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ABSTRACT

Periodicity detection is an important task in time series anal-
ysis, but still a challenging problem due to the diverse char-
acteristics of time series data like abrupt trend change, out-
lier, noise, and especially block missing data. In this paper,
we propose a robust and effective periodicity detection al-
gorithm for time series with block missing data. We first
design a robust trend filter to remove the interference of
complicated trend patterns under missing data. Then, we
propose a robust autocorrelation function (ACF) that can
handle missing values and outliers effectively. We rigor-
ously prove that the proposed robust ACF can still work
well when the length of the missing block is less than 1/3
of the period length. Last, by combining the time-frequency
information, our algorithm can generate the period length
accurately. The experimental results demonstrate that our
algorithm outperforms existing periodicity detection algo-
rithms on real-world time series datasets.

Keywords— periodicity detection, seasonality detection, miss-
ing data, robust methods, time series

1. INTRODUCTION

Many time series signals are characterized by repeating cycles,
or periodicity in modern applications like the Internet of Things
(IoT), Artificial Intelligence for IT Operations (AIOps), and cloud
computing [1, 2, 3]. Periodicity detection and adjustment are cru-
cial in many real-world time series applications, like anomaly de-
tection [4, 5, 6], forecasting [7, 8, 9], classification and cluster-
ing [10, 11], and decomposition [12, 13, 14]. However, due to
different and complicated characteristics of real-world time series
data in IoT, AIOps, and cloud computing [2], accurate periodicity
detection remains a challenging problem. Here we briefly high-
light three challenges for practical periodicity detection. Firstly,
most time series are non-stationary, and the trend changes even
abrupt trend changes commonly occur. Secondly, the time series
data generally contains noises and outliers. Thirdly, many real-
world time series data contain missing or even block missing val-
ues [15].

The existing periodicity detection algorithms can be catego-
rized into two groups: 1) frequency domain methods relying on pe-
riodogram after Fourier transform, such as Fisher’s test [16, 17]; 2)
time domain methods relying on autocorrelation function (ACF),

such as methods in [18, 19]. To combine the advantages of both
groups, recent joint time-frequency methods are proposed in [20,
21, 7]. However, the aforementioned methods cannot directly han-
dle time series with missing data. In order to deal with missing val-
ues, the Lomb-Scargle periodogram based methods are proposed
to detect periodicity as in [22, 23, 24]. Unfortunately, these meth-
ods cannot robustly address outliers and noises in time series.

In this paper, we propose a novel periodicity detection method
to detect the dominant periodicity of time series under missing data
robustly and accurately. Firstly, to mitigate the side effects intro-
duced by trend, especially abrupt trend changes, we design a ro-
bust filter to remove the trend component under outliers and miss-
ing data. Next, to obtain accurate period length, we design a ro-
bust ACF module which can effectively deal with impulse random
noise with unknown heavy-tailed noise, as well as block missing
data. We rigorously prove that our algorithm can still work suc-
cessfully when the length of the missing block is less than 1/3
of the whole length of the time series. Lastly, we combine the
time-frequency information for the final accurate period length es-
timation. Compared with various state-of-the-art algorithms, our
proposed robust algorithm performs significantly better on real-
world datasets, especially for time series with missing data.

2. PROPOSED PERIODICITY DETECTION

2.1. Framework Overview

We consider the following complex time series model with trend
and dominant periodicity/seasonality as

yt = τt + st + rt, t = 0, 1, · · · , N − 1 (1)

where yt represents the observed value at time t, τt is the trend
component, st is the dominant periodic/seasonal component with
period length T , and rt = at + nt denotes the remainder part
which contains the noise nt and possible outlier at. Note that yt
may contain missing data. For dominant periodicity detection, we
aim to identify if the time series is periodic and its major period
length.

Our proposed periodicity detection algorithm contains three
steps: 1) robust detrending filter; 2) robust ACF; 3) time-frequency
combination. The diagram of the proposed algorithm is depicted
in Fig. 1, which will be elaborated in the following subsections.
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Figure 1: Framework of the proposed robust dominant periodicity detection algorithm for time series with missing data.

