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ABSTRACT

Behavioral cloning uses a dataset of demonstrations to learn a pol-
icy. To overcome computationally expensive training procedures
and address the policy adaptation problem, we propose to use la-
tent spaces of pre-trained foundation models to index a demonstra-
tion dataset, instantly access similar relevant experiences, and copy
behavior from these situations. Actions from a selected similar sit-
uation can be performed by the agent until representations of the
agent’s current situation and the selected experience diverge in the
latent space. Thus, we formulate our control problem as a dynamic
search problem over a dataset of experts’ demonstrations. We test
our approach on BASALT MineRL-dataset in the latent represen-
tation of a Video Pre-Training model. We compare our model to
state-of-the-art, Imitation Learning-based Minecraft agents. Our ap-
proach can effectively recover meaningful demonstrations and show
human-like behavior of an agent in the Minecraft environment in a
wide variety of scenarios. Experimental results reveal that perfor-
mance of our search-based approach clearly wins in terms of accu-
racy and perceptual evaluation over learning-based models.

Index Terms— imitation learning, behavioral cloning, Minecraft,
MineRL, BASALT

1. INTRODUCTION

Imitation Learning (IL) [1] and Reinforcement Learning (RL) [2, 3,
4, 5] are commonly used methods to train agents to perform tasks
in simulated and real environments. Despite the extensive research
in these fields, a number of persistent challenges still hold. Among
them, significant computational costs and lack of zero-shot adapt-
ability are the most prominent. Recent works leverage large lan-
guage [6, 7, 8] and vision models [9, 10] to achieve few-shot adapt-
ability. Still, such models are computationally expensive to train.
Therefore, exploring alternative approaches to IL and RL methods
for control problems can potentially address these challenges and
yield advantages in specific application domains.

Behavioral Cloning (BC) [11] has been successfully applied to
practical control problems ranging from autonomous driving [12, 13,
14] to playing video games [15, 16, 17]. Despite being tremen-
dously popular due to its simplicity, BC suffers from a range of
problems such as distributional shift and causal confusion [18, 19].
Such limitations have been addressed with inverse reinforcement
learning [20] (IRL) or generative adversarial imitation learning [21]
(GAIL), which on the other hand tend to be computationally ex-
pensive and hard to train [22, 23]. Moreover, in case of complex
scenarios, such methods might struggle in learning a suitable strat-
egy [19, 20].

∗Equal contribution

Previous literature has addressed agents adaptability problems
by combining time-step-wise kNN search in latent space with Lo-
cally Weighted Regression [24] for action selection [25, 26, 27].
Nonetheless, studies in this direction have been conducted only in
controlled robotic environments with continuous actions. Addition-
ally, in these environments a reward signal is either used, such as
in [26, 27], or can be inferred, for instance in [25]. Our work ex-
tends the applicability of search-based methods to discrete-action
domains, and validates them in open-ended environment. Moreover,
we demonstrate zero-shot adaptation for such methods.

To this end, we introduce Zero-shot Imitation Policy (ZIP), a
search-based approach to imitation learning that instantly adapts to
new tasks in complex, discrete domains. ZIP encodes all experts’
trajectories into a reasonable latent space. We define the concept
of situation, a self-contained trajectory that includes both states and
corresponding actions. We could think about situation as a shot in
a movie. ZIP compares the current situation with the previous ex-
periences encoded in latent space, searches for the closest one and
executes the actions in it until the situation changes. This allows
the policy to adapt to changes in the environment by just collecting
new expert trajectories in that configuration. Perceptual experiments
show that the proposed method clearly outperforms other agents ex-
cept purely scripted agents.

2. METHODS

The present study is motivated by the MineRL BASALT 2022 chal-
lenge [28, 29]. In the challenge, an agent must solve four tasks: find
a cave, build an animal pen, build a village house, and make a wa-
terfall [28, 29]. For these tasks, no reward function is provided. To
solve the tasks, participants are provided with a dataset of demon-
strations, each showing a human expert solving one of the tasks.

The core idea behind our approach is to reformulate the control
problem as a search problem on the experts’ demonstrations.

