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Abstract—Self-localization of a robot is one of the most
important requirements in mobile robotics. There are several
approaches to providing localization data. The Ultra Wide Band
Time of Flight provides position information but lacks the
angle. Odometry data can be combined by using a data fusion
algorithm. This paper addresses the application of data fusion
algorithms based on odometry and Ultra Wide Band Time of
Flight positioning using a Kalman filter that allows performing
the data fusion task which outputs the position and orientation
of the robot. The proposed solution, validated in a real developed
platform can be applied in service and industrial robots.

I. INTRODUCTION

A mobile industrial robot requires the ability to self-localize
in an environment without human intervention. The task of
estimating the pose of the robot on a map has been capturing
the attention of researchers, developers, and technology trans-
fer processes of mobile robots. These vehicles are commonly
used to transport materials between workstations in ware-
houses and production lines. Localization systems in industrial
environments, commonly use solutions that rely on artificial
landmarks, such as the classic magnetic tape following, line
tracking, or reflector-based laser triangulation [1], [3], [4].

One of the well-known localization systems is based on
laser triangulation that requires several visible landmarks [1].
This method has the main disadvantage of requiring the
installation of dedicated reflectors in the environment, which
might be an impossible solution in some factories. Moreover,
it is an expensive system, and landmarks should be added in
the field of view of the robot laser scanner. Another localiza-
tion method can use radio frequency. Instead of the Receive
Signal Strength Indicator (RSSI) measurement, positioning is
done with transit time methodology, Time of Flight (ToF).
This method measures the running time of flight between
a fixed tag module and receiver (Anchor). Ultra-wideband
(UWB) modules from Decawave are used in this work. In

this way, it allows a low-cost localization methodology and
a ready − to − go system. Unfortunately, this system only
provides the position and not the orientation.

On the other hand, odometry provides the orientation, but
the cumulative localization error is a problem. The informa-
tion provided by odometry and UWB technology is further
processed through a data fusion filter. In this way, orientation
can be achieved based on odometry. The Kalman filter (KF)
combines both information and provides as output the position
and orientation data [2].

This paper addresses the development of a mobile robot
to validate the concept of data fusion from odometry and
UWB ToF using a real application with its associated noise in
measurements while keeping the safety of the robot.

The paper is organized as follows: section II presents the
related work of localization considering the UWB technology.
Then, section III addresses the system architecture where the
odometry and UWB are described and the UWB model is
stressed. Section IV presents the data fusion from odometry
and UWB ToF data, whereas section V results are discussed.
Finally, the last section rounds up the paper with conclusions
and where some future work direction is pointed.

II. BACKGROUND AND RELATED WORKS

Once mobile robot localization is a complex, challenging,
and one of the most fundamental problems in robotics, several
approaches exist in the community. Among the others, laser
triangulation, matching algorithms, complex vision systems,
odometry, and radio frequency are methodologies used to find
the position of a robot [15].

In the matching algorithms, position estimation is com-
monly fused with dead reckoning data, using for that pur-
pose probabilistic methods such as the KF family and the
Particle Filters. There are matching algorithms that require
prior knowledge of the navigation area. This prior knowledge
can be an environment map, natural landmarks, or artificial979-8-3503-0121-2/23/$31.00 ©2023 IEEE
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beacons [5]. There are other types of matching algorithms
that compute the overlapping zone between consecutive ob-
servations to obtain the vehicle displacement. One possible
matching algorithm to estimate the quantity of angular and
linear displacement of a vehicle between two different and
consecutive configurations is the Iterative Closest Point (ICP)
[7] [6].

Another common localization approach is to combine sev-
eral solutions such as line following and laser triangulation [3],
[4]. Meanwhile, in the last decade localization based on natural
marks has been increasing [8]. These are composed of a set
of distances and angles to the detected objects (such as doors,
walls, furniture, ...) that can be acquired through an onboard
laser range finder. This method has the main advantage of
not requiring the installation of dedicated reflectors, which in
some factories might not be a viable option. On the other
hand, objects placed in different locations originate measuring
errors.

