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ABSTRACT

Augmentation and knowledge distillation (KD) are well-
established techniques employed in audio classification tasks,
aimed at enhancing performance and reducing model sizes on
the widely recognized Audioset (AS) benchmark. Although
both techniques are effective individually, their combined use,
called consistent teaching, hasn’t been explored before. This
paper proposes CED, a simple training framework that distils
student models from large teacher ensembles with consistent
teaching. To achieve this, CED efficiently stores logits as well
as the augmentation methods on disk, making it scalable to
large-scale datasets. Central to CED’s efficacy is its label-free
nature, meaning that only the stored logits are used for the op-
timization of a student model only requiring 0.3% additional
disk space for AS. The study trains various transformer-based
models, including a 10M parameter model achieving a 49.0
mean average precision (mAP) on AS. Pretrained models and
code are available online.

Index Terms— audio tagging, audio classification, effi-
cient data storage, teacher-student, knowledge distillation.

1. INTRODUCTION

Audio tagging (AT) is a task that categorizes sounds into a
fixed set of event classes, e.g., a baby crying or water run-
ning. Applications of AT systems include aid for the hearing
impaired, general monitoring of sounds [1, 2] as well as ad-
ditional targets for keyword spotting [3, 4]. Enhancing per-
formance and minimizing the size of AT systems is vital for
practical deployment. We target performance and size en-
hancement through common methods: data augmentation and
knowledge distillation (KD).

In KD, a large teacher model generates soft labels (log-
its) for a smaller student model to learn from. Typically, the
objective of KD involves optimizing both the original hard la-
bels and the logits together. Yet, recent research [7] found that
using only logits as training targets can significantly improve
performance compared to the usual method. By combining
KD and data augmentation, also known as consistent teach-
ing [12], it has been suggested that performance can be further
boosted. Surprisingly, no previous research has applied this
approach to AT. We believe that the limited exploration of this
approach is due to challenges in efficiently implementing KD.
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Fig. 1. Our achieved performance in comparison to other
works on Audioset (AS-2M). We reference results from the
works in [5, 6, 7, 8, 9, 10, 11].

Practically, there are two main ways to implement KD: 1. On-
line KD infers each soft label during training by forwarding
a sample jointly through the teacher as well as the student. 2.
Offline KD stores augmented samples as well as the teacher’s
soft labels on disk and reads them during student training.
Both these methods have pros and cons, detailed in Figure 2.
Online KD is handicapped by its slow training speed because
samples need to be sequentially forwarded through student
and teacher, while offline KD can “parallelize” this process
by first creating the teacher’s data/logits. Conversely, offline
KD struggles when handling substantial augmented data due
to the storage demand of augmented samples. Thus, in prac-
tice, only logits from non-augmented training data are stored
on disk. Moreover, the performance of offline KD drops when
(inconsistent) data augmentation techniques are used on the
student’s input, as demonstrated in previous studies [7, 13].
Our research shows (Section 4.1) that consistent augmenta-
tion for both teacher and student inputs is crucial to improve
performance.

We would like highlight key distinctions between our re-
search two comparable works, Efficient-AT [13] and PSL [7]
works. Efficient-AT [13] has utilized standard offline KD
to achieve state-of-the-art (SOTA) performance on Au-
dioset [14] (AS), but due to the nature of offline KD, could
not apply consistent teaching. Further, work in [7] showed
that label-free online KD is feasible for AT, yet could only
use simple teacher models (MobileNetV2), since larger mod-
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Fig. 2. CED in comparison to standard on/off-line KD frame-
works. We first augment each sample using wave-level and
spectrogram-level augmentations. Then we use an (ensem-
ble) teacher model to predict scores for each respective sam-
ple and only store the seed which generated the augmenta-
tions and the top-k scores on disk.

els significantly slow down training. However, to the best
of our knowledge, there has been no previous work that
combined KD and augmentation with label-free online KD.
Finally, this work is closely related to the computer vision
work TinyViT [15], which applied a similar training pipeline
for image classification. Our contributions are as follows:
(I) We propose CED, a simple framework to efficiently store
and access logits as well as augmentation methods. CED only
requires a few bytes of storage per sample, making it scalable
to large datasets. (II) We introduce consistent teaching to AT,
which improves performance and reduces the performance
gap between teacher and student models. (III) We show that
the features of CED models are also transferable to other
audio classification tasks.

