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ABSTRACT

Seizure events feature temporary abnormalities in muscle
control or movements. They are usually caused by exces-
sive neuronal activities in the brain, and are called epileptic
seizures (ES). Nevertheless, not all seizures are epileptic in
origin. Some are caused by psychological reasons, and such
type of seizures are called psychogenic non-epileptic seizures
(PNES). We propose a method to classify ES and PNES based
on clinical signs in the seizure videos. In particular, inspired
by BERT, we propose a Transformer-based framework that
pre-trains on large unlabeled clinical videos, and then we
fine-tune the pre-trained model for seizure classification with
a minimum modification. We conduct a leave-one-subject-
out (LOSO) validation on our dataset. The F1-score and
accuracy are 0.82 and 0.75, respectively. To our knowledge,
the proposed approach is the first attempt to use large unan-
notated data and learn useful representations for downstream
tasks in the field of video based seizure analysis.

Index Terms— Seizure Video Analysis, Self-Supervised
Learning, Computer Vision, Deep Learning

1. INTRODUCTION

Epilepsy is one of the most prevalent neurological disorders,
affecting nearly 1% of the population worldwide. It is charac-
terized by recurrent seizures, which are caused by abnormal,
excessive neuronal activity in the brain [1]. Nevertheless,
not all seizures are epileptic in origin. Some are caused by
psychological reasons, and such type of seizures are called
psychogenic non-epileptic seizures (PNES), which are not
associated with an epileptic discharge. To determine if a
seizure is caused by epileptic discharges, Video-EEG moni-
toring is used to check the existence of simultaneous culprit
brain EEG rhythms during the seizure. Despite the different
cause of epileptic seizures (ES) and PNES, these two types
of seizure could be similar in terms of the semiology, i.e. the
clinical signs. Even for experienced neurologists, it could
be challenging sometimes for them to correctly distinguish
them. In addition, the evaluation could be subject to inter-
observer variability. Hence, a computer-aided diagnosis is
naturally considered as a way to improve the quality of the

assessment.
Deep learning is a promising approach to analyze seizure
videos given its ability to tackle different complex problems,
such as computer vision [2], speech recognition [3], and
natural language processing (NLP) [4]. Nevertheless, deep
learning usually requires a large volume of annotated data
for training, and in medical domains, large labeled data is
usually costly to get. Inspired by BERT [5], a self-supervised
learning (SSL) framework using large unlabeled data to learn
useful features for downstream tasks, we investigate if such
paradigm can be applied into vision-based seizure analysis.
Specifically, we collect voluminous unlabeled data for pre-
training a Transformer model [6], and fine-tune the pre-
trained model for seizure classification (ES v.s. PNES). The
unlabeled data for pre-training are clinical videos without la-
bels, and we call them as “contextual videos”. The contextual
videos are recorded in the EEG-Video monitoring unit, as
like the labeled seizure videos. They contain daily behaviors
of patients and possibly other associated people in the unit.
The videos are expected to provide visual information of the
context where seizures are recorded. Such data is easily ac-
cessible and thus suitable for SSL-based pre-training.
We pre-train the encoder of Transformer with a denoising ob-
jective, where the input video is corrupted and the model aims
to recover the visual features of the original frame sequence.
The learning objective is inspired by BART [7], a denoising
sequence-to-sequence model for NLP. In our study, after pre-
trained on the contextual videos, the model is fine-tuned for
classification, where the input video is not corrupted. To our
knowledge, the proposed approach is the first attempt to use
large unannotated data for learning useful representations for
downstream tasks in the field of video based seizure analysis.
We consider it an inevitable trend for medical applications, as
large-scale annotations for medical data are usually difficult
to obtain.