To keep the search computationally feasible, we take advantage
of large pre-trained models of the problem domain. Recently pro-
posed Video Pre-Training (VPT) model [30] (see Figure 1) is a foun-
dation model for BC trained on 70k+ hours of video content scraped
from the internet [30]. VPT is built on an IMPALA [31] convolu-
tional neural network (CNN) backbone. The CNN maps an image
input to a 1024-dimensional feature vector. VPT generates a batch of
129 vectors and forward them to four transformer blocks. Each block
is linked to a memory block containing the last 128 frames. At the
end of the transformer pipeline, only the last frame is retained and
forwarded to two heads based on Multilayer Perceptrons (MLPs).
One head predicts a keyboard action, while the second head predicts
a computer mouse action.

We use a pre-trained VPT model [30] to encode situations in la-
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tent space. The pre-trained version of the model used in this study is
available at the official GitHub repository [32]. The repository fea-
tures three foundation models, namely 1x, 2x and 3x. The backbone
of the three models is the same, and they differ only for the weights
width [32].

Fig. 1. A scheme of the VPT model used in this study. An image
input is encoded with an IMPALA CNN and passed through four
transformer heads. Then, two MLP heads predict a keyboard and a
mouse action respectively.

2.1. Zero-shot Imitation Policy

ZIP solves a control problem by retrieving relevant past expe-
riences from experts’ demonstrations. In this context, we de-
fine a situation as a set of consecutive observation-action pairs
{(ot, at), . . . , (ot+τ , at+τ )}, τ ∈ N.

We illustrate our approach in Figure 2. We use VPT to extract all
the embeddings from an arbitrarily chosen subset S of the available
demonstrations dataset D, S ⊆ D. S constitutes the d-dimensional
latent space that ZIP searches. Moreover, we assume that expert has
completed the given task (find cave, build waterfall, etc), so optimal-
ity assumption in IL is satisfied [19].

During testing (see Figure 2B), we pass the current observation
through VPT. Then, ZIP selects the most similar reference trajec-
tory embedding in the latent space, according to their L1 distance
with the current observation. Finally, it copies the actions of the se-
lected reference situation. At each time-step, we shift the current and
reference situations in time and recompute their distance. When sit-
uations diverge over time, the approach performs a new divergence-
triggered search (red lines in Figure 3). Additionally, if the reference
embedding is followed for more than n time-steps, ZIP performs a
new time-triggered search (blue lines in Figure 3).

3. EXPERIMENTS

The full FindCave dataset from the MineRL BASALT competi-
tion [28] consists of 5466 experts’ trajectories demonstrating the
task, or around 150GB of data. For each frame of an episode,
only the unprocessed RGB image and the corresponding action are
available. That is, an episode is a set of image-action pairs. No
reward signal is available. Similarly, no measure of performance is
provided. In our study we considered only the first 100 trajectories,
a small fraction of the available data.

For our comparison, we fine-tuned the three VPT-based, pre-
trained foundation models introduced in Section 2. Additionally,
we compare ZIP to GAIL [21], a state-of-the-art IL algorithm. We
train GAIL from scratch until convergence for almost 6 hours on
the same subset of data, using VPT as encoder. While ZIP does not
require any training, we refer to training as the process of encoding
the experts’ trajectories through VPT (see Figure 2A). A comparison
of training times for our tested agents is shown in Figure 4. Notably,

Fig. 2. Our approach. (A) Latent space generation: trajectories
are extracted from the demonstration dataset. Frames are encoded
through a provided VPT model, and paired with the corresponding
actions. (B) Evaluation loop: at each time-step, the new observa-
tion is forwarded to the same VPT model. Then, L1 distance across
current and reference embeddings is computed and the most similar
situation is found. ZIP acts in the environment following the actions
of the selected reference situation.

Fig. 3. An example of the search mechanism. At each time-step, we
keep track of the distance between current and reference embedding.
Whenever the distance overcomes a threshold, a divergence-based
search (red line) selects a new reference embedding; if the agent
follows a threshold for too long, a time-based search (blue line) is
triggered. For each segment of the episode a yellow, dashed line
indicates the value of the reference distance. A brown diamond cor-
responding to each red line shows the distance value that triggered
the new search.
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Fig. 4. Time needed to train each agent on 100 trajectories on the
FindCave task. In the case of BC models, the training procedure
consists of fine-tuning a pre-trained VPT model. For ZIP, training
means encoding a subset of trajectories through the reference version
of VPT. All models have been trained on a single Tesla T4 GPU.

setting up ZIP (32 minutes) requires much less time than fine-tuning
any VPT-based BC agent (respectively, 108, 135 and 212 minutes),
or training GAIL (347 minutes).