2.2. Robust Detrending under Missing Data
Most real-world time series usually have missing data with varying
trend and outliers, which makes the ACF hard to capture the period
information. To remove the trend component under missing data
and motivated by the RobustTrend filter [25], we design a novel
robust trend filter under missing data with objective function as

||W(y − τ )||1 + λ1||D(1)τ ||1 + λ2||D(2)τ ||1, (2)

where theD(1) ∈ R(N−1)×N andD(2) ∈ R(N−2)×N are the first-
and second-order difference matrix adopted to capture abrupt and
slow trend changes, respectively, with the following form:

D(1) =


1 −1

1 −1
. . .
1 −1

 , D(2) =


1 −2 1

1 −2 1
. . .
1 −2 1

 ,

and W = diag (wt) is a diagonal matrix with wt as 0 if yt is
missing and 1 otherwise. Note that our designed trend filter has
two differences compared with the RobustTrend filter [25]. One
is the W matrix incorporated into the loss function, which makes
trend extraction possible without missing value imputation. The
other is that we update the Huber loss of the original RobustTrend
filter to least absolute deviations (LAD) loss for its similar robust-
ness to outliers and easy-to-solve property in alternative direction
method of multipliers (ADMM). Specifically, to obtain the trend
component from Eq. (2), we can rewrite it in an equivalent form:

min ||e||1
s.t. Aτ − b = e

(3)

where A = [WT ,D(1)T ,D(2)T ]T , b = [(Wy)T ,0T ]T . Then
we can obtain the augmented Lagrangian as

Lρ(x,y,u) = ||y||1 + uT (Ax− b− y) +
ρ

2
||Ax− b− y||22

where u is the dual variable, and ρ is the penalty parameter. Next,
the solution can be obtained through the ADMM [26] as

xt+1 =arg min
x

Lρ(x,y,u)=(ATA)−1AT(b + yt−ut/ρ)

yt+1 =arg min
y

Lρ(x,y,u)=S1/ρ(Axt+1 − b + ut/ρ)

ut+1 =arg min
u

Lρ(x,y,u)=ut + ρ(Axt+1 − yt+1 − b)

where Sκ(x) is the soft thresholding as Sκ(x) = (1− κ/|x|)+x.

2.3. Roubust ACF with M-Periodogram
2.3.1. Structure of the Proposed Roubust ACF

Let {xt} denote the detrended time series, i.e. xt = yt− τt. Then
its period can be estimated by finding the position of the largest
value of the ACF {rk} which is defined as rk = E(xt+kxt). The

ACF is usually estimated using rk ≈ 1
|Qk|

∑
t∈Qk

xt+kxt, where
set Qk is defined as {t|0 ≤ t ≤ N − 1, 0 ≤ n + k ≤ N − 1},
and |Qk| denote the size of Qk. However, this estimator can not be
applied to time series with missing values directly. To address this
problem, we propose a new unbias estimator. To better illustrate
our method, let {It} be a binary sequence that indicates whether
{xt} is observed. Specifically, let It = 1 when xt is observed,
and It = 0 when xt is missing. Our proposed ACF estimator is
rk ≈ 1

|Q̂k|

∑
t∈Q̂k

xt+kxt where the set Q̂k = {t|It = 1, It+k =

1}. It is ready to see that this estimator is an unbiased estimator of
the autocorrelation, but directly computing it has a computational
complexity of orderO(N2). To reduce the complexity, we define a
sequence {ht} by padding {xt} with zeros, i.e. ht = xt if It = 1
and ht = 0 if It = 0. It is easy to see that ht = xtIt. Then our
proposed ACF estimator can be rewritten as

rk ≈
1

|Q̂k|

∑
t∈Q̂k

xt+kxt =
1

|Q̂k|

∑
t∈Q̂k

It+kxt+kItxt

=
1

|Q̂k|

∑
ht+kĥk−(t+k) =

1

|Q̂k|
(h ∗ ĥ)k (4)

where ĥt = h−t, and the operation “*” denotes the linear convolu-
tion. Recall that Q̂k = {t|It = 1, It+k = 1} = {t|ItIt+k = 1},
we have |Q̂k| =

∑
InIt+k =

∑
Î−tIt+k = (Î ∗ I)k, where

Ît = I−t. Furthermore, we can utilize FFT/IFFT based on circu-
lar convolution theorem to reduce the complexity of (h ∗ ĥ)k and
(Î ∗ I)k from O(N2) to O(N logN). Therefore, our efficient and
robust ACF is

rk ≈
(h ∗ ĥ)k

(Î ∗ I)k
=

IFFT(|FFT(h̄)|2)k

IFFT(|FFT(Ī)|2)k
, (5)

where the length of h and I are doubled by padding N zeros and
denoted as h̄ = [hT , 0, · · · , 0]T and Ī = [IT , 0, · · · , 0]T .

