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ABSTRACT

In this paper we propose an enhancement of the Jacobian
adaptation by estimating automatically a noise over estima-
tion factor which yields to a closer approximation of Paral-
lel model combination (PMC) than the traditional Jacobian
adaptation. Noise over estimation factors are estimated at
run-time for a set of clustered Gaussians obtained on the
training set. Experiments conducted on a French natural
number database show that similar performance as PMC
can be obtained at the expense of a slight increase in com-
putational complexity as compared to Jacobian adaptation.

1. INTRODUCTION

For most automatic speech recognition systems, adapting
the acoustic models to the environment is an efficient solu-
tion to reduce the mismatch between the training and test
corpus. A popular method to adapt the models is Parallel
Model Combination (PMC) [1]. This method has proven to
be very effective but it is generally too computationally ex-
pensive. An alternative method, Jacobian adaptation (JA),
has been proposed by Sagayama et al. [2]. The main ad-
vantage of JA when compared to PMC is its very low cost,
both in memory and in computation time. In the next sec-
tion, we review briefly PMC and JA. Section 3 describes
our new method while section 4 estimates and compares the
computational costs of PMC, JA and our new method dy-
namic � -JA. Section 5 presents some experimental results
and section 6 concludes the paper.

2. REVIEW OF FIXED � -JACOBIAN ADAPTATION

2.1. Notations

In the next sections, we use the following notations:

� The acoustic speech models used are Hidden Markov
Models (HMM). As we adapt only the static compo-
nents of the Gaussian means of the HMMs, we denote�����

the set of these vectors.

� � and � represents, respectively, the spectral vectors
for clean speech and noise. �	��
� refers to the back-
ground noise in the training corpus, while �	��� � refers
to the unknown background noise in the test corpus.
In practice, real speech models do not model

�
, but

rather �������� � ��
� .
�������	� is the cepstral representation of the spectral

vector � . Then, �����	� ���! #"%$#& ���	� , where
�

is
the Discrete Cosine Transform matrix. We note

�('
the conjugate transpose of

�
.

� � � and �() are respectively the sizes of the spectral
and static cepstral vectors. For the purpose of esti-
mating the computational complexity, we assume that
� �

�+* � ) . Similarly, we note �-, the total number
of Gaussians

�
.

� We note hereafter
 

the usual matrix-vector multipli-
cation and . the component wise vector-vector mul-
tiplication. In the computation of Jacobian matrices
(e.g. Eq.3), diagonal matrices are used in place of
vectors.

2.2. Adaptation equations of PMC and JA

We now recall the adaptation equations of PMC and Jaco-
bian adaptation. As reviews of these adaptation methods
have already been presented in previous papers, we refer
the reader to [1] for a complete description of PMC and to
[2] for Jacobian adaptation.

When both the cepstral models ��� �� � and their spectral
representations �� are saved in memory, then PMC can adapt
each model using the following equation:

��� �/� � ��� � � �0�1 2"3$4& � ��65 � �7
8� � � ��� � � (1)

In this equation, the logarithm operation has the highest
computational cost, and it must be computed for every �� ,
every time the models are adapted.



Jacobian adaptation adapts the models with a linear op-
eration. This greatly reduces the cost of the adaptation as
compared to PMC:

��� �/� � ��� � ��� ��� �� � ������ �� ��� � ��� � � 5 ��� � �7
8� �	�
(2)

where
�
�

is the Jacobian matrix associated with
�

. It is
computed with the following equation

��� � �  � �7
���� � ��
�
 � '

(3)

The Jacobian matrices are computed at training time.
The memory cost required to store them can be considerably
reduced by using a dimensionality reduction technique, as
proposed in [3].

2.3. � -JACOBIAN ADAPTATION

When the test environment is much noisier than the training
environment, JA often under-estimates the effect of noise.
The basic idea of � -Jacobian adaptation is to use a parame-
ter � to compensate for this effect, and to boost the estima-
tion of the background noise.

In [3], we proposed a first version of this adaptation
scheme using the following adaptation equation:

��� �/� � ��� � ������� �� � � �� � � �7
���� � � ��
�
 � '

 � ��� � ��� � � 5 ��� � �7
8� � � (4)

The parameter � is a scalar. It is identical for all the
models

�
, and it is estimated at training time on a devel-

opment corpus. Hereafter, We will refer to this adaptation
scheme as fixed � - Jacobian adaptation.

This method gives interesting results, but presents the
following drawbacks:

� It is very unlikely that all the Gaussians and all the
cepstral coefficients share the same behavior when
the background noise increases;

� The value of � , computed on a development corpus,
might be dependent on this development corpus.

We address these issues in the next section.