We perform two sets of experiments. First, we analyse the re-
sults of the perceptual evaluation from BASALT [29], where human
contractors grade pairs of videos. Second, we approximate a quanti-
tative evaluation for the FindCave task from the BASALT suite. We
decided to evaluate only FindCave because, despite the other tasks,



we found a sufficiently reliable way of establishing a ground truth
for its completion. To this end, we train a simple binary classifier
to detect the presence of a cave. Our classifier is composed by four
convolutional layers and two fully-connected layers. The network
has been trained on a dataset of cave/non-cave frames, manually ex-
tracted from the original FindCave data, and achieved a validation
accuracy of 97.89% over it.

We test our agents on three-minutes-long episodes, similarly to
the official BASALT rules. We apply minimal changes to the termi-
nal condition of an episode, to ease the evaluation procedure while
keeping the performance evaluation intact. First, we disable the ter-
minal action ’ESC’ in all agents. We support this decision by high-
lighting that terminal actions constitute a minimal fraction of the
training examples, and a BC agent would likely ignore it [11]. Sec-
ond, the BASALT competition considers an episode to be successful
whenever an agent performs the terminal action while being inside a
cave. Instead, we consider an episode successful whenever an agent
spends more than five seconds (that is, 100 consecutive cave frames)
in a cave. We justify this choice by considering that a time threshold
keeps the original evaluation criterion intact, while accounting for
false positives such as random cave sightings.

As in the evaluation process of the BASALT competition, we
test our agent on twenty seed values. Since the official values used
in BASALT evaluation are not publicly available, we have selected
each seed manually to ensure the presence of caves. We repeat three
runs over our set of seeds.

Our approach relies on two parameters, maximum steps and di-
vergence scaling factor, regulating the frequencies of the two types
of search. Maximum steps regulates the maximum number of con-
secutive actions that an agent can use from the same trajectory, be-
fore triggering a new time-based search. On the other hand, di-
vergence scaling factor determines when a new divergence-based
search is triggered, based on how much the distance between current
and reference embeddings has increased compared to the last search.
For the perceptual experiment, we have set maximum steps = 128
and divergence scaling factor = 2.0. We perform an ablation study
over these hyperparameters, selecting nine values for each, centered
around our reference value. We test our agent for three runs of ten
episodes each, using a fixed seed.

Finally, we visualise and analyse the latent space generated from
VPT using a t-SNE plot. For visual clarity, we encode only 10 of the
100 trajectories used in our experiments. We differentiate trajecto-
ries by marking their points with different colors. Additionally, we
distinguish exploration frames from cave frames, and analyse their
distribution through the space.

4. RESULTS

We report both the perceptual and quantitative evaluations for our
agent. Notably, perceptual results have been obtained by asking
anonymous human contractors to compare randomly selected pairs
of agents. For each comparison, agents have been evaluated on
human-likeliness and success.

4.1. Perceptual evaluation

The organization committee of the competition ranked the agents
using the TrueSkill [33] ranking system, which is widely used in
the Microsoft online gaming ecosystem. Given a set of competitors,
the system uses Bayesian inference to compute an ELO-like score,
according to the match history of each competitor.

Table 1. Top-5 ranking of the NeurIPS BASALT 2022 competi-
tion [29]. Below, the TrueSkill [33] scores for two human expert
players, a BC baseline, and a random agent.

Team Find Make Build Build Average
Cave Waterfall Pen House

GoUp 0.31 1.21 0.28 1.11 0.73
ZIP 0.56 -0.10 0.02 0.04 0.13

voggite 0.21 0.43 -0.20 -0.18 0.06
JustATry -0.31 -0.02 -0.15 -0.14 -0.15

TheRealMiners 0.07 -0.03 -0.28 -0.38 -0.16

Human2 2.52 2.42 2.46 2.34 2.43
Human1 1.94 1.94 2.52 2.28 2.17

BC-Baseline -0.43 -0.23 -0.19 -0.42 -0.32
Random -1.80 -1.29 -1.14 -1.16 -1.35
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Fig. 5. Average success rate for tested models on the FindCave task.
Each agent has been evaluated on a batch of 20 seeds. Each run
has been repeated three times. Baseline model is highlighted with a
vertical blue line.

Our proposed ZIP agent was overall ranked second place in the
challenge. The results of our agent are described in Table 1. The first
place was awarded to team GoUp, who leveraged detection methods
and human knowledge of the task and combined them with script-
ing [29]. Notably, all the other learning-based methods achieved
lower performance than ZIP in three out of four tasks. Additionally,
our method was awarded with 2 out of 5 research innovation prizes
from the organizing committee.