An encoder is a kind of simple and important sensor and is
mounted on most mobile robots with wheels. However, there
are unavoidable accumulated errors for the dead reckoning
(DR) based localization over long distances, in that it needs to
utilize the previous position to estimate the next relative one
and during which, the drift, the wheel slippage, the uneven
floor and the uncertainty about the structure of the robot will
together cause errors [15]. Odometry has been used for several
years in mobile robots. Knowing the rotation of each wheel
and its parameters (such as diameter, distance, and friction),
it is possible to estimate the robot’s pose in the environment.
This is one of the first methodologies used to calculate the
robot’s position. A common and basic localization method
called dead reckoning is used to estimate the position by
counting wheel rotations with the help of encoders. Unfor-
tunately, Dead reckoning is subject to cumulative errors, so it
is common to combine different localization methods. Several
works can be pointed out using odometry localization, such
as image processing [13] or Wireless Sensor Networks [14].

Mobile robot localization with radiofrequency has been
increasing its popularity. Ultra-wideband (UWB) is considered
one of the most promising indoor positioning technologies
currently available, especially due to its fine time resolution.
Using ToF instead of signal power allows much more precision
and robustness. UWB is a radio technology widely used for
communications, that is recently receiving increasing attention
for positioning applications. In these cases, the position of
a mobile transceiver is determined from the distances to a
set of fixed, well-localized beacons. Though this is a well-
known problem in the scientific literature (the trilateration
problem [1]), the peculiarities of UWB range measurements
(basically, distance errors and multipath effects) demand a
different treatment to other similar solutions, as for example,
those based on a laser. There are authors that characterize the
UWB ranges combined with particle filters within a variety
of environments and situations [12] and apply UWB using
spatial models [9]. UWB time of flight has already captured
the researchers’ attention that combines it with inertial sensors

Fig. 1. Mobile robot prototype

[11].
The presented work uses a combination of odometry and

UWB ToF to compute the position of a robot.

III. SYSTEM ARCHITECTURE

A wheeled mobile robot prototype (28 cm x 35 cm) was
developed having in mind the validation of the proposed
positioning system, as shown in figure 1.

It is composed of two drive wheels and a castor wheel.
Two stepper motors drive the differential mobile robot, a
typical configuration in mobile robots. The maximum speed
of the robot is 1 m/s. Meanwhile, the tests presented in
the Results section were achieved with 10% of speed. It is
powered by an onboard 12 V battery and a DC/DC step-down
converter allows it to power the electronic modules composed
by a Raspberry 3 model and an Arduino microcontroller. The
upper level is composed of a Raspberry microcomputer that
runs raspbian operating system and is responsible for KF
processing, wi-fi communications, and decision. The Arduino
microcontroller deals with the low-level control of motors,
voltages, current, power management, and odometry.

Stepper motors are powered by Allegro MicroSystems -
A4988 modules that handle the micro-stepping method and
regulate the current limit.

A. Ultra Wideband Time of flight

Ultra-wideband (UWB) localization is a recent technology
that promises to outperform many indoor localization methods
currently available [10].

Time of flight describes methods that measure the time that
an object, particle, electromagnetic or other wave takes to
travel a distance. It is a technology used in in-depth cameras
that allows measuring the distance of an object to the camera
based on the travel time of the speed of light. Using radio
frequency, there are some approaches that estimate the dis-
tance measuring the signal strengths (Receive Signal Strength
Indicator, RSSI). Results are not much satisfactory because
signal reflections and multi-path effects introduce errors and
noise in measure. The distance between two Ultra Wideband
(UWB) devices can be measured precisely by measuring the
time that it takes for a radio wave to pass between the two
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TABLE I
AVERAGE AND CO-VARIANCE VALUES FOR POSITIONS (1,3), (2,2), (3,2),