3. DYNAMIC � -JACOBIAN ADAPTATION

3.1. Dynamic � -Jacobian adaptation equation

We propose to dynamically estimate the value of � . We can
not use Eq.4 any more, as Jacobian matrices would need to

be recomputed every time a new � is estimated. Therefore,
we propose the following adaptation equation:

��� �/� � ��� � ��� ��� �� � � � � .� �� ���������� � �����  � '  � ��� ����� � � 5 ��� � �7
8� � ��� (5)

where � � is a � ) -dimensional vector. The Jacobian ma-
trices are still computed at training time, and the vectors���( � ��� �/��� � � 5 ��� � �7
� � � are multiplied by � � during
testing.

An important difference between Eq.5 and Eq.4 is that
a different � � is used for each coefficient of each Gaussian
mean

�
. Then, our new adaptation scheme makes use of

� ,  �() parameters, instead of 1 parameter for Eq.4. We
will see in the next section how it is possible to reduce the
number of these additional parameters.

3.2. Dynamic estimation of � �
Jacobian adaptation may be considered as a linear approx-
imation of the “exact” non-linear adaptation scheme given
in Eq.1. In this sense, the optimal value of � � verifies:

��� �� � ���� � . ���  � ��� � ��� � � 5 ��� � �7
8� � � ��� "3$4& � ��	5 � �7
� � � ��� � � (6)

This optimal value is:

�� � � ��� ��� ����� � � 5 ��� � � � ��
� ����  � ��� � ��� � � 5 ��� � ��
� �8� (7)

Obviously it is not possible to compute
�� � for every

�
,

as the cost of this operation would exceed the cost of PMC.
Our main goal is now to estimate these optimal values

�� �
at a low cost. Many solutions exist. Hereafter, are some of
them that we experimented with.

� We evaluated the use of a multiple linear regression
scheme to estimate the value of � � during testing:

� � ������� � �! "$#&% �
�
� " � " (8)

The parameters � � ��� " � of this multiple regression were
trained on several development corpus. But the main
difficulty of this method is to find one or several per-
tinent variables ��� " � that can be used to compute the
multiple regression. We tested for example � % �
� ��� � , but results were disappointing. Another poten-
tially interesting solution would be to choose some� " �'�� �)( .

� Another solution, which also makes use of a set of� �� � � generated on a development corpus, consists to
project these vectors onto a low-dimensional subspace.



An orthonormal basis of this subspace can be obtained
by the singular value decomposition of � �� � � . Then,
during testing, if ��� is the number of dimensions of
this subspace, ��� optimal coefficients of the target
vector � � are computed. The coordinates of these co-
efficients in the subspace are then computed by solv-
ing a linear system, and the whole vector � � can thus
be estimated. This method gave good results, but hap-
pened to be less efficient than the following proposal.

� The proposed solution whose results are presented in
this paper, consists simply to cluster the vectors

�
into

a few classes and to share the same � � for all the
�

that belong to the same class. One vector
�

per class
is chosen to represent that class. Then,

�� � is com-
puted for this vector. The main issue in this method is
to efficiently cluster the set of

�
, as explained in the

next section.

3.3. Gaussian mean clustering

Our preliminary experiments show that the choice of the
clustering algorithm for the Gaussian mean vectors

�
has

a great influence on the precision of adaptation. We first
tested two “blind” classical clustering algorithms: the k-
means and a hierarchical bottom-up clustering algorithms.
However, the best results for now were obtained using the
following clustering algorithm, inside the HMM states:

� We first decide how many clusters � should be used in
each HMM state. The total number of clusters is then
� ��� � � ��� � 
 �� � , and verifies � � ����� 
 ��� � ��� �-, .� The � most likely Gaussians

�
of each state are cho-

sen to represent one cluster each.

� Finally, the remaining Gaussians in each state are as-
signed to one of the � clusters, based on the Euclidean
distance criterion.

4. COMPARISON OF THE COSTS OF PMC, JAC
AND � -JAC

The following costs represent the number of basic opera-
tions (i.e. scalar additions and multiplications) that are re-
quired to perform adaptation of all the Gaussians

�
. The

cost of the
"3$4&

operation is assumed to be equal to ten times
the cost of a basic operation, as benchmarked on a pentium
processor. Some simplifications, which essentially consist
of taking away additive terms that might be neglected, are
realized.

4.1. Cost of PMC

Using Eq.1, we can compute the lowest possible cost for
PMC, by assuming that both the models ��� �� � and �� are

stored in memory, and that the target noise is available in
the spectral domain.

The cost of PMC is then

���	��
 �� �-, ���) (9)

4.2. Cost of Jacobian adaptation

By using Eq.2, the cost of Jacobian adaptation is

������
 � * � , ���) (10)

4.3. Cost of dynamic � -Jacobian adaptation

Let us first consider the cost to compute
�� � (Eq.7). This

value is computed for each of the � � clusters of
�

. The cost
to compute ��� � � �/��� � � is the cost of PMC, i.e.