4.2. Quantitative results

We report success rate for the tested models on the FindCave task
in Figure 5. ZIP has obtained the best performance, being able to
complete the task 43.32 ± 4.71% of the times. Notably, its worst
performance on our repeated trials has reported a 38.59% success
rate, comparable to the best run among all the BC agents (38.88%,
BC 3x).

GAIL was never able to complete the task. We have compared
our setup with [21] to account for errors in the hyperparameters val-
ues. We have trained GAIL for 6, 12, 18 and 22 hours. We have ob-
served a saturation of policy and discriminator losses after 6 hours.
By watching some videos of the trained policy playing the game, we
noticed an improvement over a random agent. Still, the trained agent
had difficulties in completing basic actions consistently.

On the contrary, VPT-based BC models have been pre-trained on
huge amount of data scraped from the internet. As a consequence,
fine-tuning them led to quite successful performance. More specif-
ically, BC 1x succeeded (on average) 28.33 ± 10.27% of the time,
while BC 2x reached 33.4 ± 4.71% of success rate. Perhaps sur-
prisingly, BC 3x completed the task only 23.5 ± 15.46% of times.
We explain this result by observing that our tested BC agents have



Fig. 6. Ablation study over the hyperparameters of our proposed
method. (A) Maximum number of time-steps following the same
trajectory. X-axis: values of the time-steps threshold; (B) Divergence
scaling factor. X-axis: divergence factor values. For visual clarity,
only average performance of the BC models is reported.

generally higher variance than ZIP. Thus, we believe that BC 3x only
suffered from poor choices of actions.

4.3. Ablation study

In Figure 6 we report the results of the ablation study conducted
over the hyperparameters of ZIP. While we were not able to identify
a precise pattern, it is clear that some values yield better results than
others. For instance, maximum steps (Figure 6A) seems to improve
ZIP’s performance when its value is between 32 and 128. This re-
sults confirms what we have found empirically, that is, 128 is a good
candidate.

As for divergence scaling factor, it appears that either 1.0, 2.25
and 3.0 are good choices. In particular, 1.0 yields no variance, sug-
gesting very consistent performance. In our reference implementa-
tion, we have used a value of 2.0, which does not seem to be com-
petitive with other values.

Following the results of the ablation study, we ran again the
quantitative experiment, changing only the hyperparameters values
to maximum steps = 32 and divergence scaling factor = 1.0. We
found that ZIP replicates the results obtained by our reference setup
almost perfectly (43.3 ± 6.24%). We justify this result by consid-
ering that the ablation study has been conducted on a fixed seed,
while the quantitative study uses variable seed values. Therefore,
in a complex environment such as Minecraft, changing conditions
can lead to substantially different results. Nonetheless, it is notable
how our agent was able to keep the same performance despite the
changes.

4.4. Latent space visualisation

In Figure 7 we show an example of latent space generated through
the VPT encoding. Each point represent one frame belonging to a
specific trajectory, separated by color. Star-shaped points refer to
cave frames of a specific trajectory.

Clusters of points are clearly distinguished. In general, clusters
are heterogeneous, even though some smaller clusters at the mar-

Fig. 7. Example of latent space generated by VPT. The example
shows only 10 out of 100 trajectories for visual clarity. Points be-
longing to the same trajectory are marked with the same color. We
highlight cave frames using a star-shaped marker.

gins of the space are formed by points of one or two demonstrations.
Those smaller clusters represent peculiar and rare situations that hap-
pened only once or twice, for instance, spawning in a desert area.

Figure 7 also shows that cave frames are concentrated on the
outskirts of the space, mostly on the right side. Interestingly, cave
frames belonging to one trajectory tend to be close to each other,
while being well separated from cave frames of another trajectory.
We suggest that the distribution of those frames might allow for more
refined strategies related to goal conditioning, or to navigate the la-
tent space.

5. CONCLUSIONS

We present Zero-shot Imitation Policy (ZIP), a search-based ap-
proach to behavioral cloning that efficiently adapts to new tasks,
leveraging pretrained models in complex domains. Our experiments
show that ZIP is a robust alternative to imitation learning methods,
while requiring very short amount of time to be set up.

ZIP is mostly limited by the size of the latent space and the qual-
ity of data used. Future works could explore the usage of external
tools for better data compression [34] or measures for ranking avail-
able data according to their relevance.
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