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ABSTRACT
We introduce a time-domain framework for efficient multichannel
speech enhancement, emphasizing low latency and computational
efficiency. This framework incorporates two compact deep neural
networks (DNNs) surrounding a multichannel neural Wiener filter
(NWF). The first DNN enhances the speech signal to estimate NWF
coefficients, while the second DNN refines the output from the NWF.
The NWF, while conceptually similar to the traditional frequency-
domain Wiener filter, undergoes a training process optimized for
low-latency speech enhancement, involving fine-tuning of both anal-
ysis and synthesis transforms. Our research results illustrate that the
NWF output, having minimal nonlinear distortions, attains perfor-
mance levels akin to those of the first DNN, deviating from conven-
tional Wiener filter paradigms. Training all components jointly out-
performs sequential training, despite its simplicity. Consequently,
this framework achieves superior performance with fewer parame-
ters and reduced computational demands, making it a compelling
solution for resource-efficient multichannel speech enhancement.

Index Terms— Multichannel speech enhancement, low-compute
and low-latency speech enhancement, neural beamforming

1. INTRODUCTION

Sequential neural beamforming has gained prominence as a potent
technique for multichannel speech enhancement (SE), offering sub-
stantial improvements in performance [1, 2, 3, 4, 5, 6, 7, 8]. It gen-
erally contributes to an increased robustness of downstream applica-
tions, such as automatic speech recognition (ASR) [9, 10, 11, 8] and
speaker verification [12, 13].

Sequential neural beamforming is characterized by a series of
iterative steps. Initially, an enhancement network processes the mul-
tichannel audio input, extracting a less distorted speech signal. This
processed signal serves as the target for estimating the spatial filter in
the subsequent step, with the aim of further reducing nonlinear dis-
tortions. Subsequently, both the noisy mixture and the spatial filter
estimate are passed to a second-stage enhancement network, culmi-
nating in the generation of the final enhanced speech. Optionally,
the sequence of spatial filter estimation followed by enhancement
network processing can be repeated multiple times to gradually im-
prove the performance. Fig. 1 provides a visual overview of sequen-
tial neural beamforming.

Typically, sequential neural beamforming relies on underlying
DNNs operating in the frequency-domain to enhance the short-time
Fourier transform (STFT) of noisy speech [14, 4, 8, 15]. In addition,
these systems often incorporate traditional spatial filters such as the
multichannel Wiener filter (MCWF), minimum-variance distortion-
less response (MVDR) [16], and generalized eigenvalue (GEV) [17]
beamformers. These traditional filters are valuable because they can

iterate

Fig. 1. A general workflow of sequential neural beamforming.

capture spectral patterns critical for isolating overlapping sources or
dealing with reverberation. However, it is important to note that they
have limitations, including numerical instability due to matrix in-
version and the fact that filter coefficients are derived independently
by solving a minimum mean squared error (MMSE) problem. As a
result, jointly optimizing frequency-domain beamformers with deep
neural networks (DNNs) can be challenging. To address the train-
ing instability associated with traditional spatial filters, a widely ac-
cepted strategy is to employ diagonal loading [18]. Furthermore, a
recent study introduced the use of recurrent neural networks to di-
rectly estimate the matrix inverse, offering an alternative approach
to mitigate training challenges [19].

In contrast, the advent of end-to-end systems has prompted some
researchers to consider time-domain spatial filters as trainable com-
ponents that can be jointly optimized with neural networks [1, 2, 3].
For instance, the filter-and-sum network (FaSNet) [2] employs a
set of learnable filters that convolve with multichannel inputs, and
their outputs are summed to produce the beamformed output. How-
ever, due to its end-to-end design, FaSNet may not guarantee certain
desirable properties of traditional filters, such as a distortionless re-
sponse or temporal consistency in filtering. A recent study by Luo
et al. [3] addresses this limitation by introducing a time-domain
generalized Wiener filter that derives filter coefficients using MMSE
solution over a trainable latent representation.

