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ABSTRACT

The version identification (VI) task deals with the automatic detec-
tion of recordings that correspond to the same underlying musical
piece. Despite many efforts, VI is still an open problem, with
much room for improvement, specially with regard to combin-
ing accuracy and scalability. In this paper, we present MOVE,
a musically-motivated method for accurate and scalable version
identification. MOVE achieves state-of-the-art performance on two
publicly-available benchmark sets by learning scalable embeddings
in an Euclidean distance space, using a triplet loss and a hard triplet
mining strategy. It improves over previous work by employing an al-
ternative input representation, and introducing a novel technique for
temporal content summarization, a standardized latent space, and a
data augmentation strategy specifically designed for VI. In addition
to the main results, we perform an ablation study to highlight the
importance of our design choices, and study the relation between
embedding dimensionality and model performance.

Index Terms— Cover song identification, deep learning, music
embedding, network encoder.

1. INTRODUCTION

Version identification (VI) commonly refers to the task of determin-
ing, by computational means, whether two audio renditions corre-
spond to the same underlying musical composition [1]. Being more
challenging than traditional audio fingerprinting [2], VI goes beyond
near-exact duplicate detection to embrace additional perceptual dif-
ferences that, despite having a contrasting imprint in the signal, con-
vey the same musical entity [3]. Such is the case of changes in instru-
mentation, musical key, tempo, timing, structure, or lyrics, to name
a few [1]. Besides digital rights management, VI has application to
music organization, retrieval, navigation, and understanding.
Traditional VI systems generally approach the task with a
pipeline consisting of three main stages [4]. Firstly, as many other
content-based retrieval methods, VI systems use feature extraction
to obtain relevant information from the audio signal. Representa-
tions like predominant melody, pitch class profiles (PCP), or the
constant-Q transform (CQT) have proven useful for this initial
step [5-7]. Secondly, traditional VI systems use various post-
processing strategies for achieving transposition, tempo, timing,
or structure invariance [8—10]. Thirdly, for estimating similarity
between pairs of songs, VI systems use segmentation strategies or
local alignment methods, which also introduce invariance with re-
gard to musical piece structure [10-12]. Further approaches have
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explored combining the information obtained from different fea-
tures and/or different alignment schemes with early or late fusion
techniques [12—-14]. These, together with some previous solutions,
achieve good performance in different evaluation contexts but,
nonetheless, have difficulties in scaling to datasets above tens of
thousands of songs [15]. With the release of the SHS dataset [16],
researchers explored scalable approaches based on audio hashprints,
the 2D Fourier transform, or motif-finding strategies [9, 17, 18], but
those achieved a limited success compared to their predecessors.

Recent deep learning approaches for VI aim to provide sys-
tems that are both accurate and scalable. In general, they focus
on learning accurate, low-dimensional embeddings of recordings
for, later, estimating similarities with basic distance metrics, with
the intention to exploit existing scalable nearest-neighbor libraries.
Xu et al. [19] and Yu et al. [20] train their convolutional networks
in a multi-class classification fashion, where each version group (or
clique) is considered a unique class, and use PCP and CQT as their
inputs, respectively. For evaluation, they use the representations
obtained from the penultimate layer of their network as embed-
dings. Beyond classification-based strategies, deep metric learning
approaches with contrastive and triplet losses are becoming popular
for VI. Qi et al. [21] use a convolutional network with PCPs as input
and a triplet loss as the objective function. As an alternative to using
PCP variants, Doras & Peeters [22] use a 2D predominant melody
representation as input to their convolutional network, which is
also trained with a triplet loss but using an online semi-hard triplet
mining strategy.

