
Learning and reusing primitive behaviours to
improve Hindsight Experience Replay sample

efficiency
Francisco Roldan Sanchez

Dublin City University
Insight SFI Centre for Data Analytics

Dublin, Ireland
francisco.sanchez@insight-centre.org

Qiang Wang
University College Dublin

Dublin, Ireland
qiang.wang@ucdconnect.ie

David Cordova Bulens
University College Dublin

Dublin, Ireland
david.cordovabulens@ucd.ie

Kevin McGuinness
Dublin City University

Insight SFI Centre for Data Analytics
Dublin, Ireland

kevin.mcguinness@insight-centre.org

Stephen J. Redmond
University College Dublin

Insight SFI Centre for Data Analytics
Dublin, Ireland

stephen.redmond@ucd.ie

Noel E. O’Connor
Dublin City University

Insight SFI Centre for Data Analytics
Dublin, Ireland

noel.oconnor@insight-centre.org

Abstract—Hindsight Experience Replay (HER) is a technique
used in reinforcement learning (RL) that has proven to be very
efficient for training off-policy RL-based agents to solve goal-
based robotic manipulation tasks using sparse rewards. Even
though HER improves the sample efficiency of RL-based agents
by learning from mistakes made in past experiences, it does not
provide any guidance while exploring the environment. This leads
to very large training times due to the volume of experience
required to train an agent using this replay strategy. In this paper,
we propose a method that uses primitive behaviours that have
been previously learned to solve simple tasks in order to guide the
agent toward more rewarding actions during exploration while
learning other more complex tasks. This guidance, however, is not
executed by a manually designed curriculum, but rather using a
critic network to decide at each timestep whether or not to use
the actions proposed by the previously-learned primitive policies.
We evaluate our method by comparing its performance against
HER and other more efficient variations of this algorithm in
several block manipulation tasks. We demonstrate the agents can
learn a successful policy faster when using our proposed method,
both in terms of sample efficiency and computation time. Code
is available at https://github.com/franroldans/qmp-her.

Index Terms—reinforcement learning, robotic manipulation,
experience replay

I. INTRODUCTION

Data-driven robotic manipulation has become very popular
in recent years due to the success of reinforcement learning

This publication has emanated from research supported by Science Founda-
tion Ireland (SFI) under Grant Number SFI/12/RC/2289 P2, co-funded by the
European Regional Development Fund, by Science Foundation Ireland Future
Research Leaders Award (17/FRL/4832), and by China Scholarship Council
(CSC No.202006540003). For the purpose of Open Access, the author has
applied a CC BY public copyright licence to any Author Accepted Manuscript
version arising from this submission. We would like to express our deepest
gratitude to Prof. Kevin McGuinness for his valuable contributions to this
research. Unfortunately, he passed away before the completion of this work.
He will be remembered for his exceptional insights and dedication.

(RL) algorithms [1]. By analysing large amounts of data, data-
driven robotic manipulation methods allow the robot to carry
out tasks with higher precision and efficiency [2]. Furthermore,
because these techniques let robots learn from successes and
mistakes, they can potentially be used to continuously improve
the robot’s abilities over time, leading to greater adaptability
to different situations without the need of specialised program-
ming [3]. However, to achieve such levels of adaptability,
it is usually necessary to generate large quantities of good
quality data, which leads to prohibitively large training times
for tasks and robots with complex observation, goal or/and
action spaces. Therefore, training RL-based agents on such
environments can be very challenging or even infeasible
depending on the computational resources available [4]–[6].

The most popular techniques used to solve data-driven
robotic manipulation tasks are off-policy reinforcement learn-
ing methods, due to their sample efficiency and their ability
to decouple exploration from exploitation [7]–[9]. Firstly, off-
policy reinforcement learning algorithms are more sample
efficient because they update their data after analysing a
diverse set of trajectories, making them converge faster than
when being immediately updated after each interaction with
the environment. Secondly, exploration and exploitation are
decoupled, meaning that one can use a different policy for
exploration, termed a behaviour policy, while the learning
policy, termed a target policy, prioritises exploiting what is
learned from these well-chosen actions. One popular technique
is Deep Deterministic Policy Gradients (DDPG) [7] in con-
junction with Hindsight Experience Replay (HER) [10], which
has proven to be very efficient for goal-based tasks with sparse
rewards (i.e. binary rewards).