While sequential neural beamforming has demonstrated effec-
tiveness, the majority of research has been conducted in a non-causal
setting, often neglecting resource constraints like computational de-
mands, algorithmic latency, and model size [3, 8, 14]. While a few
studies in the frequency domain, such as [4, 5, 15], have started con-
sidering these aspects, the exploration of end-to-end optimization in
the time domain remains relatively unexplored. This is especially
noteworthy, given the substantial potential of end-to-end optimiza-
tion for resource-constrained speech enhancement [20, 21, 22].

We propose a novel time-domain sequential neural beamforming
framework for resource efficient multichannel speech enhancement.
This framework operates with an impressively low algorithmic la-
tency of just 2 milliseconds, demonstrating remarkable efficiency in
terms of both model parameters and computational demands. Cen-
tral to our system are two lightweight, low-latency recurrent neural
networks (LLRNNs) [21] employed as key DNN components, as de-
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Fig. 2. Flow chart of LLRNN.

picted in Fig. 1. These LLRNNs collaborate to simultaneously sup-
press noise and reverberation. Additionally, we introduce a novel
neural Wiener filter (NWF) to function as the spatial filter, identified
as the SF block in Fig. 1.

Given a multichannel noisy speech, the first-stage DNN (DNN1)
produces a single-channel enhanced speech that serves as the target
signal for estimating NWF coefficients. The NWF conceptually
resembles a traditional frequency-domain MCWF, with the key dis-
tinction being that its analysis and synthesis transforms are trained
alongside other components. This adaptability allows these trans-
forms to be fine-tuned for the specific requirements of low-latency
speech enhancement, a task that may pose challenges for conven-
tional filters. Subsequently, the multichannel noisy input is pro-
cessed by the NWF, yielding a less distorted single-channel speech.
The NWF output is then combined with the original input and fed
to the second DNN (DNN2) to obtain the final enhanced speech.
Different blocks in the framework are setup in a way that stacking
multiple blocks do not result in increased algorithmic latency.

To identify the optimal training approach, we conducted an ex-
tensive exploration of different training strategies, including various
training orders for each module, combinations of pretrained weights,
initialization methods, and loss configurations. We also provide ex-
tensive comparisons with competitive baseline models to showcase
the promise of proposed framework for resource efficient speech en-
hancement.

2. PROPOSED METHOD

2.1. Problem Formulation

A multichannel signal recorded using an array with M microphones
in a noisy and reverberant environment can be defined as Y =
{ym}Mm=1, which includes M observations at M microphones. The
mth observation ym ∈ R1×L with L samples can be decomposed
as:

ym = sdir
m + srev

m + zdir
m + zrev

m (1)

where sdir
m , srev

m , zdir
m , and zrev

m respectively represent direct path
speech, speech reverberation, direct path noise, and noise reverbera-
tion. The goal of multichannel speech enhancement system is get a
close estimate of direct path speech sdir

r at a given reference mic r.

2.2. Sequential Neural Beamforming

A general framework of sequential neural beamforming is shown in
Fig. 1. Superscripts and subscripts respectively indicate the DNN
and iteration index. Given a noisy mixture Y, DNN1 estimates an
intermediate enhanced speech ŝ1

0. Next, a spatial filter uses ŝ1
0 as

the target to obtain the beamformed speech ŝSF
0 , which is then con-

catenated with Y across channel and processed by DNN2 to obtain
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Fig. 3. Flow chart of the proposed NWF.

ŝ2
1. The output of the spatial filter contains minimal nonlinear dis-

tortions, and as a result, DNN2 is expected to produce ŝ2
1 with im-

proved nonlinear distortions. Optionally, the stack of spatial filter
and DNN2 can be repeated for i ≥ 1 to obtain ŝSF

i and ŝ2
i+1.