Besides dealing with missing data, we also consider to miti-
gate the effect of outliers in h̄ of Eq. (5). Note that |FFT(h̄)|2 is
the conventional periodogram of h̄. To make it robust to outliers,
we introduce the Huber-periodogram [7] as

(|FFT(h̄)|2)k ≈
N ′

4

∣∣∣β̂M (k)
∣∣∣2 =

N ′

4

∣∣∣∣∣arg min
β∈R2

γ(φβ − h̄)

∣∣∣∣∣
2

,

(6)
where N ′ = 2N , β̂M (k) is the robust estimation of harmonic
regressor φt = [cos(2πkt/N ′), sin(2πkt/N ′)], φ has the ma-
trix forms of [φ0,φ1, · · · ,φN′−1]T , and γ(x) is the robustify-
ing objective function defined as the summation of Huber loss as
γ(x) =

∑N′−1
t=0 γhub(xt).

Based on the aforementioned processing for missing data and
outliers, the final structure of our robust ACF is depicted in the
middle part of Fig. 1.



2.3.2. Theoretical Constraint under Missing Data
Next, we investigate the maximum missing block length that our
robust ACF estimator can bear. Clearly, utilizing Eq. (4) to com-
pute the ACF requires Qk = |Q̂k| > 0. While the value of Qk
depends on the positions and the volume of the missing entries,
which makes it difficult for analysis. In practice, the worst scenar-
ios for missing entries occur in cluster. In the following, we pro-
vide theoretical analysis for the scenario that all the missing entries
concentrate in one block, i.e., Ik = 0 when m ≤ n ≤ m + l − 1
and Ik = 1 otherwise, where m denotes the start position of the
block and l denotes the length of the block. Here we assume that
the block does not include the beginning and end point of the se-
quence, i.e., m > 0 and m + l − 1 < N − 1. Note that the
proposed method can work if and only if Qk > 0. Recall that
Qk is

∑N−1
t=k ItIt−k when k ≥ 0 and

∑N+k
t=0 ItIt−k otherwise.

Formally, we have the following proposition.
Proposition: For any k and m that satisfy m > 0 and m+ l−

1 < N − 1, if l < N
3

, we always have Qk > 0.
Proof: From the definition of Qk, we have Qk ≥ 0, then we

only need to prove that it does not exist a k such that Qk = 0.
Without loss of generality, we only consider the case that k > 0.
Let gt = It−k, then gt = 0 for m + k ≤ t ≤ m + l + k − 1.
Suppose there is a k and m such that Qk = 0, then InÎn = 0 for
all n ∈ [k,N − 1], then we have

[k,N − 1] ⊂ [m,m+ l − 1] ∪ [m+ k,m+ l + k − 1] (7)

Note that Eq. (7) implies the following three possibilities:

[k,N − 1] ⊂ [m,m+ l − 1] (8)

[k,N − 1] ⊂ [m+ k,m+ l + k − 1] (9)

[k,N − 1] ⊂ [m,m+ l − 1] ∪ [m+ k,m+l+k−1]

[m,m+l−1]∪[m+k,m+l+k−1]=[m,m+l+k−1] (10)

Obviously, Eqs. (8) and (9) requiresN−1 ≤ m+ l−1 or k+1 ≥
m+ k which is contradicted to m < N − l and m > 0. Note that
Eq. (10) impliesm ≤ k,m+k ≤ m+l, andN−1 ≤ m+l+k−1,
which can be rewritten as

max(m,N −m− l) ≤ k ≤ l (11)

We show that if l < N
3

, one cannot find a m and k satisfying
Eq. (11). It is easy to see that for all 0 < m < N−l, the minimum
of max(m,N − m − l) is archived at m = N−l

2
and equals to

N−l
2

. As l < N
3

, we can see that l is always less than N−l
2

, i.e.,
l < N−l

2
≤ max(m,N − m − l) which makes there is no k

satisfying Eq. (11). The proof is completed here.