� � �) per
cluster. Moreover, as � -Jacobian adaptation always com-
putes

� �  � ��� ����� � � 5 ��� � ��
� � � for all the Gaussians
�

,
the denominator does not need to be computed again. Thus,
the cost to compute all the � � is

��� � � � � ���) (11)

Once all the � � have been computed, these � � are mul-
tiplied by the vector

� �  � ��� ����� � � 5 ��� � ��
� � � . Then,� -Jacobian adaptation is similar to the classical Jacobian
adaptation. Thus, the total cost of � -Jacobian adaptation is

� ��������
 ��� � � � �) � � , � ) � * � , � �) (12)

4.4. Scalability of dynamic � -Jacobian adaptation

It is possible, by varying � � , to change the precision of
adaptation as well as its cost. However, this scalability is
limited, as the number of clusters � per state may only range
from 1 to the number of Gaussians per state. Furthermore,� -Jacobian adaptation is interesting only when its cost is
much lower than the cost of PMC. Based on the results of
section 4, we think that a reasonable cost for � -Jacobian
adaptation should be less than �#� , � �) . Thus, we want

� � � ���) � �-,�� ) � * �-, ���)�� �#�-, ���)
� � � � �-, (13)

5. EXPERIMENTS

5.1. Experimental set-up

5.1.1. Recognition system

We used the HTK toolkit [4]. The models are left-to-right
HMMs with 13 emitting states and 16 Gaussian per states.
Signal encoding is realized every 10 ms, with overlapping
windows of 20 ms length. These windows are coded into 13
MFCC coefficients, including ! � , plus the first and second
derivatives. Diagonal covariances are used.



5.1.2. Task and database

The task consists in recognizing unconstrained French se-
quences of natural numbers. We have chosen the VODIS
database [5], which has been recorded in three different
cars, at different speeds and in different noisy conditions.
Table 1 shows some of the variabilities in the database.

Training corpus Test corpus
# of sentences 2757 697
average SNR 31 dB 12 dB

Fan on 22 % 19 %
Window open 24 % 5 %

Raining 4 % 26 %

Table 1. Database recording conditions

We have trained 25 digits and numbers models on the
signal recorded by 140 speakers, with a high-quality close-
talking microphone. Testing has been realized on 20 dif-
ferent speakers with a far-talking microphone fixed at the
rear-view mirror inside the car.

5.2. Experimental results

Adaptation is performed only on the static coefficients of the
Gaussian mean vectors. The target noise is estimated using
the first 100 milliseconds of silence at the beginning of each
sentence. Recognition results of PMC, JA, fixed � -JA and
dynamic � -JA are reported in table 2.

For fixed � -JA, � has been estimated on a development
corpus composed of 100 sentences recorded in the same
conditions as the test corpus. The development environ-
ment has been chosen close to the testing environment, in
order to obtain the best recognition accuracy from fixed � -
JA. In such conditions, we found � �1* . As shown in table
2, fixed � -JA does not give better accuracy results than JA:
This might be due to the variable conditions of the database,
that makes it difficult to find a single scalar � which pro-
vides a good compensation bias. Moreover, the relatively
high SNR of the test corpus tends to bring JA and fixed � -JA
closer. This is confirmed by the fact that the optimal � found
in such conditions is quite close to one, i.e. to classical JA.
This is a particular case, as on most of the other databases
we have tested, � was greater than 5. With more parame-
ters than fixed � -JA, dynamic � -JA can improve recognition
rates, as shown in table 2.

For dynamic � -JA, we have chosen � � �  clusters in
each state. This number comes from Eq.13, which defines
the available range of � � as �

� � � ��� .

Adaptation Recognition accuracy Cost
None 51.7 % 0 Mop

JA 71.8 % 1.7 Mop
fixed � -JA 71.7 % 1.8 Mop

dynamic � -JA 73.9 % 2.7 Mop
PMC 73.4 % 5.1 Mop

Table 2. Recognition results and computational costs (in
millions of operations) of several adaptation algorithms

6. CONCLUSIONS

We have proposed an enhancement of the Jacobian adap-
tation scheme proposed by Sagayama et al. Intuitively, a
noise over-estimating factor � is used to compensate for the
difference between the adaptation bias given by Jacobian
adaptation and the “optimal” bias given by PMC. We pro-
pose a method to dynamically estimate this bias, and show
that the cost of this new adaptation algorithm is still much
lower than the cost of PMC. Experiments carried out on a
French natural number database recorded in a car further
show that the recognition results are comparable with those
of PMC. Future work will include the testing of the algo-
rithm on several other realistic databases to further validate
the effectiveness of the proposed method. Furthermore, we
plan to improve the Gaussian clustering algorithm by con-
sidering techniques such as the Bhattacharya metric or en-
tropy measures. Indeed, we have already observed that the
clustering criterion has a great impact on the performances
of the algorithm, and future researches should concentrate
on this part of the algorithm.
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