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ABSTRACT

Transformer has achieved extraordinary performance in Natural
Language Processing and Computer Vision tasks thanks to its
powerful self-attention mechanism, and its variant Conformer has
become a state-of-the-art architecture in the field of Automatic
Speech Recognition (ASR). However, the main-stream architec-
ture for Automatic Speaker Verification (ASV) is convolutional
Neural Networks, and there is still much room for research on the
Conformer based ASV. In this paper, firstly, we modify the Con-
former architecture from ASR to ASV with very minor changes.
Length-Scaled Attention (LSA) method and Sharpness-Aware Min-
imization (SAM) are adopted to improve model generalization.
Experiments conducted on VoxCeleb and CN-Celeb show that our
Conformer based ASV achieves competitive performance com-
pared with the popular ECAPA-TDNN. Secondly, inspired by the
transfer learning strategy, ASV Conformer is natural to be initial-
ized from the pretrained ASR model. Via parameter transferring,
self-attention mechanism could better focus on the relationship
between sequence features, brings about 11% relative improve-
ment in EER on test set of VoxCeleb and CN-Celeb, which re-
veals the potential of Conformer to unify ASV and ASR task.
Finally, we provide a runtime in ASV-Subtools to evaluate its in-
ference speed in production scenario. Our code is released at
https://github.com/Snowdar/asv-subtools/tree/
master/doc/papers/conformer.md.

Index Terms— speaker verification, Conformer, transfer learn-
ing, runtime

1. INTRODUCTION

Automatic Speaker Verification (ASV) is a task to verify the identity
of the speaker by voice, which has been well-developed and widely
applied in many real-world scenarios. Currently, x-vector proposed
by Snyder et al. [1] is the most popular framework for ASV systems.
It includes two parts, where an embedding extractor maps utterances
with variable duration to fixed-dimensional speaker representations,
and then the similarity of the speaker representation can be calcu-
lated by back-end scoring method. Many prior works focused on
DNN-based structure have improved the performance of ASV sys-
tems (e.g., ResNet, Res2Net, ECAPA-TDNN) [2, 3, 4, 5]. Most of
above networks are Convolutional Neural Networks (CNNs), which
have the inherent ability of emphasizing the local information.

Recently, self-attention mechanisms that directly capture the
global information have been explored, and it has helped Trans-
former [6] achieve remarkable success in Natural Language Pro-
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cessing (NLP) and Computer Vision (CV) areas [7, 8]. However,
unlike CNNs, Transformer lacks some of the inductive biases, such
as translation equivariance and locality, which degrades perfor-
mance when trained on insufficient data. It is difficult to achieve
competitive results by directly applying Transformer to ASV tasks
[9, 10]. Conformer [11] is a hybrid architecture which combines
self-attention with convolutions, i.e., self-attention learns the global
interaction while convolutions capture the local information. It
has become a state-of-art model in Automatic Speech Recogni-
tion (ASR). MFA-Conformer [12] utilizes the Multi-scale Feature
Aggregation method in ECAPA-TDNN, successfully introduces
Conformer into ASV for the first time. However, the uniformity
between ASV an ASR deserves further attention. The same Con-
former establishes connections between ASV and other tasks, which
will not only facilitate better research on the link between ASV and
ASR, but may also be a foundation of future multi-task learning
or multimodal machine learning. Hence, in this paper, we mainly
concentrate on ASV Conformer which matches ASR encoder.

In addition, several studies have injected phonetic information
into the DNN structure of the ASV extractor through multi-task
learning [13, 14, 15], indicates that there exists some positive in-
terdependence between the speaker identities and ASR tasks when
sharing some of the low-level computation. Meanwhile, in the field
of Language Identification (LID), providing informative speech rep-
resentation by a pretrained ASR model in LID system, proved to be
effective for the downstream LID task [16]. It is worth mentioned
that [17] adopts transfer learning scheme, that is, pretrains a U2++
encoder-decoder [18] model and then further finetunes the encoder
for the LID task, won the first place in the OLR 2021 [19]. It can be
well explained by the fact that the ASR encoder already has a strong
capability to discriminate languages, since the supervised training
labels for ASR are language-related. Although the association with
ASR information in ASV task is not as apparent as in LID, e.g., dif-
ferent speakers can say the same words. Their deeper dependencies
could be digged by appropriate methods. Inspired by these works,
we propose a parameter transferring strategy, which can make use
of a typical ASR model to improve the performance of ASV system.