2.3. Lightweight Low-latency RNN

The proposed framework incorporates two deep neural networks
(DNNs), both of which are built upon a lightweight, low-latency Re-
current Neural Network (LLRNN) architecture introduced in [21].
Illustrated in Fig. 2, the LLRNN serves as a time-domain, mul-
tichannel speech enhancement model for processing noisy signal
Y ∈ RM×L. The processing begins by converting Y into a se-
quence of overlapping frames, employing a frame size of iW and a
frame shift of J , resulting in Ȳ ∈ RM×T×iW , where T signifies the
number of frames. Prior to frame conversion, the signal is padded
with iW − J zeros at the beginning. Subsequently, a linear layer
is applied, followed by layer normalization [23] and parametric rec-
tified linear units (PReLU) [24], to project all frames into a latent
representation of size H .

Following this, a spatial processing block is employed to reduce
the channel dimension, mapping input of size M × T × H to T ×
H . The reduced feature tensors then traverse through B consecutive
recurrent blocks, each comprising layer normalization followed by
a Long Short-Term Memory (LSTM) [25] with a hidden size of H .
Subsequently, all frames are linearly projected to the output frame
size of oW using a linear layer, producing the sequence of enhanced
frames.

The choice of the output frame size, whether it is oW or J
(frame shift), depends on the specific stage of the LLRNN. If the
LLRNN output serves as the final output for evaluation, the output
frame size is set to oW , and overlap-add (OLA) is applied to ob-
tain the enhanced signal. In this scenario, the LLRNN exhibits an
algorithmic latency of oW , as oW samples in the output frame cor-
respond to the rightmost oW samples in the input frame [21]. Al-
ternatively, if the LLRNN output is fed into a subsequent model, the
output frame size is set to J , and the enhanced signal is obtained by
simply concatenating the output frames. This particular setup op-
erates with an algorithmic latency of J . Importantly, in this setup,
stacking multiple LLRNNs does not result in an increase in over-
all algorithmic latency due to the absence of OLA at intermediate
stages.

2.4. Neural Wiener Filter

Fig. 3 shows the pipeline of our proposed NWF. The multichannel
noisy input and the output from the first DNN are first converted to
frames using a frame size of iW and frame shift of J . Both signals
are padded with iW − J zeros in the beginning before converting
to frames. After this, they are projected to size 2F using analysis
matrix B and then converted to complex valued tensors by using the
first half as the real part and the second half as the imaginary part.



Next, MCWF filter coefficients are estimated using the representa-
tion of the DNN1 output as the target. A detailed description on how
to estimate MCWF coefficients can be found in [4].

Next, spatial filtering is applied over the multichannel noisy
transform to obtain a single-channel enhanced transform. The en-
hanced transform is converted to real-valued tensor by stacking real
and imaginary parts side by side. Then, the synthesis matrix D is
multiplied with the real-valued enhanced transform to get enhanced
frames of size J . Finally, all the enhanced frames are concatenated
to obtain the enhanced signal. The algorithmic latency of this setup
is J . If the NWF output is used as the final signal for evaluation,
then the output frame size is set to oW and OLA is applied to obtain
enhanced waveform with an algorithmic latency of oW .

It is important to note that the setup described here differs from
the one in [3], where a real-valued Wiener filter was utilized. We
observed that the real-valued formulation resulted in subpar perfor-
mance compared to the complex-valued one. Similar to [4] and
[26], the proposed NWF employs a frame-online approach utilizing
Woodbury formula for matrix inversion during evaluation.

3. EXPERIMENTAL SETUP

3.1. Noisy Reverberant Data Simulation

To generate pairs of clean and noisy signals for training, we make use
of the Interspeech 2020 DNS Challenge corpus [27]. The speakers
in the training set are randomly divided into sets for training, testing,
and validation, with a split ratio of 85%, 5%, and 10%, respectively.
Similarly, the noises are categorized into distinct sets for training,
testing, and validation. All the utterances are resampled to 16 kHz
before being used for data generation.