This paper proposes a novel method that evaluates and
selects behaviours generated by policies that are capable of

ar
X

iv
:2

31
0.

01
82

7v
2 

 [
cs

.R
O

] 
 1

9 
N

ov
 2

02
3

https://github.com/franroldans/qmp-her


performing simpler primitive skills. In this way we can accel-
erate the learning of new more skillful policies able to perform
more difficult manipulation tasks by integrating this method of
suggesting and selecting actions using primitive policies into
the exploration-exploitation logic of the learning algorithm.
We evaluate our method on four different robotic block manip-
ulation tasks, comparing its success rate, its sample efficiency,
and its computation time against an agent trained using the
original HER algorithm and other more efficient variants of
HER.

II. BACKGROUND

A. Q-learning

Q-learning [11] is a popular off-policy RL algorithm used
to train an agent to make optimal decisions in a Markov
decision process environment. When training an agent using
Q-learning, a Q-table of state-action pairs must be preset
by an initial exploration, along with the state-action pair Q-
value. The Q-value is a metric that captures the quality of the
transition, which is represented by a state s, an action a, the
future state s′ reached by the taking the action, and a reward r.
In other words, it defines how good or bad an action a is that
is taken for a particular state s, when following a policy π.

In particular, the Q-value for a state is the expected dis-
counted cumulative reward given the state and the action.
During training, as the environment is further explored, these
Q-values must be updated based on the observed rewards using
the Bellman equation [12]:

Qπ
new = Q(s, a) + α[R(s, a) + γmax

a′
(Q(s′, a′))−Q(s, a)],

(1)
where Q(s, a) denotes for the current Q-value, α is the
learning rate, R(s, a) is the reward for taking action a when in
state s, γ is the discount factor, determining the importance of
future rewards, and max(Q(s′, a′)) is the maximum expected
reward in the new state s′ given all possible actions that can
be taken in the next state s′.

B. Deep Deterministic Policy Gradients and Hindsight Expe-
rience Replay

DDPG [7] is an off-policy RL algorithm used for continuous
control that is built using an actor-critic architecture, with an
actor network π(s) that predicts actions and a critic network
Qπ(s, a) that estimates the associated Q-value (a measure of
quality) of pairs of states and actions.

During training, the actor network updates its parameters to
maximise the estimated Q-value, while the critic network is
updated by minimising the mean squared temporal difference
error [13] between the estimated Q-value and the target Q-
value, which is computed using equation 1. In order to perform
these updates, data is sampled from a replay buffer that stores
a diverse set of trajectories obtained from previous interactions
with the environment (i.e. temporal sequences of environment
transitions as defined in section II-A).

HER [10] is a replay strategy that accelerates the learning
of off-policy RL algorithms by altering the stored data from

past experiences. While in a standard RL framework an
agent only can learn from trajectories receiving a positive
reward, HER changes that by modifying the goals of failed
stored experiences so that they match the achieved goal, thus
obtaining a positive reward from what was a failed episode. In
other words, it makes the agent learn from its own mistakes.

Despite the benefits of HER, this method requires a large
quantity of simulated experience to find a good policy. The
main reason for this requirement is the lack of guidance given
to the agent during exploration [14], [15], particularly in the
first interactions with the environment, as HER becomes most
useful when the agent interacts with the object and changes
its state, creating greater variety in the hindsight goals.