In this paper, we propose a music embedding method that al-
lows for both accurate and scalable VI. We call it MOVE: musically-
motivated version embeddings. MOVE achieves state-of-the-art re-
sults on two publicly-available benchmark sets and, since it is based
on Euclidean distances, allows for efficient retrieval and indexing us-
ing existing libraries. The architecture of MOVE introduces a num-
ber of improvements, including (1) a relatively novel input represen-
tation that has not been explored in the context of deep metric learn-
ing for VI, (2) a multi-channel adaptive attention mechanism that
is an alternative to previously-used temporal aggregation strategies,
and (3) a non-parametric batch normalization at the last layer to yield
a standardized embedding space. The training of MOVE, like other
recent VI systems, is done with a triplet loss. However, in contrast
to those, it uses an online hard triplet mining strategy. In order to
learn invariances with respect to the modifiable musical characteris-
tics, MOVE is trained with a VI-specific data augmentation strategy.
To gain insight, we perform an ablation study and also investigate
the role of embedding dimensionality. To enable further research,
we evaluate our method on publicly-available datasets and provide
our code at https://github.com/furkanyesiler/move.
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Fig. 1. Block diagram of MOVE’s architecture.

2. MUSICALLY-MOTIVATED VERSION EMBEDDINGS

2.1. Input

We use as input a relatively novel PCP variant: crema-PCP. This rep-
resentation is constructed by using the output of an intermediate step
of the crema chord estimation model [23]. For each frame, the crema
model estimates the root, the bass, and the pitch classes, which are
later combined to output a single chord. Specifically, crema-PCP is
constructed by taking the sigmoid activation values of pitch classes
for each frame, and considering them as the energy values of each
pitch class [23]. Although being a fairly new approach, crema-
PCP has been shown to outperform elaborate PCP representations in
some benchmarking experiments [15]. We use the pre-trained model
available at https://github.com/bmcfee/crema (version
0.1.0) and denote the obtained output by X € [0, 1]***7, where T is
the number of frames using non-overlapping windows of 93 ms. For
training, we take random patches of 7" = 1800 frames after applying
data augmentation (see below) to a full song. At inference time, we
give entire tracks to the model without picking random patches of
a particular length (preliminary experiments showed that the below-
proposed temporal pooling strategy was also effective with entire
tracks at inference time).

2.2. Network architecture

MOVE consists of 5 convolutional blocks with PReLU activation
functions and no padding, interleaved by two different pooling lay-
ers (Figure 1). A linear layer followed by non-parametric batch
normalization produces the final embedding. With the current best
setup, the total number of parameters is 6.3 M. We now motivate and
present the key components of MOVE.

Transposition-invariant architecture — Following the strategy
proposed by Xu et al. [19], we increase the dimension of the crema-
PCP inputs X from 12x7" to 23x 7T by concatenating two copies of
X in the pitch dimension and removing the last pitch class. The first
convolutional layer, with a kernel size of 12 x 180 traverses the input,
going through all possible transpositions in the pitch dimension, and
the subsequent max-pooling layer, with a kernel size of 12x 1, keeps
the transposition with the highest activation value (convolutions in
MOVE have no padding).

Expanding the receptive field — The 4 convolutional blocks after
max-pooling are designed to encode higher-level information and
to increase the receptive field of the model (Figure 1). On the one
hand, with the layers that have no dilation, we aim to encode higher-
level nonlinearities without expanding the temporal context. On the
other hand, with the layers that have dilations 20 and 13, we increase

the receptive field, which after max-pooling is less than 17, to ap-
proximately 30s. Notice that this temporal span could be already
sufficient to detect musical piece versions, at least from a human
perspective. However, to process an even larger time span, and to be
able to deal with different lengths 7" at test time, we still perform an
additional step.