Multichannel data is generated using an eight-microphone cir-
cular array with a radius of 10 cm. The data generation follows an
algorithm outlined in previous studies [28, 29, 21]. We generate 80K
training, 1.6K validation, and 3.2K test utterances.

We use Pyroomacoustics with an image method of order 6 to
generate room impulse responses (RIRs). The dimensions of the
rooms, including length, width, and height, are sampled uniformly
from the ranges [3, 10] meters (m), [3, 10] m, and [2, 5] m, respec-
tively. The absorption coefficients are sampled from [0.1, 0.4]. The
number of noise sources is sampled from [1, 10]. The signal-to-noise
ratio (SNR) is uniformly sampled from −10 to 10 dB, representing
the ratio between the direct-path speech and interferences, excluding
speech reverberation. The direct-path speech at the first microphone
is used as the training target.

3.2. Model Configuration and Training

In this work, we consider six setups, including: (i) single-stage base-
lines, (ii) a DNN (DNN1) followed by an NWF, (iii) DNN1 fol-
lowed by another DNN (DNN2) without an NWF (iv) train DNN1

and then jointly train a stack of DNN1, NWF and DNN2, (v) train
a stack of DNN1 and NWF together, and then jointly train a stack
of DNN1, NWF and DNN2 (vi) train a stack of DNN1, NWF and
DNN2 from scratch. These categories correspond to setups 1 to 6 in
Table 1.

In particular, DNN1 is an LLRNN model with a latency of 1 ms,
employing parameters H = 128, iW = 256, and oW = J = 16.
In (ii), we merge DNN1 with NWF and utilize the NWF output,
where a 2 ms latency is achieved by using oW = 32 with OLA in the
synthesis transform. Case (iii) represents a simple dual-stage setup,
where DNN1 can be pretrained (or trained from scratch) and frozen

(or unfrozen) when training with DNN2. Similarly, (iv) through (vi)
incorporate DNN1 and DNN2 around NWF. Here, DNN1 and NWF
use oW = J = 16 and concatenate output frames, while DNN2

utilizes oW = 32 with OLA. The NWF maintains F = 129 across
all cases.

In the aforementioned setups, multiple enhanced speech are gen-
erated, including those from DNN1, NWF, and DNN2. We conduct
experiments to asses the effectiveness of minimizing loss at different
outputs by simply adding different losses together.

We train various baseline models including LLRNN [21], MC-
Conv-TasNet [20], MC-CRN [4], UXNet [22], and FSB-LSTM [15].
These models are tailored for single-stage processing, exhibiting la-
tencies of either 2 ms or 4 ms. The LLRNN baseline achieves a
latency latency of 2 ms by using oW = 32 (2 ms) with OLA.

For model optimization, we train these setups for 200 epochs
using Adam optimizer [30] with a constant learning rate of 2×10−4

and amsgrad enabled. Following [21], we adopt the phase con-
strained magnitude (PCM) loss [31] to train all the models. In order
to prevent unstable gradients, we clip gradient’s L2-norm to 0.03.
Training for all setups is carried out on Nvidia V100 GPUs with au-
tomatic mixed precision.

3.3. Evaluation Metrics

Models are evaluated using perceptual evaluation of quality (PESQ),
scale-invariant source-to-distortion ratio (SI-SDR), and short-time
objective intelligibility (STOI) scores. Higher scores indicate bet-
ter performance. The amount of computation is reported in Giga
floating point operations (GFLOPs) for processing one second of 8-
channel speech.

4. RESULTS

4.1. Baseline and Single-Stage Setups

Table 1 provides a comprehensive overview of performances and
computational demands across all configurations. Scores from setup
0A pertain to the noisy reverberant mixture. An anticipated trend
from 1A to 1F is evident, indicating improved performance with an
increase in hidden size.