There are some algorithms that modify HER in order
to tackle this problem. Hindsight Goal Generation (HGG)
[14] addresses the issue by generating a set of alternative
goals based on the achieved states during the exploratory
episodes. Alternatively, in [15], a method named Graph-based
Hindsight Goal Generation (G-HGG) is proposed to replace
the Euclidean distance metric normally used to evaluate goal-
based tasks by a graph-based distance metric, and in this way
improve the selection of intermediate goals in environments
with physical obstacles. However, both of these methods have
very time-consuming policy updates, mostly because of the
trajectory sampling required to use them, as for each generated
goal, trajectories that match the generated goal states must be
sampled from the replay buffer .

C. Ensemble of policies

An ensemble of policies is a collection of K individual
policies P = {π̂1, π̂2, ..., π̂K} that are used together to solve
a task. Each policy in the ensemble P may have different
strengths and weaknesses, and by combining their decisions,
the ensemble can benefit from the range and variety of skills
possessed by the policies that make up the ensemble, this
improving the overall performance of the agent.

There are different strategies to create such ensembles. For
example, in [16], the authors define a hierarchical policy,
with a high-level task policy that decides which lower-level
primitive policy of the ensemble to use, and a low-level
parameter policy that determines how to instantiate the chosen
primitive, in order to learn how to order the selection of these
policies and their parameters over time.

SUNRISE [17] is another ensemble mechanism that trains
N independent actor-critic based agents in a task and then
selects the candidate action of the agent that maximises a
weighted Bellman backup equation, which is calculated using
the mean and variance of the Q-values obtained by each
candidate action using the critics of each of the agents of the
ensemble. This idea of filtering actions based on the Q-value
has also been used in different imitation learning frameworks
and offline RL methods to filter noisy actions or unwanted
behaviours [18], [19].

A more recent method is the Q-switch Mixture of Policies
(QMP) [20], which uses a Q-filter in a multi-task setting de-
signed to simultaneously find policies that solve different tasks



that share the observation space in order to identify shareable
behaviours between policies. During exploration, each of the
policies of the ensemble proposes a candidate action, but only
the action that maximises the Q-value associated with the
target policy for the task being solved is executed.

In this paper, we use a QMP to improve the sample
efficiency of HER, but instead of sharing behaviours between
policies that are being simultaneously trained in the same
environment, we make use of fixed primitive policies that do
not necessarily share the observation or/and the goal spaces
with the target task.

III. METHOD

The focus of this work is to improve the sample efficiency of
DDPG agents trained with HER for robotic manipulation tasks
by reusing simpler primitive skills that can be more easily
learned. These primitive skills are policies obtained by training
a DDPG agent using HER in simpler tasks.

We define a set of L objectives O = {o1, o2, ..., oL} that
correspond to potential state-goal combinations that K prim-
itive policies P = {π̂1(s, g), π̂2(s, g), ..., π̂K(s, g)} could use.
For each timestep during exploration, we use each primitive
policy in P to create a candidate action for each of the
objectives, and store them along with the candidate action aπt
that the target policy π(s, g) proposes. After that, all candidate
actions At = {aπt , a

1,1
t , a1,2t , ..., aK,L

t } for that timestep are
evaluated by the critic of the target policy Qπ(s, a), and only
the action achieving the maximum Q-value for the current
state st is executed and the transition stored, as done in [20]:

a∗ = argmaxQπ(st, g,At) (2)

Before any update is performed, the Q-value that the critic
predicts will be completely random, and as such during warm-
up timesteps (i.e. timesteps of data collection before the actual
learning process begins) the agent is forced to pick an action
from the suggestions coming from the ensemble of primitive
policies, along with the ϵ-greedy algorithm (i.e., the agent
occasionally explores the environment using random actions
with a probability ϵ). After the warm-up, the agent also
considers the actions suggested by the target policy.

For all tasks, it is expected that the actions suggested by the
primitive policies will mostly be used during the first iterations
of the exploration, but as the target policy continues to update,
the actions predicted by the target policy will have a higher Q-
value. This means that by the end of the training, our method’s
behaviour will naturally evolve to be the same as original HER.

We call this algorithm Q-switch Mixture of Primitives
Hindsight Experience Replay (QMP-HER) - see Algorithm 1
for more details.