2. METHOD

A trivial solution to enable consistent teaching is to store an
entire augmented dataset for each epoch on disk, use a teacher
to predict logits and save those logits. However, this solution
is impractical for sizeable datasets, such as AS, due to its con-
siderable storage demand (500 GB per epoch). Further, audio
can be augmented on wave and spectrogram levels, meaning
that one would need to save augmented waveforms as well as
their respective spectrograms, further increasing the storage
requirement.

Instead of storing augmented samples on disk, CED
only stores the seed that generated each respective aug-
mented sample. Specifically, given a single audio sample
x ∈ RTw with Tw taps, we first apply wave-level augmen-
tations x̂ = wavaug(x, ϕ) using a random seed ϕ on the
sample. Then, a Mel-spectrogram X ∈ RF×T is extracted
from x̂ and augmented using spectrogram-level augmenta-

tions: X̂ = specaug(X, ϕ). Instead of storing x̂ and X̂, we
efficiently store ϕ on disk for each sample.

Then we use a teacher model T to predict logits yT ∈
[0, 1]C from the given sample X̂ for C classes during each
epoch e = 1, . . . , E. Directly storing yT for a dataset with N
samples, C classes and E epochs requires NCE disk space.
In the case of AS, N = 2× 106, C = 527, results in approx-
imately 4 GB (float 32) of storage per epoch.

In our study, we’ve chosen to preserve only the most
prominent K logits ŷtop−k for each sample, along with
the corresponding label indices ŷtop−idx. Overall, we save
{ŷtop−k, ŷtop−idx, ϕ} as 16-bit float, 16-bit integer and 32-bit
integer, respectively. This approach leads to a storage require-
ment of ((K × (2× 2)) + 4) bytes per logit. For our chosen
K = 20, this results in approximately 84 bytes, or around 80
MB per AS-2M epoch. Notably, this is significantly lower
compared to the naı̈ve solution that would demand 4 GB.
As we only retain K logits on disk, we assume a remaining
probability of 0 for each sample. While we investigated al-
ternative methods for handling remaining probabilities, these
methods did not yield noticeable improvements.

3. EXPERIMENTS

3.1. Dataset

Our training and evaluation dataset is AS [14], which mainly
contains 10-second-long audio clips labelled with 527 differ-
ent sound event classes. We collected 1,904,746 training sam-
ples and 18,299 evaluation samples sampled at 16 kHz. The
training set is split into two subsets, the balanced (AS-20K)
subset with 21,155 samples, and the entire full (AS-2M) sub-
set with 1.9M samples. Our experiments are first run on the
AS-20K subset to ascertain our method’s effect and then the
findings are applied by training on AS-2M.

3.2. Models

Student models The present study employs four vision
transformer (ViT)-based architectures (see Table 1), namely
(CED-) Tiny, Mini, Small, and Base [16], all of which closely
follow ViT (pre-norm + GeLU activation). Each model’s
setup follows [2], where we employ 64-dimensional banks
at a 16 kHz sampling rate, extracted within a 32 ms window
and a 10 ms hop. These filterbanks are first normalized using
batch normalization. From these spectrograms, we extract
non-overlapping patches with a size of 16 × 16, resulting in
252 = 62 × 4 patches for a 10 s input in time/frequency,
respectively. We use absolute positional embeddings, where
time and frequency are independently modeled to allow these
models to handle variable-sized inputs during inference. In
order to achieve competitive performance [13], we use the
masked autoencoder paradigm (MAE) to pre-train all teacher
and student models [11, 2] on AS.



Model # Parameter Embed MLP #Heads

Tiny 5.5 M 192 768 3
Mini 10 M 256 1024 4
Small 22 M 384 1536 6
Base 86 M 768 3072 12

Table 1. The utilized models in this study. “Embed” refers to
the embedding dimension, “MLP” to the dimension of each
block’s multi-layer perceptron and “#Heads” stands for the
number of independent attention mechanisms.

Teacher model Inspired by [13], we use an ensemble of
differently-sized transformer models to predict labels. Specif-
ically, the ensemble consists of two ViT-Base models and
three ViT-Large models, which all have been independently
trained on AS. Since CED requires consistency between the
input features, the Mel-spectrogram configuration of each
teacher is identical to a student. The ensemble teacher model
achieves an mAP of 50.1 on the evaluation set of AS.