2.4. Final Time-Frequency Combination
In frequency domain, to detect dominant periodicity, Fisher’s test
[16] defines g-statistic as g = maxkPk/

∑N
j=1Pj , k = 1, 2, · · · , N,

where Pk = FFT{rt} is the calculated periodogram via Wiener-
Khinchin theorem [27] based on robust ACF rt. Therefore, this
g-statistic is also robust to outliers and missing data. The distri-
bution of g-statistic gives a p-value to determine if a time series
is periodic [16]. If this value is less than the predefined thresh-
old α, we reject the null hypothesis H0 and conclude the time
series is periodic with period length candidate as N/k where k =
arg maxk Pk. If the Fisher’s test is passed, we further refine the
candidate of period length in the time domain similar to [20, 7].

0 50 100 150 200 250
Time Index

40

60

80

Va
lu

es

hsales (T=12)

0 50 100 150 200 250
Time Index

0

50

100

Va
lu

es

hsales (T=12) w/ missing, outliers

(a) One CRAN periodic time series
and its variant with outliers and miss-
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(b) Three typical periodic time se-
ries from cloud computing industry
with outliers and missing values.

Figure 2: Representative challenging periodic time series.

Specifically, we first summarize the peaks of robust ACF through
peak detection [28]. Then, we calculate the median distance of
those peaks whose heights exceed predefined threshold. Further-
more, based on the resolution of periodogram, i.e., the peak value
ofPk at index k corresponds to period length in the range [N

k
, N
k−1

),
the median distance of ACF peaks is the final period length only if
it locates inRk =

[
1
2

(
N
k+1

+ N
k

)
− 1, · · · , 1

2

(
N
k

+ N
k−1

)
+ 1
]
.

Note that this combination is necessary. On the one hand, the
periodogram has limited resolution and spectral leakage may ex-
ist [20], which makes the candidate from Fisher’s test not accurate.
On the other hand, only relying on ACF may result in false positive
results since ACF cannot provide if there is dominant periodicity.

3. EXPERIMENTS AND DISCUSSIONS

3.1. Periodicity Detection Comparisons
Baseline Algorithms and Datasets:
We compare our algorithm with baseline algorithms: ACF-Med
(median distance of ACF peaks), Fisher’s Test, Lomb–Scargle pe-
riodogram [22, 23, 24], and the state-of-the-art time-frequency
method RobustPeriod [7]. Note that there exist other types of time-
frequency algorithms [20, 21], but their performances are inferior
to RobustPeriod [7]. Except Lomb–Scargle and our proposed al-
gorithm, we add linear interpolation in case of missing data for
other algorithms since their performances are degraded severely if
directly working on time series with missing values.

For datasets, we consider the public single-period time series
from CRAN [29, 19], which contains 82 real-world time series
in various scenarios (like IoT, sales, sunspots, etc.) with lengths
from 16 to 3024 and period lengths from 2 to 52. We also add
outliers and block missing data in the datasets to evaluate the ro-
bustness of all algorithms. The outlier ratio (OR) is set to 0.01 or
0.05 with outlier amplitude as 5 times standard deviation of origi-
nal time series, and the block missing ratio (MR) is set to 0.05 or
0.30. Since the outlier ratio is usually small in practice, we set it as
0.05 at most; while the missing ratio could be relatively large due
to block missing, we set it as 0.3 at most. One example is shown
in Fig. 2(a). Besides, We utilize 3 typical real-world datasets from
a leading cloud computing company as shown in Fig. 2(b). The
length of the dataset is 5 days with sampling resolution of 10 min-
utes, where their true period lengths are 144 (one-day), 72 (half-
day), and 144 (one-day), respectively. For the evaluation, the pre-
cision is calculated by the ratio of the number of time series with
correctly estimated period length to the total number of time series.



Table 1: Precision comparisons of different periodicity detection algorithms on public CRAN data. MR and OR indicate
missing ratio and outlier ratio, respectively. The best results are highlighted in bold.