At last, for the purpose of bridging the gap between production
and research, we provide a C++ based runtime tool to evaluate our
models’ inference speed in production environment. With Torch Just
In Time (JIT) and LibTorch, models trained by Pytorch can be con-
verted to TorchScrip, and then employed in C++ applications. Our
main contributions in this paper are as follows.

• We modify Conformers of different configures from ASR to ASV
system. To improve model generalization ability, Length-Scaled
Attention (LSA) method [20] enables self-attention to better gen-
eralize to various length inputs, and Sharpness-Aware Minimiza-

ar
X

iv
:2

21
1.

07
20

1v
2 

 [
ee

ss
.A

S]
  1

6 
Ja

n 
20

23

https://github.com/Snowdar/asv-subtools/tree/master/doc/papers/conformer.md
https://github.com/Snowdar/asv-subtools/tree/master/doc/papers/conformer.md


tion (SAM) [21] prevents the loss from falling into the local min-
ima during training. Our system yields competitive results in pop-
ular VoxCeleb [22, 23] and CN-Celeb [24, 25].

• Through a parameter transferring strategy, we show that ASV
Conformer could benefit from ASR information. Parts of the ASR
encoder is selected to initialize ASV Conformer, then we retrain
the model rather than finetune it. This method allows model to
learn the deep relationship with ASR.

• We provide a runtime to conform the production value of our mod-
els, make it easier and more convenient to deploy ASV models to
real applications.

2. METHODS

2.1. Model architecture

The overview of ASV Conformer system is shown in Fig. 1. Ro-
tary Position Embedding [26], which incorporates explicit relative
position dependency in the form of absolution position embedding,
encode the position information into the self-attention mechanism.
On one hand, a stack of Conformer blocks model the frame-level
speaker representation. On the other hand, an Attentive Statistics
Pooling [27] layer process all the information across the time di-
mension, resulting in a segment-level vector. After linear layer,
the segment-level vector is further projected to fixed-dimensional
x-vector. In training stage, the speaker embedding extractor is op-
timized by AAM-Softmax [28] loss.

The Conformer block consists of two Macaron-like feed for-
ward modules (FNN) with half residual connections, between them
lies the Multi-head self-attention (MHSA) and Convolution module
(Conv). MHSA means to model the global information, and Conv
gives inductive bias to network.

Fig. 1. Schematic diagram of ASV Conformer.

Without loss of generality, we assume MHSA has one attention
head. An standard self attention can be described as mapping a query
and a set of key-value pairs to an output, and the matrix of outputs is
computed as the weighted sum over the value representation:

Att(Q,K, V ) = Softmax

(
QKT

√
d

)
V (1)

Fig. 2. Schematic diagram of ASR transferring.

where d is the embedding dimension, and its detailed form is:

oi =

n∑
j=1

ai,jvj , ai,j =
exp

(
qi·kj√

d

)
∑n
j=1 exp

(
qi·kj√

d

) (2)

where n denotes the sequence length, q, k and v correspond to
query, key and value vector respectively, and ai,j means the attention
score weight between time position i and j. The softmax function
normalizes the attention weight across all position to a probability
distribution. However, there exits varying length inputs in inference
stage, and this mismatching may hurt the original relationship of
different position embeddings (e.g., a longer inputs diluting the at-
tention weight, making the value in position i is inclined to be easier
to be influenced by unrelated position values). From the perspective
of entropy [29], equation 1 is modified to a length-scaled version as
equation 3 to stabilize the uncertainty of attention distribution.

Att(Q,K, V ) = Softmax

(
logn

s
√
d
QKT

)
V (3)

where n denotes the sequence length, s is set to a learnable scalar as
a temperature of softmax in different layers. In this way, the atten-
tion weights after softmax function are sharpened by logn in long
sequences, while smoothed in short sequences.