2. RELATED WORK

Although the incentive to use deep learning for seizure video
analysis given its capability in computer vision is natural,
studies on the topic are still very limited compared to those
using EEG signals. Karácsony et al. [8] use pre-trained



spatiotemporal features along with a long short-term mem-
ory (LSTM) classifier to distinguish temporal lobe epilepsy
(TLE) and frontal lobe epilepsy (FLE). Ahmedt-Aristizabal
et. al. [9, 10] propose multi-modal approaches to classify pa-
tients with mesial temporal lobe (MTLE) and extra-temporal
lobe (ETLE) epilepsy, with a focus on facial expressions and
pose dynamics. The approaches are based on convolutional
neural networks (CNN) and LSTM. Achilles et. al [11] use
CNN to analyze infrared and depth videos for epilepsy classi-
fication, however the method does not leverage temporal con-
sistency. To distinguish ES from PNES, Ahmedt-Aristizabal
et. al. [12] and Hou et al. [13] feed both appearance and
keypoints (e.g. joint locations) into neural nets. Nevertheless,
with the inclusion of joint information, the performance may
be vulnerable to conditions where joint estimation are poorly
performed, which is not rare due to the frequent occlusion
occurred in seizure videos. In this study, we attempt to use
only appearance for comparable results on the same task.
Recent research utilizing large data via pre-training Trans-
former for medical applications are mainly related to vision-
and-language (VL) learning. Moon et al. [14] pre-trains a
Transformer-based model on aligned X-ray images and as-
sociated reports for learning joint VL representations in the
medical domain. The downstream tasks include both compre-
hension and generation tasks. Li et al. [15] and Monajatipoor
et al. [16] use off-the-shelf pre-trained VL models, whose VL
data for pre-training are not medical ones, to directly learn
multimodal representation on radiographs and associated re-
ports.
Our work introduces the Transformer-based pre-training
paradigm into vision-based seizure analysis, and we con-
sider it a promising way to benefit from large unannotated
data in the field.

3. APPROACH

3.1. Data collection

3.1.1. The contextual video dataset

Here we introduce the clinical videos used for pre-training.
Each patient stays one week in the epilepsy monitoring units
(EMUs) of Marseille University Hospital where both Video
and EEG monitoring are performed. So there are hundreds
of hours of video recordings for each patient. If seizures
occurs during the session, the medical staff will identify and
extract the video segments afterward, and then save them in
the database of the hospital. As for parts where no seizure
events are involved, these recordings will be erased weeks
later, because they could be bulky for storage yet not infor-
mative in terms of medical viewpoints.
Nevertheless, in terms of deep learning, these ‘meaning-
less’ seizure-free videos might be useful. The reason is that
they can provide the visual information of the surround-
ings/environments of how seizures are captured. In addition,

Fig. 1. The contextual videos used for pre-training cover the
daily behaviors of patients in the Video-EEG monitoring unit,
except for the onset seizure events. They include (a) eating
food, (b) interaction with their family, (c) sleeping, (d) using
laptops/smartphones, (e) being checked by the clinical staff.
The empty settings are possibly recorded if the patients leave
the room, like (f). Night conditions are also included.

Type ES PNES
Number of patients 52 29
Number of seizures 235 48
Average seizure duration [sec] 45.4 52.9
Min. seizure duration [sec] 7.5 12.1
Max. seizure duration [sec] 150.2 119.4

Table 1. Some statistics of our seizure video dataset.

we can have a large quantity of them, and the mainstream
deep learning/machine learning models usually favors big
data. Given that, we intentionally collected more than 1000
hours seizure-free videos, and we call them as ‘contextual
videos’ in this research. The behavior in these contextual
videos can be as diverse and natural as those in daily routines,
such as eating, sleeping, chatting with their families, and
interaction with clinicians. The recording conditions include
both daytime and night. Some selected samples are shown in
Fig. 1.

3.1.2. The seizure video dataset

Our seizure videos consist of ES and PNES. After segmenting
out each seizure for a new video clip, we saved the new clip as
its original format. We then converted the trimmed clips into
image sequences for each clip at a frame rate of 25 frames per
second, while keeping the resolution unchanged. We resize
the aspect ratio until the frames were fed into the developed
models. Table. 1 shows some statistics of our seizure video
dataset.