Algorithms
CRAN dataset with or without missing values & outliers

MR=0 MR=0.05 MR=0.30
OR=0 OR=0.01 OR=0.05 OR=0 OR=0.01 OR=0.05 OR=0 OR=0.01 OR=0.05

ACF-Med 0.57 0.55 0.24 0.56 0.50 0.23 0.52 0.50 0.27
Fisher’s Test 0.52 0.44 0.32 0.49 0.44 0.30 0.42 0.33 0.24

Lomb–Scargle 0.45 0.13 0.09 0.45 0.13 0.10 0.37 0.11 0.10
RobustPeriod 0.62 0.60 0.59 0.59 0.57 0.50 0.47 0.45 0.43

Proposed 0.63 0.62 0.60 0.60 0.60 0.59 0.56 0.52 0.51

Table 2: Comparisons of different periodicity detection al-
gorithms on 3 typical real-world datasets with missing data.

Algorithms Data-1 (T=144) Data-2 (T=72) Data-3 (T=144)
ACF-Med 144 72 143

Fisher’s Test 144 73 143
Lomb–Scargle 140 71 140
RobustPeriod 142 (72,144) 144

Proposed 144 72 144

Performance Comparisons of Different Algorithms:
We summarize the detection precision results on public CRAN
datasets with or without missing data and outliers in Table 1. It
can be seen that, when there are no missing data and outliers, both
RobustPeriod and our proposed algorithm exhibit similar results
and have better performance than others. When there are no out-
liers but with increasing missing data (i.e., OR=0, MR=0, 0.05,
0.3), the performance degradation of Lomb–Scargle is relatively
smaller than ACF-Med, Fisher’s Test, and RobustPeriod. This is
due that Lomb–Scargle can directly deal with missing data without
imputation. However, the Lomb–Scargle is not robust to outliers,
and its performance becomes much worse than others when there
are outliers. When we fix the ratio of missing data but with increas-
ing outliers (i.e., OR=0, 0.05, 0.3), the performance degradation
of RobustPeriod is much smaller than ACF-Med, Fisher’s Test,
and Lomb–Scargle, which demonstrates its robustness to outliers.
When there are both missing data and outliers, the performances
of existing algorithms drop significantly, especially for ACF-Med,
Fisher’s Test, and Lomb–Scargle methods. The reason is that these
methods heavily depend on conventional ACF or FFT while the re-
sults of ACF or FFT would be severely distorted by block missing
data and outliers. Overall, our proposed algorithm performs best
in all test cases, especially exhibits better performance than others
when the missing data and outliers ratio are severe.

Table 2 summarizes the detection results of the 3 typical real-
world datasets as in Fig. 2(b). It can be seen that the RobustPeriod
may generate some false positives, which is due to the fact that it
is designed for general multiple-period detection. It is also inter-
esting to find that Lomb–Scargle is not robust to large outliers and
noises even though it can directly deal with missing data. Overall,
our proposed algorithm achieves the best results.

3.2. Component Investigation
Firstly, we carry out experiments to demonstrate the advantages of
the designed robust trend filter under missing data. Fig. 3 depicts
the proposed robust trend filter without imputation versus common
Hodrick–Prescott (HP) trend filter [30] with linear interpolation
for time series under missing data, trend changes, and outliers. As
HP filter is unable to deal with time series with missing data, we
inpaint the time series using linear interpolation and input it into

Figure 3: Proposed robust trend filter without imputation vs.
HP trend filter with linear interpolation under missing data,
trend changes, and outliers (better in colorful version).

(a) Linear interpolated time series

(b) Proposed robust ACF under missing data vs. ACF
by linear interpolation (better in colorful version).

Figure 4: Proposed robust ACF without imputation vs. ACF
with linear interpolation under missing data.

HP filter. After imputation, the HP filter is still biased by the out-
lier and abrupt changes of trend. In contrast, our method (denoted
as ”rTrendLAD miss”) can deal with missing data without impu-
tation, and meanwhile is robust to outliers and trend changes.