2.2. Sharpness-Aware Minimization training

While Conformer’s superior representational capacity enables ASV
system to memorize the training set easily, it also leads to overfitting
problems, especially when training data is insufficient. It has been
studied [30, 31] that a model converging to sharp minimas of loss
might results poorer generalization. Sharpness-Aware Minimization
(SAM), which leverages the connection between geometry of the
loss landscape and generalization, can seek a flatter minima, and is
adopted to improve generalization ability of our models.

Intuitively, SAM aims to find the parameter w whose entire
neighbours have low training loss Ltrain, it can be defined as:

min
w

max
‖ε‖2≤ρ

Ltrain(w + ε) (4)



where ρ ≥ 0 denotes the radius of seeking region. A two-step ap-
proximation is applied to solve this minimax optimization:{

εt ≈ ρ∇Ltrain (wt) / ‖∇Ltrain (wt)‖2
wt+1 ≈ wt − αt∇Ltrain(wt)|wt+εt

(5)

where αt is the learning rate in training position t. The first step is
an efficient approximation of

εt = arg max
‖ε‖2≤ρ

Ltrain(wt) + εTt ∇wtLtrain(wt)

and in the second step, SAM updates weights based on the gradient
in wt + εt.

2.3. ASR transferring

In order to integrate ASR information, we pretrain the U2++[18]
ASR model first, and then optimize it to ASV task. However, unlike
LID task [17], ASR representation is not so related with speaker
classification, so in the second stage we apply the same strategy
as training the original ASV Conformer. In addition, it was previ-
ously found that ASR information is more helpful in shallow layers
[13, 14], we infer that transferring parts of ASR encoder to ASV
Conformer is compatible. Notably, the datasets used for ASR train-
ing are independent and the model configure is almost same as it in
ASV, giving flexibility and convenient to the transfer scheme, i.e., a
model for ASR task can be directly transferred to ASV. As depicted
in Fig. 2, the right part is U2++ architecture, which can be either
an open source pretrained model or trained from scratch. Then the
shared encoder is further to be trained to ASV task.

3. EXPERIMENTAL SETUP

3.1. Datasets

We conducted our proposed experiments on CN-Celeb [24, 25] and
VoxCeleb [22, 23] respectively. The CN-Celeb corpus contains
speech from Chinese celebrities. The entire dataset can be divided
into CN-Celeb.T and CNC-Eval: the former involves 632,736 ut-
terance from 2,793 speakers with total 1,285 hours, and is used
for training; the latter is test set. The VoxCeleb is one of the most
classic English dataset in the field of speaker verification. For the
VoxCeleb, we only used the VoxCeleb2 which involves 1,092,009
utterance from 5994 speakers with total 2,300 hours as training
set, and employed three available test trials: VoxCeleb1-O-clean,
VoxCeleb1-E-clean and VoxCeleb-H-clean to verify our proposed
method.

The pretrained ASR model involves three datasets, GigaSpeech
[32], Multi-CN[33] and Wenetspeech [34]. GigaSpeech is English
speech recognition corpus with 10,000 hours, while Multi-CN and
WenetSpeech are Chinese datasets with 2,825 and 10,005 hours re-
spectively.

3.2. Experimental Configuration

We explored various Conformer configures, with a major emphasis
on attention dimension, layer number and subsampling rate. The
feed-forward dimension is set to 2048.

On-the-fly approach is adopted for data preprocessing. Data
augmentation is applied to enrich the training data and no voice ac-
tivity detection is performed. Data augmentation involves additive
noise, reverberation and speed perturb. Additive noise from MU-
SAN [35] dataset is mixed with original signal, the room impulse

responses from RIRs [36] dataset is used to inject reverberation via
convolution operation. We extract 80-dimensional Mel-filterbanks
as acoustic feature. Then ASV models are trained on chunks of
300 randomly selected from whole feature map. Cepstral mean-
normalization (CMN) is applied before model training.