(3,4), (4,1) AND (5,4) IN MILLIMETERS

x y e(x) e(y) Cov(x) Cov(y) Cov(x, y)

1028.7 2906.0 28.7 -93.9 236.7 34.7 224.1
2033.8 1931.4 33.8 -68.5 640.8 688.1 1198.5
3046.7 1925.6 46.7 -74.3 497.9 -149.5 1311.5
2990.6 3907.5 -9.3 -92.4 343.3 32.1 318.4
4030.8 956.7 30.8 -43.2 111.6 82.2 431.2
5097.1 4018.1 97.1 18.1 359.5 -191.7 443.6

devices. It is a technology based on the IEEE 802.15.4-2011
standard, which can enable tagged objects to be located [16].

UWB is a radio technology that is characterized by its
very large bandwidth compared with conventional narrowband
systems and in particular features high positioning accuracy
(due to a time resolution in the order of nanoseconds), and
high material penetrability (due to a bandwidth typically larger
than 0.5 GHz). UWB is considered one of the most promising
indoor positioning technologies currently available, especially
due to its fine time resolution [9].

UWB has been used for decades and is a well-established
localization device [18] [9].

Decawave DW1000 is a single-chip, UWB-compliant, Wire-
less Transceiver based on Ultra Wideband techniques and
provides a new approach to Real Time Location and Indoor
Positioning Systems.

There are commercial products ready to use, based on the
DW1000 Decawave chip that allows users to localize an an-
chor between tags like Pozyx [17].These modules provide the
localization (x,y,z) but the orientation cannot be determined.
One advantage of the proposed system makes use of a KF that
estimates the orientation of the robot.

B. UWB - ToF localization Model

The model of the Ultra wide band can be achieved through
several measurements in the field. It was acquired 256 samples
of (x, y) measures for 6 positions, having the anchors placed in
the bottom corners of a room of 6 x 5 meters. The average (x
and y), error in x and y (e(x) and e(y)) and co-variance for x,
y, and xy (Cov(x), Cov(y) and Cov(x, y)) for positions (1,3),
(2,2), (3,2), (3,4), (4,1) and (5,4) in millimeters are presented
in table I.

As a graphical view, Figure 2, presents the measures for dif-
ferent locations and respective error ellipses whereas Figures
3 and 4 present detailed information for two positions (1,3)
and (2,3).

With the acquired information from these measurements, it
is possible to compute the covariance matrixes useful to the
KF design, as stressed in the next subsection.

C. Odometry

Odometry is a technique that uses the data from encoders
to estimate the change in position. This method is sensitive to

Fig. 2. (x,y) measures for different locations and respective error ellipses

Fig. 3. (x,y) = (1000,3000) measures and respective error ellipses

errors due to the integration of velocity measurements over
time to give position estimates. In order to use odometry
effectively it is required to combine other localization methods.

Dead reckoning is a method used to estimate the position by
counting wheel rotations with the help of encoders. But there
are unavoidable accumulated errors for DR-based localization
over long distances, in that it needs to utilize the previous
position to estimate the next relative one and during which, the
drift, the wheel slippage, the uneven floor and the uncertainty
about the structure of the robot will together cause errors [15].
Landmarks are commonly used to assist the dead reckoning

Fig. 4. (x,y) = (2000,2000) measures and respective error ellipses
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method in precise localization and to clear the accumulated
errors of odometry [14].

IV. LOCALIZATION DATA FUSION

The KF implements the sensor fusion task. It receives xp

and yp (position) from the ultra-wide band time of the flight
module (UWB-ToF) and ωL and ωR (left and right wheel
speeds) from the odometry system. It outputs the Xk state
(equation 1) composed by x, y, and θ as the robot position
and orientation as presented in Figure 5. In this case, the height
of all tags and anchors was the same.