3.3. Augmentations and Logits

Even though our pipeline can support a plethora of augmen-
tation methods, we keep the augmentations in this work sim-
ple. In the waveform domain, we use sample-level shifting
of the signal. Further, in the spectrogram domain, we use
SpecAug [17], masking at most 192 time-frames and 24 fre-
quency banks. On AS-20K we additionally apply mixup [18]
with λ = 0.5. In order to further conserve storage space,
we only save a certain amount of epochs and cycle over the
dataset during training, which we set to E = 40 for AS-20K
and E = 10 for AS-2M. Further, we use K = 20 as the de-
fault for all experiments, leading to an overall size of 1.5 GB,
or 0.3% of the AS-2M data. A storage requirement compari-
son between CED and previous works can be seen in Table 2.

Method Aug? AS-20K AS-2M

Naı̈ve ✗ 42 3800
Efficient-AT [13] ✗ 21 1900
Proposed (K = 20) ✓ 1.8 155

Table 2. Logit storage requirement per epoch given in
Megabytes (MB). “Naı̈ve” refers to storing all C = 527 logits
using float32 precision and “Efficient-AT” uses float16 preci-
sion. “Aug?” indicates consistent augmentation support.

3.4. Setup

The majority of works on AS-2M use a balanced sam-
pling strategy [10] due to its long-tailed label distribution,
which has been shown to have a negative impact on other
datasets [19]. In line with the label-free nature of our work,

TAug SAug Tiny Mini Small Base

✗ ✗ 28.52 30.52 32.28 37.87
✗ ✓ 28.77 30.35 32.54 37.09
✓ ✗ 31.75 33.45 34.30 39.03
✓ ✓ 36.47 38.50 41.55 43.97

Table 3. Impact of consistent training between teacher and
student. The training data is AS-20K and values represent
mAP on the AS evaluation set, where higher is better.

we do not use a balanced sampling strategy, since our method
has no access to hard labels during training and thus sample
randomly. We train with an 8-bit Adam optimizer [20] using
a cosine learning rate decay scheduler and a maximal learn-
ing rate of 0.001 for the Tiny/Mini models and 0.0003 for the
Small/Base models. We warmup the learning rate for 5,000
and 62,500 batches for AS-20K and AS-2M, respectively and
decay the learning rates to 10% of their maximal value over
the training period. We use the standard binary cross entropy
loss (BCE) between the student’s predicted logits and the
teacher’s logits as the training objective and the main evalu-
ation metric is the mean average precision (mAP). Training
runs for 300 epochs with a batch size of 32 on AS-20K and
for 120 epochs with a batch size of 128 on AS-2M. Overall,
logit extraction takes 30 hours and training takes at most 4
days on a single A100 GPU, depending on the model size.
We use AS-20K for model analysis and ablation studies.
The neural network back-end is implemented in Pytorch [21]
and the source code with pretrained checkpoints is publicly
available1.

4. RESULTS

4.1. Consistent teaching

Here, we provide evidence that using consistent augmenta-
tions between teacher and student is crucial to improving per-
formance. The results of our experiment can be seen in Ta-
ble 3, where TAug represents using augmentation during logit
prediction and SAug represents applying augmentation (see
Section 3.3) on the student’s input. In summary, introduc-
ing augmentation to student inputs produces minor perfor-
mance changes (within -0.8 to +0.2 mAP) across models, in
line with [13]. Conversely, augmenting only teacher inputs
yields noteworthy enhancements, surpassing the baseline by
more than 2 mAP points. Finally, when using CED, which
applies consistent teacher-student augmentation, substantial
performance improvements emerge. These gains range from
5 to 7 mAP points over the baseline.

1https://github.com/RicherMans/ced

https://github.com/RicherMans/ced
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Fig. 3. Performance and storage impact of different K in AS-
20K. We depict the achieved mAP for K = 20 (proposed)
and K = 527 (best). Best viewed in color.