For ASV training, models are trained with AdamW optimizer
with a total batch of 512 on 4 Nvidia V100 GPUs. The learning
rate increases to a peak during the warmup stage and then decays to
small as model converges. The total training process lasts about 30
epochs. For ASR pre-training, we follow the recipes in Wenet [18].

More training details can refer to ASV-Subtools[37].

3.3. Model evaluation

During the test, each utterance is chunked with about 300 frames.
Embeddings extracted from chunks are averaged to the final x-
vector. For back-end, we choose cosine similarity to score the ex-
tracted x-vectors. Evaluation performance is measured by Equal Er-
ror Rate(EER) and minimum normalized detection cost (minDCF).

From a practical standpoint, we evaluate the real-time-factor
(RTF) of the models on an Intel(R) Xeon(R) E5-2643 v4 CPU. The
runtime is implemented based on LibTorch so as to conveniently de-
ploy Pytorch models for production scenarios. Only one thread is
used for CPU threading and TorchScript inference.

4. RESULTS AND ANALYSIS

4.1. Results of Conformer on VoxCeleb and CN-Celeb

In this section, we generalize Conformer to ASV system. Table 1
presents the performance of different networks on VoxCeleb and
CN-Celeb. We reproduced the 1024 channels ECAPA-TDNN as
baseline system. Score Normalization [38] (asnorm) here is just for
a fair comparison with original paper and the results suggest the con-
fidence of our baseline. For better compatibility with general ASR
encoder setting, the attention dimension and head have two types
(i.e., 256D-4H and 512D-8H). The efficacy of LSA is shown in the
first two rows. LSA automatically adapts attention weight distribu-
tion, and generalizes model to various length inputs. Despite more
parameters, the deeper 12 layers and wider 512D-8H networks fail to
get further improvement, probably because 6L-256D-4H has enough
model capacity to model the size of VoxCeleb and CN-Celeb. More
complex structures are accompanied by harder convergence or over-
fitting. Compared with 4-factor, 2-factor subsampling generates
longer/richer feature map before Conformer blocks, significantly
improves performance, with the trade of computation cost.

From the aspect of inference speed, due to the quadratic-
complexity of self-attention mechanism, 2-factor subsampling in-
creases the RTF by 2×-3× than 4-factor. The 512D also leads
to about 4 times more computation compared to 256D. At last,
compared with ECAPA-TDNN, 6L-256D-4H-Sub with comparable
model size and RTF shows ideal improvement in EERs. While
6L-256D-4H achieves the remarkable relative reduction in RTF of
64.8%, with desirable performance sacrifice.

4.2. Effect of SAM training

When it comes to an overparameterized circumstance, the 6L-
512D-8H-6Sub1 in Table 2 obtains unsatisfactory performance on
VoxCeleb-O. A large regularization of 0.2 alleviates model over-
fitting, and a comparable efficacy can be achieved through SAM

16L-512D-8H-6Sub matches the open source pretrained ASR model.



Table 1. Results of ASV Conformer on VoxCeleb & CN-Celeb. LSA means Length-Scaled Attention. For the configure, 6L-256D-4H-2Sub
means a Conformer with 6 layers (L) blocks, 256 attention dim (D), 4 attention heads (H), and 2-factor subsampling (2Sub, default:4Sub)

Model Configure Prarams RTF VoxCeleb-O VoxCeleb-E VoxCeleb-H CNC-Eval
EER(%) EER(%) EER(%) EER(%) minDCF0.01

ECAPA-TDNN C1024 16.0M 0.071 0.925 1.231 2.321 9.45 0.5059
+ asnorm[38] 0.856

original paper[4] 0.87
Conformer 6L-256D-4H (w/o LSA) 18.8M 0.025 1.143 1.321 2.359 8.71 0.4747

6L-256D-4H 1.026 1.280 2.278 8.39 0.4748
6L-256D-4H-2Sub 22.5M 0.070 0.915 1.177 2.034 8.30 0.4504
12L-256D-4H 34.2M 0.030 1.133 1.382 2.463 9.40 0.5195
6L-512D-8H 46.4M 0.080 1.356 1.492 2.571 8.38 0.4826

training. What’s more, SAM training combined with appropriate
regularization further improves the model generalization.