Fig. 5. KF inputs/outputs. Inputs: data from the UWB-ToF module and data
from odometry (encoders). Output: Robot localization.

As a first filtering approach, it is necessary to remove the
wrong measures from the UWB-ToF module. A median filter
is applied to the x and y values eliminating unlikely measures
and the filtered values are one input for the KF.

Xk =




x
y
θ


 (1)

Ẋ = f(X,u) (2)

where

u =

[
v
ω

]
(3)

The observation estimate, Z:

Z = h(X) (4)

From odometry (Figure 6), vL = ωL.r and vR = ωR.r
where r is the wheel radius.

Fig. 6. Robot vectors.

The linear velocity (v) and angular velocity (ω) can be
calculated as presented in equation 5 where d is the distance
between wheels that equals 0.29 m.

v =
vL + vR

2
ω =

vR − vL
d

(5)

Equation 2 (Ẋ) can now be calculated as:



ẋ
ẏ

θ̇


 =




v.cos(θ)
v.sin(θ)

ω


 (6)

Fk is the state transition model which is applied to the
previous state Xk−1, expressed in Equation 7.

Fk =




1 0 −∆t.v.sin(θ)
0 1 ∆t.v.cos(θ)
0 0 1


 (7)

The Jacobian of h function is:

Hk =

[
1 0 0
0 1 0

]
(8)

The measurement from UWB-ToF is Zk:

Zk =

[
xp

yp

]
(9)

1) Predict: This subsection addresses the prediction of
state.
The predicted covariance estimate, P−

k (until k instant).

P−
k = Fk−1Pk−1F

′
k−1 +Qk−1 (10)

where Fk is the state transition the model which is applied
to the previous state xk1 and Qk−1 is the process noise
covariance. The Qk−1 matrix can be written as equation 11.

Qk−1 =




cov(vx, vx) cov(vx, vy) cov(vx, ω)
cov(vx, vy) cov(vy, vy) cov(vy, ω)
cov(vx, ω) cov(vy, ω) cov(ω, ω)


 (11)

Instead of working with vx and vy , it is possible to perform
a rotation Rot (equation 12) to work with v and vn (where v
is the linear velocity whereas vn is the normal velocity) we
can assume vn = 0 and cov(vn, vn) = 0 for robots turning on
the spot.




vx
vy
ω


 =




cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1


 ·




v
vn
ω


 (12)

Working with v and vn, Qk−1 = Rot · Q′
k−1 · RotT ,

where Q′
k−1 is presented in equation 13, it is possible to

reach the ratio between cov(v, v) and cov(ω, ω) presented in
equation 16, assuming that vL and vR errors follow a normal
distribution (N) centered in zero with a standard deviation of
σ. Equations 14 and 15 present the distribution of v and ω.

Q′
k−1 =




cov(v, v) 0 0
0 cov(vn, vn) 0
0 0 cov(ω, ω)


 (13)

v → 2 · 1
4
·N(0, σ2) (14)

ω → 2 · 1
d2
·N(0, σ2) (15)
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cov(v, v) =
4

d2
cov(ω, ω) (16)

This methodology allows tuning the KF by one constant
that can be found by performing a few experiences.

The prediction state estimate, X−
k (until k instant)

X−
k = f∗(Xk−1, uk−1) (17)

2) Update: This subsection addresses the Update process.

The measurement residual:

Ỹk = Zk − Z (18)

The innovation covariance:

Sk = HkP
−
k H ′

k +Rk (19)

where Rk is the observation noise covariance, which can be
calculated based on the covariance average of measures points
from the previous subsection as presented in Equation 20.

