussian distribution, the
trajectory that maximizes the likelihood becomes the mean se-
quence µyT |y. However, the resultant trajectories tend to be overly
smoothed. To alleviate this effect, we incorporate global variance
(GV) constraint [9] into trajectory generation.

GV is an utterance-level feature which is obtained by

v(yT ) =
1

T

T
X

t=1

(yt − m(yT ))2 (17)

m(yT ) =
1

T

T
X

t=1

yt (18)

where T is the number of frames of an utterance. To incorporate GV
into GP-based speech synthesis, we define the following likelihood

LGV = p(yT |y, θ)ωp(v(yT )|µv, σ2
v) (19)

where µv and σ2
v correspond to the mean and variance of GVs of

training utterances, respectively. The parameter ω adjusts the weight
of Gaussian process likelihood and GV likelihood. In this study, we
use ω = 1/T , i.e., the dimensional ratio of v to yT . We generate
a speech parameter trajectory by maximizing LGV. Practically, in
order to search the optimum trajectory, we use a steepest descent
algorithm with the derivative

∂LGV

∂yT
= −ωΣ−1

yT |y(yT − µyT |y)

− 2

T
· (v(yT ) − µv)

σ2
v

(yT − m(yT ) · 1). (20)

4. OPTIMIZATION OF KERNEL HYPERPARAMETERS

Here we derive how to estimate an appropriate hyperparameter set
θ automatically for PIC approximation. In the same way as usual
GPs, we take the empirical Bayesian approach, where we search op-
timum hyperparameter set θ that maximizes the marginal likelihood
p(y|θ). Since PIC approximation includes a latent variable fM , EM
algorithm can be applied to the maximization. Q-function is defined
by

Q(θ, θ̃) =

Z

p(fM |y, θ) log
“

p(y|fM , θ̃)p(fM |θ̃)
”

dfM (21)

where θ̃ is a new hyperparameter set. Using the assumption of PIC
approximation, the Q-function is decomposed into two Q-functions
Qs and QM as follows:

Q(θ, θ̃) =

S
X

s=1

Qs(θ, θ̃) + QM (θ, θ̃) (22)

Qs(θ, θ̃) =

Z

p(fM |y, θ) log p(yBs |fM , θ̃)dfM (23)

QM (θ, θ̃) =

Z

p(fM |y, θ) log p(fM |θ̃)dfM . (24)



In the E-step, we calculate the posterior distribution of pseudo-
data variables by

p(fM |y, θ) = N (fM ; µfM |y,ΣfM |y). (25)

From Eqs. (2) and (4), we can derive the parameters

µfM |y = ΣfM |yK
−1
M +

S
X

s=1

KMBsΣ
−1
yBs |fM yBs (26)

Σ−1
fM |y = K−1

M + K−1
M

S
X

s=1

KMBsΣ
−1
yBs |fM KBsMK−1

M . (27)

When the block size is B and pseudo-data size is M , we need
O(S(B + M)3) calculations for the each E-step, which is equal to
the number of calculations of the model training with PIC approxi-
mation.

In the M-step, we employ generalized EM algorithm because it
is difficult to find the exact hyperparameter θ̃∗ that maximizes Q-
function. Specifically, we increase the value of Q-function using a
gradient-based method. Furthermore, we may use stochastic gradi-
ent descent (SGD) algorithm because the Q-function is represented
as an average form

Q(θ, θ̃) =
1

S

S
X

s=1

“

SQs(θ, θ̃) + QM (θ, θ̃)
”

. (28)

For each step of SGD, we choose a block randomly and update hy-
perparameters. The i-th hyperparameter at time k is updated as fol-
lows.

θ̃
(k+1)
i = θ̃

(k)
i + η

(k)
i

 

S
∂Qs(θ, θ̃(k))

∂θ̃
(k)
i

+
∂QM (θ, θ̃(k))

∂θ̃
(k)
i

!

(29)

where η
(k)
i represents a step size of i at time k.