4.2. Impact of saving K logits

Figure 3 presents our findings on the AS-20K dataset using
K = {10, 20, 40, 100, 527}, while setting E = 300. Gener-
ally, larger K correlates with improved performance, though
this improvement comes at the cost of heightened storage
needs. The performance gap between K = 10 and K = 20
(proposed) is significant, showing a 1-point mAP difference,
while the storage impact remains minimal. Note that for K =
527, the storage demand increases to 12 GB, an additional
190% of the original dataset size of 6.3 GB. In summary, the
value of K can be customized according to the dataset size
and storage availability, given its direct influence on both per-
formance and storage demands.

4.3. Main results

The main results of CED when compared to previous work
can be seen in Table 4. Notably, our Mini model showcases
superior performance, achieving an mAP of 49.0, while utiliz-
ing a mere 10 million parameters. Moreover, our single Base
model with an mAP of 50 exhibits only a slight performance
gap in comparison to the 5-way ensemble teacher with 50.1.

4.4. Transfer to downstream tasks

Here we investigate whether CED-trained features are trans-
ferable to other downstream tasks, specifically for sound
event detection (FSD50K, DCASE16) and acoustic scene
classification (ESC-50). To assess this, we employ the
HEAR [24] benchmark, which employs a linear classifier atop
extracted features. For all experiments, we extract features
from the penultimate layer of our model by mean averaging
all patches. Results can be seen in Table 5, where CED-
trained models are compared against alternative AS-based
approaches. CED-trained models can be seen to perform well
across a variety of sound-related downstream tasks.

2On our evaluation split the model obtains 46.6.

Model #Par (M) AS-20K AS-2M

B
as

el
in

e

CNN14 [10] 81 27.8 43.1
MobileNetV2 [7] 2.9 35.5 40.3
HTS-AT [8] 31 - 47.1
AST [6] 86 34.7 45.9
MaskSpec [22] 86 32.3 47.1
BEATs [5] 90 38.9 48.62

AudioMAE-B [11] 86 37.0 47.3
ConvNeXt [23] 28 - 47.1
MN10-AS [13] 4.9 - 47.1
MN20-AS [13] 18 - 47.8
MN40-AS [13] 68 - 48.7
MAViL [9] 86 41.8 48.7

C
E

D

Tiny 5.5 36.5 48.1
Mini 10 38.5 49.0
Small 22 41.6 49.6
Base 86 44.0 50.0

Table 4. Main results on AS-20K and AS-2M. Models high-
lighted in grey have been trained with multi-modal supervi-
sion (Audio + Visual). Best in bold.

Model FSD50K ESC-50 DCASE16

CNN14 - 90.85 0.0
Eff-B2 60.71 93.45 79.01
PaSST 64.09 94.75 78.79
MN-40AS 63.12 96.15 81.30
Tiny 62.73 95.80 88.02
Mini 63.88 95.35 90.66
Small 64.33 95.95 91.63
Base 65.48 96.65 92.19

Table 5. Linear evaluation results on the HEAR benchmark
for sound detection tasks in comparison to previous works.
Additional results are publicly available. Best in bold.

5. CONCLUSION

This work introduced CED, a simple training framework for
distilling AT models with consistent teaching. Our work aims
to efficiently distil a single model from an ensemble of large
teacher models by storing the teacher model’s logits as well
as their respective augmentation method on disk. Our results
show that with CED, we can efficiently distil single models
that are capable of achieving performance similar to large en-
sembles. The Mini network can achieve an mAP of 49.0, out-
performing previous studies by a significant margin, with a
fraction of the number of parameters. While this work fo-
cuses on transformer-based teacher and student models, it is
important to note that CED is a general framework and can be
used to distil other network types.

https://hearbenchmark.com/hear-leaderboard.html
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and Timothée Masquelier, “Adapting a convnext model
to audio classification on audioset,” arXiv preprint
arXiv:2306.00830, 2023.

[24] Joseph Turian, Jordie Shier, Humair Raj Khan, Bhiksha Raj,
Björn W Schuller, Christian J Steinmetz, Colin Malloy, George
Tzanetakis, Gissel Velarde, Kirk McNally, et al., “Hear: Holis-
tic evaluation of audio representations,” in NeurIPS 2021 Com-
petitions and Demonstrations Track. PMLR, 2022, pp. 125–
145.


	 Introduction
	 Method
	 Experiments
	 Dataset
	 Models
	 Augmentations and Logits
	 Setup

	 Results
	 Consistent teaching
	 Impact of saving K logits
	 Main results
	 Transfer to downstream tasks

	 Conclusion
	 References