Summarizing temporal content — We consider the convolutional
part of our network as a feature extractor that processes the input
to obtain a representation that is invariant to the modifiable musical
characteristics mentioned in Section 1. In order to summarize the
values of each feature in the temporal dimension, unlike previous
approaches that use average- or max-pooling variants [20, 22], we
propose a multi-channel adaptive attention mechanism, which com-
bines multi-channel temporal attention [24] with auto-pool [25]. The
first idea is to let the network compute (and learn) the importance of
each time step independently for each feature with an attention-like
mechanism [24]. The second idea is to apply a non-linear, learn-
able pooling function with a scaling parameter before the softmax
function [25] such that, depending on the value of such parameter,
the function pivots between average- and max-pooling. In practice,
temporal summarization is done by calculating channel-wise atten-
tion weights, which correspond to the first half of the filters of the
last convolutional layer, using the auto-pool function, and utilizing
the result to weight the last half of the filters of the same layer.
Splitting the hidden representation channel-wise into two halves,
H = [H, H,], this corresponds to

T
H =) o(aH,) © Hy,
t=1

where the sum is taken across the temporal dimension, o corre-
sponds to the softmax function, « is a learnable parameter which we
initialize to O (equivalent to average-pooling), and © is the element-
wise product.

Standardizing embedding components — For deep metric learn-
ing approaches using a triplet loss, it is highly important to take into
account the volume of the hyper-dimensional space where the em-
beddings lie, specially during training. For instance, if the magnitude
of the distances and the margin are disproportionate, the training pro-
cess may not be able to structure the latent space in an effective way.
With these motivations in mind, we propose to use non-parametric
batch normalization after the linear layer that finalizes the encoding
process. By doing so, we aim to obtain zero-mean and unit-variance
components in our embeddings, yielding a statistically-standardized
latent space volume. This, together with dimension-normalized Eu-
clidean distances, may also allow us to develop some intuition re-
garding the loss values and the corresponding margin.
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2.3. Training strategy

MOVE is trained by minimizing the triplet loss
L =max (D (Xa,Xp) — D (Xa,Xn) +m,0) (1

using
1 2
D(X;,X;) = P [1f(Xs) — fFCX)N7,

where || || corresponds to the Euclidean norm and f(X) denotes an
embedding of size d produced by our model. Equation 1 aims to
make the distance between an anchor A and a positive example P
smaller than the distance between the same anchor A and a negative
example N under a margin m. We now present our decisions re-
garding training data, data augmentation, triplet mining, and hyper-
parameters.

Training data — We use a private collection of 97,905 songs that
are divided into 17,999 cliques. The annotations of the songs are
under the Creative Commons BY-NC 3.0 license, and obtained with
the APl of secondhandsongs . com. The related metadata can be
found at our repository. For training and validation, we created two
disjoint sets of cliques, with 14,499 cliques containing 83,905 songs
and 3,500 cliques containing 14,000 songs, respectively. All audio
files are encoded in MP3 format and their sample rate is 44.1 kHz.
Data augmentation — In order to enhance the learning of MOVE,
we apply to each example a data augmentation function specifically
designed for VI. Based on the modifiable musical characteristics
specified in Section 1 and elsewhere, such function sequentially and
independently applies transposition in the pitch dimension, time
stretching, and time warping with probabilities 1, 0.3, and 0.3, re-
spectively. Transposition uses the octave-equivalent characteristics
of PCP representations and randomly rolls X in the pitch dimension
between O and 11 bins. Time stretching uses one-dimensional in-
terpolations in the temporal domain, with a random factor between
0.7 and 1.5. Time warping consists of three mutually-exclusive
functions, which either silence, duplicate, or remove frames with
probabilities 0.3, 0.4, and 0.3, respectively (silence corresponds to
zeroing-out the entire frame). Once selected, these functions are
applied on a per-frame basis with a probability of 0.1, 0.15, and
0.1, respectively. All random numbers are sampled using a uniform
distribution.

Triplet mining — As discussed in previous works that employ
a triplet loss, the characteristics of the triplets in each mini-batch
may have drastic effects on learning performance [26,27]. For our
model, we employ an online hard triplet mining strategy [27]. In
our implementation, we choose 16 unique cliques and 4 songs per
clique, forming a mini-batch of 64. For the cliques that have less
than 4 songs, we choose among the already chosen songs of the
same clique. Within a mini-batch, we consider all the examples as
anchors (A), and select the positive/negative example that has the
maximum/minimum distance to the anchor (P and N, respectively;
Equation 1). Although Schroff et al. [26] point out that the hard-
est examples may lead to local minima early in the training, our
triplets can be considered “moderate” [27], as they are selected only
from the current mini-batch, and therefore do not strictly correspond
to the hardest triplets in the dataset. This presumably avoids the
aforementioned local minima.