5. EXPERIMENTS

5.1. Kernel definition and hyperparameter setting

Based on the previous study [5, 6], we defined the following kernel
function.

k(xm,xn) =
X

i∈{−1,0,+1}

X

j∈{−1,0,+1}

w(i)
m w(i)

n kp(p(i)
m ,p(j)

n )kc(c
(i)
m , c(j)

n )

+ δutt(m)utt(n)kτ (τm, τn) + δmnθ2
floor. (30)

The first term represents the core of this kernel. The superscripts
−1, 0, and +1 of the variables correspond to the preceding, cur-
rent, and succeeding phones of the current frame. Using those adja-
cent phones, the values of kernel function get smooth around phone
boundaries. kp(·) and kc(·) correspond to relative position kernel
and phone context kernel. p

(i)
n = (p

(i)
n,1, p

(i)
n,2, p

(i)
n,3) represents the

relative frame position information in the phone. p
(i)
n,1 is the nor-

malized position, and p
(i)
n,2 and p

(i)
n,3 are position differences from

the beginning and end of the phone, respectively. We used sum
of squared exponential (SE) kernel for the relative position kernel
kp(p

(i)
m ,p

(j)
n ) as follows:

kp(p(i)
m ,p(j)

n ) =

3
X

k=1

θ2
pa,k exp

0

B

@

−

“

p
(i)
m,k − p

(j)
n,k

”2

2θ2
pb,k

1

C

A

(31)
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Fig. 1. Log likelihood of predictive distribution for each dimension
using optimized/non-optimized hyperparameters

where θpa,k and θpb,k correspond to relevance and scale parameters
for input feature p

(j)
n,k. For the phone context kernel kc(c

(i)
m , c

(j)
n ),

we used a linear kernel in the same way as [5] defined by

kc(c
(i)
m , c(j)

n ) =

3P
X

k=1

θ2
c,kc

(i)
m,kc

(j)
n,k (32)

where θc,k is a relevance parameter, and c
(j)
n is a binary-valued dis-

tinctive phonetic feature (DPF) [11] vector including preceding, cur-
rent, and succeeding phonemes. P is the number of DPFs and we
used P = 13 in according with the previous study [5]. A weight
parameter w

(i)
n was used to emphasize the effect of closer phones to

the n-th frame, and defined by a sine window in the same way as [6].
The second term of the right side of (30) is introduced to model

short time correlation within the same utterance, where utt(n) is the
utterance index of frame n. The input feature of kernel kτ (·), τn, is
the time in the utterance. We used the following SE kernel

kτ (τm, τn) = θ2
τa exp

„

− (τm − τn)2

2θ2
τb

«

(33)

The last term in (30) is a flooring value to keep KM positive definite
because K−1

M needs to be calculated.
In summary, the hyperparameter set used in this study became

θ = (θpa,1, . . . , θpa,3, θpb,1, . . . , θpb,3, θc,1 . . . , θc,3P ,

θτa, θτb, θfloor, σν). (34)

The total number of hyperparameters included in θ resulted in 49.
We set initial values of the hyperparameters based on preliminary
experimental results. For the relevance hyperparameters θ2

pa,k and
θ2

c,k, we used equally divided values as θ2
pa,k = 1/3(k = 1, 2, 3)

and θ2
c,k = 1/3P (k = 1, . . . , 3P ). Moreover θτa and σ2

ν were set
to 1.0 in order to let the core kernel, short-time correlation kernel,
and, noise term have equal relevance. On the other hand, we used
a relatively small value for the flooring value 0.01 for the hyperpa-
rameter θ2

floor. The scale hyperparameter for the normalized posi-
tion, θpb,1, was set to 0.289 which is equal to the standard deviation
of the uniform distribution on [0, 1). The other scale hyperparam-
eters θpb,2 and θpb,3 were set to 0.010s to consider correlations of
frames of shorter range than θpb,1, and the scale hyperparameter for
short-time correlation kernel, θτb, was set to 0.020s.

5.2. Experimental conditions

We used speech data of a Japanese female voice actress. The speaker
uttered 503 phonetically balanced sentences with a reading style.



Table 1. Mel-cepstral distances between original and synthetic
speech [dB].

Generation HMM GP-INIT GP-OPTIM
w/o GV 5.38 5.11 5.03
w/ GV 5.95 5.59 5.55
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Fig. 2. Global variances of natural and generated mel-cepstrum se-
quences. These values show GV means over all test utterances. The
optimized hyperparameters were used for generation.