3.2. Pre-training and fine-tuning the model

Inspired by BART [7], another Transformer-based SSL model
for NLP, which corrupts input text with an arbitrary noising



function and makes Transformer to reconstruct the original
text, we include this concept of denoising objective into our
model in the pre-training phase, as shown in Fig. 2. From
the contextual video dataset Dc, for each video Vc ∈ Dc, we
have ordered image sequence as Vc = (m1

c , . . . ,m
K
c ). Two

noising functions are applied on Vc. We change the sequence
ordering by permuting Vc, and then randomly mask out some
frames, resulting in a noised version of Vc, denoted as Ṽc.
The pre-training objective is to regress the Transformer out-
put of each frame in Ṽc to the visual features of Vc. The L2
regression loss is formulated as:

L(θ) = Evc∼Dc

K∑
i=1

‖hθ(ṽc(i))− r(v(i)c )‖
2

2 (1)

Where θ is the trainable parameters of the Transformer,
and its output is expressed as hθ. We take ResNet-152 [17] as
our CNN backbone to generate visual features. The ResNet-
152 is pre-trained on ImageNet [18], and we remove the last
classification layer to generate a 2048-d feature. We denote it
as r as the function for frame descriptor.
After pre-training the Transformer on the contextual video
dataset Dc with the defined objective loss as equation 1, we
add a fully-connected layer (FC) on top of our pre-trained
Transformer for classification, as shown in Fig. 3. Then fine-
tune the whole model on the target dataset Ds, which contains
seizure videos for seizure type classification. For each seizure
video Vs ∈ Ds, we have an uncorrupted image sequence as
input to Transformer as Vs = (m1

s, . . . ,m
N
s ), with the corre-

sponding binary seizure type labels ys ∈ L. In the fine-tuning
phase, the seizure classification task is optimized based on the
standard binary cross-entropy loss as

LCE = Evs∼Ds
(ys · log(Softmax(FC(hθ(vs))))+

(1− ys) · log(1− Softmax(FC(hθ(vs)))))
(2)

4. EXPERIMENTATION

In this section, we give the details of the implementation of
the experimentation.

Dataset and pre-processing
For pre-training the Transformer model, there are about 13k
10-second clips in the contextual video dataset Dc, resulting
in a total 36 hours of clip duration. We convert the clip into
image sequence at 25 fps. We resize the frame into a 128 ×
171 dimension, and while generating the training mini-batch,
a random crop of 112 × 112 is applied on the frames.
In the fine-tuning step for seizure type classification, seizure
dataset Ds is used. Ds covers all the seizure videos. In other
words, Ds contains 283 trimmed seizure videos, and among
them, 235 videos belong to ES, and 48 videos are PNES. A
total of 81 patients are involved, in which the ES and PNES
class has 52 and 29 patients, respectively. The length of

Fig. 2. SSL-based pretraining on contextual videos: The in-
put sequence is the ”noised” version of the target sequence,
where random frames are masked out and permutation is ap-
plied. We pretrain the encoder of Transformer to reconstruct
the corresponding visual features.

Fig. 3. Finetuning phase for seizure type classification: In
the fine-tuning phase, an uncorrupted seizure video sequence
is fed into the pretrained model. A classification head, i.e.
fully-connected layer, is added on top of the pretrained model
for the classification task.

seizure videos ranges from 7 seconds to 150 seconds. After
converting the seizure videos into image sequence, we detect
the target patient with a SSD detector [19] pre-trained on our
seizure video dataset, as shown in Fig 4. The Intersection
over Union (IoU) is 0.89. The cropped region is then resized
to a 128 × 171 dimension, and a center crop of 112 × 112
is applied on the frames. Normalization of image tensors
are implemented by subtracting the mean and divided by the
standard deviation across each channel.