Hyper-parameters and optimization — We train our network for
120 epochs with plain stochastic gradient descent, using an initial
learning rate of 0.1 and decreasing it by a factor of 5 at epochs 80 and
100. An epoch is completed when our data loader goes through all
possible cliques. However, an important detail to note is that we in-
clude the cliques with size between 6 and 9 twice, the ones with size
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Fig. 2. MAP with respect to embedding dimension d on validation
data.

between 10 and 13 three times, and the ones with size 14 or above
four times. This is done to increase the probability of every song
being introduced to the network at least once per epoch. The mar-
gin value m for the triplet loss is 1. As mentioned, we use patches
of T' = 1800 frames for training and an initial auto-pool parameter
a = 0. If not already specified in Figure 1, the remaining hyper-
parameters and implementation details can be found at our GitHub
repository |. We study the impact of the embedding dimension d in
the next section.

3. RESULTS

3.1. Evaluation methodology

For studying the effect of the embedding dimension and performing
the ablation study, we train with a subset of our training set with
8,817 cliques and 44,909 songs in total, and report the performance
scores on our validation set. For comparison to the previous work,
we utilize the entire training set. To report performance, we use
mean average precision (MAP) and mean rank of the first relevant
result (MR1). For all the experiments presented in this section, we
use the models obtained after the last epochs.

For comparing the performance of MOVE with the state of the
art, we use two additional datasets. The first dataset, the bench-
mark subset of Da-TACOS [15], contains a total of 15,000 songs,
with 1,000 cliques of 13 songs each, and 2,000 songs not belong-
ing to any other clique (acting as noise and not queried). The sec-
ond dataset, YouTubeCovers (YTC) [28], contains 50 cliques with
7 songs each, and comes split into a training and a test set with 250
and 100 songs each, respectively. To compare the performance of
our model on YTC with previous works, we follow their approach
of only querying the test set to retrieve the versions in the refer-
ence set [18-20,29]. Moreover, in this case, we remove from our
training data the 17 cliques that overlap with YTC. After that, both
Da-TACOS and YTC do not contain any overlapping cliques with
respect to our training/validation data.

3.2. Effect of the embedding dimension

For any embedding system, the size of the embeddings d is a crucial
hyper-parameter, as it can have an important effect on model per-
formance. Therefore, we decide to study the model performance on
the validation set with respect to it (Figure 2). For this set of ex-
periments, we consider d = {128,256,512,1k,2k,4k, 8k, 16k,
32k}. We observe that performance continues to increase with the
embedding dimensionality until it saturates at d = 16k. We can
place a knee in the curve between d = 512 and d = 2k.
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MAP MR1

0.575 156
Data augmentation
1: Without data augmentation 0.540 180
Transposition invariance

MOVE

2: Without transposition invariance 0.154 399
Summarizing temporal content
3: Only multi-channel attention 0.575 153
4: Only auto-pool 0.563 145
5: Max-pooling 0.561 152
6: Average-pooling 0.491 197
Triplet mining strategies
7: Semi-hard mining 0.545 135
8: Random mining 0.427 167

Table 1. Ablation study. Performance on the validation set using
d=16k.