Setups 2A to 2F demonstrate the impact of combining DNN1

with NWF. In 2A and 2B, NWF training is disabled, with signal
transform initialized using DFT/iDFT coefficients, making them
equivalent to traditional frequency-domain MCWF. Setups 2C to
2F employ NWF with trainable signal transforms. Notably, 2C and
2D initialize signal transforms with DFT coefficients, while 2E and
2F have randomly initialized transforms. Comparing to 1A and
other configurations in Setup 2, setups with trainable NWFs exhibit
improvements in STOI ranging from 4.44% to 6.48%. Across all
experiments in Setup 2, optimal performance consistently occurs
when calculating the loss using only NWF’s output.

Comparing 2C with 2E and 2D with 2F reveals a relatively minor
impact of initialization. This implies a potential effective training
strategy for DNN1+NWF is to randomly initialize NWF and jointly
train DNN1 and NWF using a loss at NWF output. Notably, NWF
without trainable transforms (MCWF) performs significantly worse
than 1A, underscoring the importance of optimizing analysis and
synthesis transforms. Finally, objective scores from DNN1+NWF
are similar to those of 1A, suggesting NWF’s potential to match a
DNN performance while reducing nonlinear distortions.



Table 1. Model configurations and performance are summarized below. The symbols ✓and ✗respectively denote the trainable and frozen
modules. In the loss column, DNN1, NWF, and DNN2 denote the outputs from these modules, utilized in calculating the loss. The total loss
is derived by summing the losses from these modules.

Setup STOI (%) PESQ SI-SDR (dB) Update? initNWF Loss Latency (ms) #params (M) GFLOPs

0A Unprocessed 65.83 1.63 -7.48 N/A N/A

1A LLRNNH=128 80.8 2.27 2.9

✓ N/A DNN1

2 0.44 1.34
1B LLRNNH=200 83.9 2.43 4.2 2 1.03 2.78
1C LLRNNH=256 85.6 2.51 4.9 2 1.66 4.25
1D LLRNNH=300 86.2 2.56 5.3 2 2.26 5.61
1E LLRNNH=400 87.5 2.64 6.0 2 3.97 9.40
1F LLRNNH=512 88.3 2.69 6.5 2 6.46 14.79
1G MC-Conv-TasNet [20] 86.3 2.57 5.6 2 5.13 10.32
1H MC-CRN-2ms [4] 84.0 2.38 3.9 2 2.32 6.73
1I MC-CRN-4ms 85.7 2.51 4.7 4 2.32 6.73
1J UXNet-128 [22] 77.3 2.10 1.1 2 0.21 0.67
1K UXNet-256 80.9 2.25 2.9 2 0.81 2.12
1L FSB-LSTM [15] 88.2 2.68 5.8 4 1.97 7.80

2A

DNN1+NWF

75.7 2.00 -1.3 ✓/✗ DFT DNN1

1/2 0.51 2.82

2B 75.6 2.01 -0.3 ✓/✗ DFT DNN1+NWF
2C 82.0 2.14 3.2 ✓/✓ DFT NWF
2D 80.1 2.22 1.5 ✓/✓ DFT DNN1+NWF
2E 82.0 2.18 3.4 ✓/✓ Rand. NWF
2F 80.4 2.20 1.9 ✓/✓ Rand. DNN1+NWF

3A DNN1+DNN2 82.3 2.33 3.4 ✓/✓

N/A

DNN1 + DNN2

1/2 0.87 2.743B DNN1+DNN2 82.9 2.36 3.8 ✓/✓ DNN2

3C DNNPT
1 +DNN2 83.5 2.37 4.0 ✓/✓ DNN2

3D DNNPT
1 +DNN2 81.3 2.26 2.9 ✗/✓ DNN2

4A

DNNPT
1 +NWF+DNN2

82.6 2.36 3.0 ✗/✗/✓ DFT

DNN2 1/1/2 0.94 4.214B 82.3 2.31 3.0 ✓/✗/✓ DFT
4C 85.7 2.52 4.7 ✗/✓/✓ Rand.
4D 86.4 2.52 5.6 ✓/✓/✓ Rand.