IV. EXPERIMENTS

A. Environment

We make use of the block manipulation tasks proposed
by OpenAI for the Fetch robot arm using a parallel-jaw

Algorithm 1: Q-switch Mixture of Primitives Hindsight Expe-
rience Replay

Given: Off-policy RL agent A ∼ π(s, g) , Qπ(s, g, a).
K primitives: P = {π̂1(s, g), π̂2(s, g), ..., π̂K(s, g)}
Replay Buffer R

1: Initialise A
2: Load P
3: Define a set of L objectives O = {o1, o2, ..., oL} for P
4: for epoch = 0 to N do
5: for episode =1 to M do
6: Sample a goal g and an initial state s0
7: for t =0 to T − 1 do
8: for k = 1 to K do
9: for l = 1 to L do

10: s′, g′ ∼ Adjust state and/or goal based on ol
11: Sample candidate action ak,lt from π̂k(s

′, g′)
12: At ∼ Store candidate action ak,lt

13: end for
14: end for
15: Sample candidate action aπt from π(st, g)
16: At ∼ Store candidate action aπt
17: Select best action a∗ using Eq. 2, applying ϵ-

greedy
18: Execute action a∗ and observe state st+1

19: R ∼ Store transition (a∗, st, st+1, g, rt)
20: end for
21: end for
22: Apply HER logic and update π(s, g), Qπ(s, g, a)
23: end for

TABLE I: Overview of the different environments observation
and goal spaces

Environment Obs. Dimension Object info. Obstacles Goal space
FetchReach 10 ✗ ✗ Continuous
FetchPush 25 ✓ ✗ Continuous

FetchPickAndPlace 25 ✓ ✗ Continuous
FetchPickObstacle 25 ✓ ✓ Continuous

FetchPickAndThrow 25 ✓ ✓ Discrete

gripper [4], as well as two more tasks proposed in [15]. These
are summarised as follows in order of complexity:

• FetchReach: the goal is to move the parallel-jaw gripper
to a position in the 3D space. The gripper remains closed
(Fig 1a).

• FetchPush: the goal is to move a block to a point in
the 3D space that is over the table. The gripper remains
closed (Fig 1b).

• FetchPickAndPlace: the goal is to move a block to a point
in the 3D space. Gripper controls are activated (Fig 1c).

• FetchPickObstacle: the goal is to move a block to a point
in the 3D space with an obstacle between the initial and
the target position. Gripper controls are activated (Fig 1d).

• FetchPickAndThrow: the goal is to lift a cube and throw
it into one of eight boxes that are out of reach for the
robotic arm. Gripper controls are activated (Fig 1e).

To improve sample efficiency, we aim to make use of the



(a) (b) (c)

(d) (e)

Fig. 1: Visual representation of (a) FetchReach, (b) FetchPush,
(c) FetchPickAndPlace, (d) FetchPickObstacle and (e) Fetch-
PickAndThrow tasks.

behaviour learned by the agents trained on the simplest tasks.
Therefore, the method we present in this paper cannot be used
in the FetchReach environment, as it is the simplest of all and
it must be trained with HER. Once this policy is learned, there
is then knowledge of the dynamics of the robot that has been
acquired by this behaviour policy which can be used to more
quickly learn how to perform other more complex tasks.

Because the observation space of the FetchReach envi-
ronment is smaller than the observation space of the other
three environments, it is necessary to remove the object state
information from the observations of these other environments
in order to use the policy learned on the FetchReach task.

B. Experimental setup

Our method requires a heuristic definition of the objectives
for the primitive policies. These objectives are defined based
on regions of interest in the 3D space relative to the object
and the goal position, and might vary depending on the target
task. For example, in order to learn a push or lifting policy, a
robot can benefit from approaching the object from all possible
directions. However, when learning a policy in tasks with
physical obstacles, the robot benefits from manipulating the
object in an elevated position, avoiding the obstacles.