3.3. Ablation study

We now analyze the performance of the main components of our
network by comparing them to their potential alternatives (Table 1).
With that, we aim to quantify the importance of each decision. The
first aspect we assess is the effect of the proposed data augmentation
strategy (1). We find that removing data augmentation yields a rela-
tive decrease of 6% in MAP. The second aspect that we evaluate is
the importance of the transposition-invariant architecture explained
in Section 2.2 (2). As an alternative, we consider the case where
we do not pre-process the input by changing its shape, and remove
the max-pooling layer after the first convolution. Although trained
with a much smaller learning rate (10_4) and the Adam optimizer,
the model was not able to properly learn an effective representation,
even though multiple transpositions were present in the data aug-
mentation function. The third aspect we consider is temporal sum-
marization (3—-6). We observe that the introduction of the auto-pool
parameter « to multi-channel attention does not really change the
results (3). In contrast, substituting the proposed multi-channel at-
tention by auto-, max-, or average-pool clearly has an impact (4-6).
The final aspect we analyze is the effect of the triplet mining strat-
egy (7-8). To do so, we train our network with online semi-hard (7)
and random (8) mining strategies. For semi-hard mining, we pick a
random positive example for each anchor and then select a negative
example that satisfies the condition D (X4,Xn) < D (X4,Xp). In
case no such negative example exists, we pick a random one. For
random mining, we randomly select one positive and one negative
example for each anchor. We see that semi-hard and random min-
ing produce a relative MAP decrease of 5 and 26%, respectively.
Overall, our ablation study shows that all introduced variations have
a positive impact in performance. The only exception is the mix-
ing of the auto-pool parameter with multi-channel attention, which
nonetheless does not substantially affect the performance.

3.4. Comparison with the state-of-the-art

Finally, we compare the performance of MOVE with the state of the
art (Table 2). The results on Da-TACOS show that MOVE clearly
outperforms all considered VI systems. Importantly, this does not
only happen for systems that, like MOVE, use a single input repre-
sentation and alignment, but also for complex systems that employ
early or late fusion strategies. The relative MAP difference with re-
spect to LateFusion [14], the most competing system, is over 10%.
We also see that, although the best performance is achieved with a

MAP MR1
Results on Da-TACOS

2DFTM [17] 0.275 155
SiMPle [18] 0.332 142
Dmax [14] 0.322 132
Qmax [10] 0.365 113
Qmax* [30] 0.373 104
EarlyFusion [12] 0.426 116
LateFusion [14] 0.454 177
MOVE w/ d = 4k (ours) 0.495 42
MOVE w/ d = 16 k (ours) 0.507 40

Results on YTC

SiMPle [18] 0.591 8
2DFTM sequences [29] 0.648 8
InNet [19] 0.660 6
SuCo-DTW [31] 0.800 3
CQT-TPPNet [20] 0.859 3
MOVE w/ d = 4k (ours) 0.889 3
MOVE w/ d = 16 k (ours) 0.888 3

Table 2. Comparison of state-of-the-art VI systems (best results are
highlighted in bold). Results on Da-TACOS are taken from [15].

relatively large embedding dimension of 16k, a smaller embedding
size of 4k can still outperform the state of the art. The results on
YTC support the claim that MOVE achieves a new state-of-the-art
performance (Table 2). However, we caution about the use of YTC
to report VI performance, as differences measured with this dataset
may not be significant due to the relatively small number of query
and reference tracks (cf. [1]). As an example, MOVE with d = 4k
shows a similar result as the setting with d = 16k on YTC, while in
larger datasets, the latter clearly outperforms the former.

4. CONCLUSION

In this work, we have proposed MOVE, a method for accurate
and scalable version identification using musically-motivated em-
beddings. MOVE achieves state-of-the-art performance on two
publicly-available benchmark sets for VI. After motivating the com-
ponents of its architecture and training strategy, both designed while
incorporating a certain degree of domain knowledge, we performed
an ablation study to justify our decisions. We have also studied the
relation between the embedding size and the performance of our
model. As future work, we plan to investigate different input rep-
resentations. Since some early and late fusion methods incorporate
several musical dimensions to outperform their isolated components,
we intend to explore possibilities where we can mimic the same idea
to improve MOVE’s performance. Moreover, considering that our
method outperforms traditional VI systems that are built with a
certain notion of similarity in mind (for instance, local alignment
between tonal features), a future study investigating the similarity
concept learned by our model could provide meaningful insight
regarding the links that bind various versions originated from the
same musical composition.
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