Rk =

[
3.654e−4 8.266e−5

8.266e−5 6.546e−4

]
(20)

The Kalman gain, Kk:

Kk = P−
k H ′

kS
−1
k (21)

The updated state estimate, Xk:

Xk = X−
k +KkỸk (22)

The updated covariance estimate, Pk can be described:

Pk = (I −KkHk)P
−
k (23)

V. RESULTS

The localization system under validation was tested in the
developed robot on a field of 6m x 5m (x,y). Three different
paths (run #0, run #1, and run #2) were implemented and
the error of the final position was measured. The odometry
estimation is shown with blue lines whereas the KF prediction
is shown with a green line. The magenta line shows the Pozyx
measure and the light green shows the KF direction. The light
blue shows the odometry angle direction and the green ellipse
presents the covariance of the KF. All tests started at the
position (x=2.2, y=1.2). The first path (run #0), presented in
the screenshot of figure 7, is composed of some rotations,
circles, and lines.

The second path (run #1) presented in the screenshot of
figure 8 is composed of a rectangle (four 90 degrees counter-
clockwise turns) and four lines.

As the last test (run #2) presented in figure 9, a kidnap-
ping problem was addressed. The robot starts at the original
position, follows in the xx axis, and in the position (3.2, 1,2)
is moved (without moving wheels) to position (3.2, 1.9). It
is obvious that the odometry data still remains in the same
position, but the UWB ToF and the KF will perform the
localization correctly.

Fig. 7. XY map for run #0

Fig. 8. XY map for run #1

Fig. 9. XY map for run #2
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TABLE II
MEAN ABSOLUTE ERROR FOR ODOMETRY, POZYX AND KALMAN (IN

METERS AND DEGREES)

Mean absolute error
Odometry Pozyx Kalman

x y Theta x y x y Theta
0.67 0.8 27.9 0.05 0.04 0.05 0.02 20.7

TABLE III
EUCLIDEAN MEAN ABSOLUTE ERROR FOR ODOMETRY, POZYX AND

KALMAN (IN METERS)

Euclidean Mean absolute error
Odometry Pozyx Kalman

1.02 0.065 0.059

In summary, it is possible to stress that the KF allows for the
reduction of the error of the localization. In order to measure it,
table II presents the error in x, y, and θ (meters and degrees).

Finally, the Euclidean distance means the absolute error is
presented in Table III.

It is possible to conclude that, as expected, the odometry
accumulates error and after just a few turns, the position
error will increase. On the other hand, the UWB ToF is a
localization system that computes the (x,y,z) position but lacks
the angle of the robot. A KF can be used to perform the sensor
fusion and the model of the KF can calculate the angle (θ) of
the robot. Numerically, the odometry only provides an error of
1m (according to the test paths). The Pozyx module achieves
a Euclidean error of about 6,5 cm. Combining odometry, with
PoXYZ system and the model of the robot, it is possible to get
the error of the system as 5,9 cm and the angle for orientation
of 20.7 degrees.

VI. CONCLUSION AND FUTURE WORK

In this paper, it is used odometry and an ultra-wideband
time-of-flight (UWB ToF) system to perform localization. The
odometry, based on the wheels’ angular speed, provides the
angle and the position of the robot itself. A drawback of this
approach is the cumulative error behavior of odometry. On
the other hand, the UWB ToF modules compute the position
of a tag based on the ToF distances between fixed anchors
but this method doesn’t provide the angular information. The
proposed methodology used a KF to perform the data fusion
between odometry and UWB ToF. The measured UWB ToF
error model permits to design of an accurate KF that combines
the position information for both systems and outputs the
position and orientation of the mobile robot. The model of the
robot implemented in the KF allows keeping the robot angle
with a low error. This is one advantage of the proposed system
that estimates the orientation of the robot that UWb ToF
misses. The algorithms were implemented in a developed robot
prototype that allows to validation of the proposed approach.
The proposed methodology can be used in industrial and
service robots without any installation of visible landmarks in
the environment and also it is a low-cost solution compared
with expensive laser-based localization systems. In future

work, KF can make the data fusion from other sensors such as
accelerometer/gyroscope and visual localization. A model of
measured distances between tags an anchors can be acquired
and triangulation accuracy could be improved.
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