To investigate the effective of ASR transferring, we downloaded
the available GigaSpeech ASR checkpoint [39] as a pretrained en-
coder. During training, we observed that the model transferred from
the ASR encoder yields a lower value of training loss than training
from scratch. However, the EER on test set increases from 1.431%
to 1.521% as shown in the fifth and last line of Table 2. It seems
that prior ASR classification increases the risk of falling into a sharp
minima on the travel from ASR to ASV, leading to suboptimal qual-
ity. SAM aims to seek out parameters whose entire neighborhoods
have both low loss value, preventing model from dramatic shaking
by inputs perturbation. Thus, we attempted to introduce SAM train-
ing to provide robustness. As a result, SAM apparently improved
model generalization as the EER value decreases from 1.521% to
1.218%. Compared with standard ASV Conformer, ASR tranferring
achieved 11.22% relative reduction in EER under the same training
procedure. Note that we didn’t pre-train a 256D-4H ASR model on
GigaSpeech, and ASR transferring is further discussed in sec 4.3.

Table 2. Effect of SAM training. ASR transfer means transferred
from an ASR encoder trained on GigaSpeech.

Model SAM weight decay VoxCeleb-O
EER(%)

6L-256D-4H % 0.05 1.026
! 0.05 0.983

6L-512D-8H-6Sub % 0.05 1.771
! 0.05 1.459
% 0.2 1.431
! 0.2 1.372

+ ASR transfer ! 0.2 1.218
% 0.2 1.521

4.3. Effect of ASR transferring

Experiments conducted on CN-Celeb further reports the effect of
ASR transferring. All transferred models are applied SAM. The 6L-
256D-4H is chosen as baseline system. As shown in Table 3, Con-
formers of all different configurations benefit greatly from the ASR
pretrained encoder, proving that our proposed method is effective
enough for integrating ASR information. As WenetSpeech is much
larger than Multi-CN, a more robust ASR encoder contributes bet-
ter performance. When applying full ASR encoder to ASV system,
the EER is improved by -1.582% but the minDCF is degraded by
+0.0617. This result might be due to the rear layers of the ASR en-
coder being too biaed towards ASR classification, making it more

difficult for the network to learn speaker representation. Compared
with training from scratch, transferring 6 blocks from the Wenet-
Speech ASR encoder achieves 11.56% relative reduction in EER and
6.76% relative reduction in minDCF respectively on CNC-Eval, re-
vealing the capabilities of Conformer to model ASR and ASV tasks.

Table 3. Performance of ASR transferring on CN-Celeb.

Configure pretrain ASR CNC-Eval
EER(%) minDCF0.01

6L-256D-4H — 8.39 0.4748
Multi-CN 7.95 0.4534

WenetSpeech 7.42 0.4427
12L-256D-4H — 9.40 0.5195

WenetSpeech 7.82 0.5812
6L-512D-8H — 8.38 0.4826

WenetSpeech 7.83 0.4551

5. CONCLUSIONS

To bridge the gap between ASR and ASV, we concentrate on apply-
ing a unified architecture Conformer in ASV system. First of all,
we adopt LSA and SAM training on ASV Conformer system to im-
prove the model generalization ability. LSA enables model to gener-
ate to variable lengths inputs and SAM seeks a flatter loss landscape,
proved to be effective especially when the model is severely overfit-
ted. Experiments conducted on Voxceleb & CN-Celeb indicated that
the Conformer is well-suited for ASV task, and achieved competi-
tive performance compared with the popular ECAPA-TDNN. More-
over, a simply ASR transferring method is introduced to integrate
ASR information. ASR transferring outperformed standard ASV
Conformer, gave a relative improvement of about 11% in EER on
both VoxCeleb and CN-Celeb. Unfortunately, the underlying re-
lationship between ASR and ASV remains unclear and should be
further investigated in future. In addition, we provide a runtime to
better deploy models for production. The RTF of ASV Conformer
evaluated on runtime environment verified its industrial value. Last
but not least, this work leaves plenty room to extend advanced ex-
ploration of attention-based technology to ASV system, which will
benefit ASV tasks both in industry and academia.
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