Specification of the Transformer
Regarding the specification of the Transformer used in this
work, the number of attention head h is 8. Model dimension
dmodel is set as 1024. The maximum position is set as 256.
The number of encoder layer is 6. The number of total train-
able parameters is about 78M.



Fig. 4. Patients in image frames are detected and cropped
before feeding into the pre-trained Transformer model for the
downstream seizure classification task.

Corrupt the input for pre-training
The video sequence as input for the Transformer while pre-
training is corrupted, in terms of frame ordering and infor-
mation masking. The input length of the model is set as
256. A span of consecutive 30 frames are randomly selected
and relocated for frame permutation. As for frame masking,
following BERT [5], we replace 15% of frames with visual
MASK tokens. The visual MASK and PAD tokens are tensors
with the shape of image tensors but filled with fixed values of
-1.0 and 0.0, respectively.

Training details
We pre-train the Transformer for 60 epochs. The initial learn-
ing rate is 0.01, with a linearly decreased scheduler. Weight
decay for pre-training is set as 0.0001. The pre-training pro-
cess takes 670 gpu-hours (roughly 14 hours on 48 V100 gpus
across 6 nodes). We adopt AdamW [20] as the optimizer.
As for fine-tuning the Transformer, we train it for 50 epochs.
Batch size is 16. Except for setting the initial learning rate
as 0.005, other training settings are the same as those in the
pre-training phase. We test the whole videos by temporally
averaging the predictive results. A dropout rate of 0.5 in
the final classifier layer is set. In addition, to mitigate the
imbalanced dataset, a class weight (reciprocal of the number
of video clips per class) is added in the cross entropy loss.
The implementation of the Transformer model is based on
the Huggingface library [21].

Experimental results
We perform a leave-one-subject-out (LOSO) validation. The
F1-score and the accuracy are 0.82 and 0.75, respectively. As
shown in Table 2, our results are comparable to other state-of-
the-art seizure classification tasks on distinguishing ES from
PNES. In particular, the dataset used in [13] is the subset of
the one used in this study. We gain a performance boost while
including more seizure videos. This indicates our proposed
Transformer-based pre-training approach can learn robust and
generalizable features for the downstream task. The video-
wise confusion matrix is shown in Table 3.

Method Patients
/Videos

Performance

A.-Aristizaba et
al. (2019) [12]

35/50 Accuracy (Landmark-
based/Region-based):
0.68/0.79

Hou et al.
(2021) [13]

34/61 F1-score: 0.76
Accuracy: 0.72

Ours 81/283 F1-score: 0.82
Accuracy: 0.75

Table 2. Comparison of deep learning-based seizure classifi-
cation task on distinguishing ES from PNES. The number of
patients and seizure videos in our study are the largest among
the related works. Our experimental results are shown to be
comparable to those works.

(predicted)
ES

(predicted)
PNES

(true)
ES 181 54

(true)
PNES 15 33

Table 3. Confusion matrix of the video-wise classification
results by leave-one-subject-out validation.

5. CONCLUSION

In this study, we propose a Transformer-based self-supervised
pre-training framework for learning features suitable for the
downstream task, i.e. classifying ES and PNES videos. The
paradigm aligns with the research direction of self-supervised
pre-training that takes advantage of large unannotated data
and learns useful representations from it for downstream
tasks. This may be especially favored for medical applica-
tions where data annotations are usually costly. In our work,
a Transformer-based model is pre-trained on a large volume
of contextual videos with denoising pre-training objectives.
By simply fine-tuning the pre-trained model with a minimum
model modification, the experimental classification results
can compete with methods from other state-of-the-art works
for the same task. To our knowledge, this is the first deep
learning work exploiting large unlabeled data for facilitating
vision-based seizure analysis. We hope our study can inspire
the research community regarding seizure video analysis to
rethink how we can benefit from large unannotated data.
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