Next, we demonstrate the superiority of the proposed robust
ACF estimator under missing data. We conduct experiments on a
time series of length 144 with period 12. We set the 24th to 71th
points as missing, so the missing ratio is 1/3. Fig. 4(a) shows the
incomplete time series with linear interpolation. Fig. 4(b) shows
the results of the proposed ACF under incomplete time series and
the standard ACF under linear interpolation. We can see that the
ACF from linear interpolated time series is severely affected, which
makes it hard to find a threshold to locate the peaks of the ACF. In
contrast, our proposed robust ACF estimator can provide a promis-
ing ACF estimation which brings accurate periodicity detection.

4. CONCLUSION AND FUTURE WORK
In this paper we propose a novel periodicity detection algorithm to
detect the dominant periodicity. Our algorithm can robustly deal
with trend changes and outliers for time series under missing data
scenarios. In the future we plan to extend our framework to handle
time series with multiple periodicities, as well as apply it in more
real-world applications.



5. REFERENCES

[1] Heonho Kim, Unil Yun, Bay Vo, Jerry Chun-Wei Lin, and
Witold Pedrycz, “Periodicity-oriented data analytics on time-
series data for intelligence system,” IEEE Systems Journal,
vol. 15, no. 4, pp. 4958–4969, 2020.

[2] Qingsong Wen, Linxiao Yang, Tian Zhou, and Liang Sun,
“Robust time series analysis and applications: An industrial
perspective,” in KDD 2022, 2022, pp. 4836–4837.

[3] Shuo Zhang, XiaoFei Chen, JiaYuan Chen, Qiao Jiang, and
Hejiao Huang, “Anomaly detection of periodic multivariate
time series under high acquisition frequency scene in IoT,”
in Int. Conf. on Data Mining Workshops, 2020, pp. 543–552.

[4] Jingkun Gao, Xiaomin Song, Qingsong Wen, Pichao Wang,
Liang Sun, and Huan Xu, “RobustTAD: Robust time series
anomaly detection via decomposition and convolutional neu-
ral networks,” KDD Workshop MileTS, 2020.

[5] Ramona Tolas, Raluca Portase, Andrei Iosif, and Rodica Po-
tolea, “Periodicity detection algorithm and applications on
IoT data,” in 20th International Symposium on Parallel and
Distributed Computing, 2021, pp. 81–88.

[6] Chaoli Zhang, Tian Zhou, Qingsong Wen, and Liang Sun,
“TFAD: A decomposition time series anomaly detection ar-
chitecture with time-frequency analysis,” in CIKM, 2022.

[7] Qingsong Wen, Kai He, Liang Sun, Yingying Zhang, Min
Ke, and Huan Xu, “RobustPeriod: Time-frequency mining
for robust multiple periodicity detection,” in ACM Int. Conf.
on Management of Data (SIGMOD), 2021, pp. 2328–2337.

[8] Qingyang Xu, Qingsong Wen, and Liang Sun, “Two-stage
framework for seasonal time series forecasting,” in ICASSP,
2021, pp. 3530–3534.

[9] Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang
Sun, and Rong Jin, “Fedformer: Frequency enhanced de-
composed transformer for long-term series forecasting,” in
International Conference on Machine Learning, 2022, pp.
27268–27286.

[10] X. Wang, K. Smith-Miles, and R. Hyndman, “Characteristic-
based clustering for time series data,” Data Mining and
Knowledge Discovery, vol. 13, pp. 335–364, 09 2006.

[11] Michail Vlachos, Christopher Meek, Zografoula Vagena, and
Dimitrios Gunopulos, “Identifying similarities, periodicities
and bursts for online search queries,” in ACM SIGMOD Int.
Conf. on Management of data, 2004, pp. 131–142.

[12] Robert B Cleveland, William S Cleveland, Jean E McRae,
and Irma Terpenning, “STL: A seasonal-trend decomposi-
tion procedure based on loess,” Journal of Official Statistics,
vol. 6, no. 1, pp. 3–73, 1990.

[13] Qingsong Wen, Jingkun Gao, Xiaomin Song, Liang Sun,
Huan Xu, and Shenghuo Zhu, “RobustSTL: A robust
seasonal-trend decomposition algorithm for long time se-
ries,” in AAAI Conference on Artificial Intelligence, 2019,
pp. 5409–5416.