5A

(DNN1+NWF)PT+DNN2

82.1 2.32 2.1 ✗/✗/✓ DFT

DNN2 1/1/2 0.94 4.215B 84.5 2.44 3.8 ✗/✗/✓ Rand.
5C 84.5 2.43 3.7 ✗/✓/✓ Rand.
5D 86.0 2.52 5.3 ✓/✓/✓ Rand.

6A
DNN1+NWF+DNN2

84.9 2.46 4.0 ✓/✓/✓ Rand. DNN1+NWF+DNN2

1/1/2 0.94 4.216B 86.3 2.53 5.0 ✓/✓/✓ Rand. NWF+DNN2

6C 87.4 2.58 6.0 ✓/✓/✓ Rand. DNN2

6D DNN200
1 + NWF + DNN200

2 89.1 2.70 7.0 ✓/✓/✓ Rand. DNN2 1/1/2 2.12 7.14

4.2. Dual-Stage Setups

In setup 3, we assess the performance of stacking two DNNs, DNN1

and DNN2, without a NWF. We train all stages from scratch in 3A
and 3B, while in 3C and 3D, we pretrain DNN1 and subsequently
train DNN2 either independently or jointly with DNN1. These ex-
periments indicate that the loss in the first stage is not beneficial, and
pretraining DNN1 is crucial for performance improvement. How-
ever, the results also reveal that incorporating multiple DNNs offers
limited improvements.

Setups 4 and 5 explore various pretraining methods for stacking
DNN1, NWF, and DNN2. In setup 4, 4A and 4B utilize MCWF,
while 4C and 4D employ NWF. Results reveal superior performance
of NWF over MCWF, with the optimal outcome observed when all
components are jointly trained in 4D. Similarly, in setup 5, where
DNN1 is pretrained with Wiener filter, MCWF exhibits inferior per-
formance compared to NWF. In 5B to 5D, we introduce random ini-
tialization of NWF in pretraining, followed by training NWF with
DNN2 and subsequently training DNN1 and NWF with DNN2.
While 5B and 5C yield comparable scores, 5D achieves the high-
est scores, aligning with the observed trend in setup 4.

In light of the insight that joint training leads to better perfor-
mance, we conducted experiments in Setup 6, involving three dis-
tinct loss configurations and no pretraining. A noteworthy observa-
tion from 6A to 6C suggests that hitting the ”sweet spot” for peak
performance involves using the simplest setup—utilizing solely the

final output for loss and jointly training all components from scratch.
Our best system (6C) outperforms the baseline (1C) with com-

parable computational resources, demonstrating improvements in
terms of STOI, PESQ, and SI-SDR by 1.82%, 0.07, and 1.14
dB, respectively, while employing only 56.63% of the parameters.
Moreover, in comparison to 6C, model 1E requires 4.22 and 2.23
times more parameters and FLOPS to achieve a similar STOI score.
Additionally, the best baseline model, FSB-LSTM, is surpassed by
employing a larger LLRNN in both stages with a hidden size of
200. Remarkably, this improved performance is attained with re-
duced computational requirements, half the algorithmic latency, and
a comparable number of parameters.

5. CONCLUSION

We have introduced a novel and resource-efficient framework for
sequential neural beamforming in the time-domain, specifically de-
signed for speech enhancement. Within this framework, we have
incorporated a novel Neural Wiener Filter (NWF) to enhance low-
latency speech processing. We have identified that the most effective
training strategy involves simultaneous training of all components,
with the final stage’s output being used for loss computation. Our
best-performing system outperformed robust baseline models across
several key metrics, including speech quality, intelligibility, model
size, and computational efficiency.
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