These sentences were taken from ATR Japanese speech database
set B [12]. In this study, we modeled and generated spectral fea-
tures only. Speech samples were synthesized using generated spec-
tral features, while F0s, aperiodicity features, and phone durations
were taken from the original speech.

The number of training sentences was 450. The remaining 53
sentences, which were not included in the training data, were used
as test data. The phone boundary information was annotated manu-
ally. Speech signals were sampled at a rate of 16kHz, and the frame
shift was 5ms. The 0-39th mel-cepstral coefficients derived from
the spectral envelop extracted by STRAIGHT [13] were used as the
spectral features. The maximum number of frames B of each block
was set to 1000. The number of pseudo data sets M was set to 200
and the samples of pseudo data sets were randomly chosen from the
training data. The number of iterations of EM algorithm in hyperpa-
rameter optimization was 5.

For comparison, we also evaluated the HMM-based speech
synthesis using minimum generation error (MGE) training [14].
The model topology was 5-state, left-to-right, no-skip hidden semi-
Markov model (HSMM). The output distribution in each state was
modeled with a single Gaussian pdf, with diagonal covariance ma-
trices. The feature vector included delta and delta-delta dynamic
features as well as the static one. Triphones were used for the
context set for the HMM training. In the decision-tree-based con-
text clustering for parameter tying, MDL was used as a stopping
criterion [15].

5.3. Objective evaluation

To evaluate the effectiveness of the hyperparameter estimation
objectively, log predictive likelihoods and spectral distortions
are calculated. Figure 1 shows the average log predictive likeli-
hoods of original utterances obtained by the predictive distribution
p(yT |y, θ). GP-INIT and GP-OPTIM represent the GP models us-
ing the initial kernel hyperparameters and optimized ones. It can be

1.0 5.04.03.02.0

HMM w/o GV

GP-INIT w/o GV

GP-OPTIM w/o GV

HMM   w/ GV

GP-OPTIM   w/ GV

Mean Opinion Score (MOS)

95% confidence interval

Fig. 3. MOS on naturalness of synthetic speech.

seen that the hyperparameter optimization consistently increased the
predictive likelihood especially in lower dimensions. Table 1 shows
the spectral distortions between original and synthetic speech. The
table includes the generation methods without (w/o) and with (w/)
GV. In both generation method, the hyperparameter optimization
reduced the distortions. As a well-known effect of using GV, the
trajectory generation considering GV had larger distortions than
without GV case, whereas the global variances of the generated tra-
jectories got closer to natural speech, by comparing average global
variance as shown in Fig. 2. It should also be noted that the distor-
tions of GP-based method were smaller than HMM-based ones.

5.4. Subjective evaluation

The naturalness of the synthetic speech was evaluated by a mean
opinion score (MOS) test. The number of participants was six. Each
participant listened to the synthetic speech samples and rated the
naturalness of synthetic speech on a five-point scale: 5: excellent, 4:
good, 3: fair, 2: poor, and 1: bad. Fifteen sentences were randomly
chosen from 53 sentences for each participant. Figure 3 shows the
mean opinion scores (MOSs). The error bars indicate 95% confi-
dence intervals. Note that every MOS score was higher than ordi-
nary TTS ones because the original prosodic features were used as
it were in the waveform generation. From the figure, it is seen that
hyperparameter optimization increased the score in the case of “w/o
GV.” In addition, considering GV increased the scores in the GP-
based approach as well as in the HMM-based one, and GP-OPTIM
with GV gave the highest score among the methods. There was a
significant difference between HMM with GV and GP-OPTIM with
GV at a 5% significance level.

6. CONCLUSIONS

In this paper, we proposed a generation method of acoustic feature
trajectory considering GV in GP-based statistical speech synthesis
approach. Moreover hyperparameter optimization for PIC approx-
imation using EM algorithm are introduced. The proposed method
which uses GV and hyperparameter optimization outperformed the
conventional HMM-based approach by subjective evaluation. In our
future work, we will add contexts such as accent and part of speech
that are used in general TTS systems and sub-phone or state infor-
mation. Then, the relevance’s of these contexts will be automatically
determined by the hyperparameter optimization process. Further-
more, we will examine GP-based models of F0 and duration features
using both prosodic contexts.
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