[14] Linxiao Yang, Qingsong Wen, Bo Yang, and Liang Sun, “A
robust and efficient multi-scale seasonal-trend decomposi-
tion,” in ICASSP, 2021.

[15] Xiuwen Yi, Yu Zheng, Junbo Zhang, and Tianrui Li, “ST-
MVL: filling missing values in geo-sensory time series data,”
in Int. Joint Conf. on Artificial Intelligence (IJCAI), 2016.

[16] Ronald Aylmer Fisher, “Tests of significance in harmonic
analysis,” Proceedings of the Royal Society of London. Se-
ries A, Containing Papers of a Mathematical and Physical
Character, vol. 125, no. 796, pp. 54–59, 1929.

[17] S. Wichert, K. Fokianos, and K. Strimmer, “Identifying peri-
odically expressed transcripts in microarray time series data,”
Bioinformatics, vol. 20, no. 1, pp. 5–20, 2004.

[18] Wang, J., Chen, T., and Huang, B., “Cyclo-period estimation
for discrete-time cyclo-stationary signals,” IEEE Transac-
tions on Signal Processing, vol. 54, no. 1, pp. 83–94, 2006.

[19] Maximilian Toller, Tiago Santos, and Roman Kern,
“SAZED: parameter-free domain-agnostic season length es-
timation in time series data,” Data Mining and Knowledge
Discovery, 2019.

[20] Michail Vlachos, Philip Yu, and Vittorio Castelli, “On peri-
odicity detection and structural periodic similarity,” in SIAM
Int. Conf. on Data Mining, 2005, pp. 449–460.

[21] Abdullah Almasri, “A new approach for testing periodicity,”
Communications in Statistics—Theory and Methods, vol. 40,
no. 7, pp. 1196–1217, 2011.

[22] Feiyan Hu, Alan F Smeaton, and Eamonn Newman, “Peri-
odicity detection in lifelog data with missing and irregularly
sampled data,” in IEEE BIBM, 2014, pp. 16–23.

[23] Earl F Glynn, Jie Chen, and Arcady R Mushegian, “De-
tecting periodic patterns in unevenly spaced gene expression
time series using Lomb–Scargle periodograms,” Bioinfor-
matics, vol. 22, no. 3, pp. 310–316, 2006.

[24] Nicholas R Lomb, “Least-squares frequency analysis of un-
equally spaced data,” Astrophysics and space science, vol.
39, no. 2, pp. 447–462, 1976.

[25] Qingsong Wen, Jingkun Gao, Xiaomin Song, Liang Sun, and
Jian Tan, “RobustTrend: a Huber loss with a combined
first and second order difference regularization for time se-
ries trend filtering,” in IJCAI, 2019, pp. 3856–3862.

[26] Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato,
Jonathan Eckstein, et al., “Distributed optimization and sta-
tistical learning via the alternating direction method of mul-
tipliers,” Foundations and Trends in Machine learning, vol.
3, no. 1, pp. 1–122, 2011.

[27] Norbert Wiener, “Generalized harmonic analysis,” Acta
Math., vol. 55, pp. 117–258, 1930.

[28] Felix Scholkmann, Jens Boss, and Martin Wolf, “An efficient
algorithm for automatic peak detection in noisy periodic and
quasi-periodic signals,” Algorithms, vol. 5, no. 4, pp. 588–
603, 2012.

[29] Kurt Hornik, “The comprehensive R archive network,” Wiley
interdisciplinary reviews: Computational statistics, vol. 4,
no. 4, pp. 394–398, 2012.

[30] Robert J Hodrick and Edward C Prescott, “Postwar US busi-
ness cycles: an empirical investigation,” Journal of Money,
Credit, and Banking, pp. 1–16, 1997.


	1  Introduction
	2  Proposed Periodicity Detection
	2.1  Framework Overview
	2.2  Robust Detrending under Missing Data
	2.3  Roubust ACF with M-Periodogram
	2.3.1  Structure of the Proposed Roubust ACF
	2.3.2  Theoretical Constraint under Missing Data

	2.4  Final Time-Frequency Combination

	3  Experiments and Discussions
	3.1  Periodicity Detection Comparisons
	3.2  Component Investigation

	4  Conclusion and Future Work
	5  References