To solve the FetchPush task we define the objectives
by setting a number of different goals for the FetchReach
primitives. For each observation of the FetchPush task, we
adjust it by removing the object information and request the
FetchReach primitive policy to move towards the location of
the object and the goal position, but we also include objectives
that point toward the object with slight deviations, so that
the gripper touches the object from the left, right, front and
behind. To solve the FetchPickAndPlace task, we make use
of the same primitives and objectives as the used to solve
the textitFetchPush task. For this experiment, we also use the
target policy during warm-up timesteps as it is necessary for

the gripper state exploration because the policy trained on the
FetchReach task does not have the gripper controls activated.

The FetchPickObstacle is a task of sufficient complexity that
HER cannot solve it. However, the task has many similarities
with the FetchPickAndPlace task and the policy learned in that
task can be useful to accelerate the learning pace. We perform
two different experiments: the first one being a manually
designed curriculum which we implement by enforcing the
behaviour policy to perform the first 20 timesteps of each
episode using the policy learned on the FetchPickAndPlace
task with the goal to lift the object over the obstacle, the
following 20 timesteps to move it towards the original goal,
and for the remainder of the episode the agent executes the
actions predicted by its actor network π(s). We call this
framework PickPlace&HER. In the second experiment, we use
our method defining two objectives for the FetchPickAndPlace
primitive, one that aims to pick the block and move it above
the obstacle and a second one aiming for the goal position.

The FetchPickAndThrow task is much more challenging
than the previous tasks, as the robot has to lift up the cube and
throw it into a basket, meaning that the goal space is a discrete
set of eight regions instead of the continuous goal space we
had in previous experiments. Similar to the FetchPickObstacle
task, we believe that this task can be accelerated by starting
with the object grasped by the gripper. Therefore, we run two
different experiments, a first one running the same strategy
as we defined for the PickPlace&HER exploration algorithm
(i.e., grasping the object and moving it to a centred and
elevated position, then letting the target policy explore). The
second experiment involves our method using a combination
of primitive behaviours: we use the policy learned on the
FetchPickObstacle task, setting as the objective the same goal
that was sampled for that episode; and the policy learned on
the FetchPickAndPlace task, setting as objectives a centred
and elevated position and the sampled goal for that episode.

To calculate the success rate, we do not apply the QMP-
HER logic (behaviour policy). Instead, we only test the actions
predicted by the actor of the target policy π(s) that is being
updated to learn the execution of the task end-to-end.

V. RESULTS

The results demonstrate that our method was able to ac-
celerate the learning of HER, as it is capable of reaching a
convergence point faster than HER (Fig 2).

In the case of the FetchPush task, our method is able to
obtain a success rate of 80% in less than 20 policy updates,
while it takes about 60 policy updates for HER to achieve
the same performance. Our method is also able to achieve a
90% success rate faster, as it only needs 25 policy updates,
while HER requires approximately 70 updates (see Fig 2a).
A similar result is achieved for the FetchPickAndPlace task,
where the success rate of our method reaches 90% accuracy
using approximately 150 policy updates while HER takes
about 180 policy updates, proving that our method increases
the sample efficiency (see Fig 2b).



(a) (b) (c) (d)

Fig. 2: Success rate of the target policy π(s, g) per each policy update on the different experiments described in Section IV.

The results obtained for the different experiments for the
FetchPickObstacle task can be seen in Fig 2c. While the task
is too difficult for HER, which completely fails, our approach
was able to reach an average of 95% success rate in about
60 policy updates, compared to the approximate 175 updates
needed for G-HGG. Furthermore, the average time per policy
update of our model is 86 seconds, while for G-HGG it takes
117 seconds. The PickPlace&HER behaviour policy, while
still working better than HER, proved to be inferior to the
other methods explored, as the learning pace is slower.

For the FetchPickAndThrow experiments, we found that our
method and G-HGG are able to achieve a 50% success rate,
while the other methods are unable to learn any useful policy
(see Fig 2d). After analysing the behaviour of the learned
policy, it can be seen that for both methods the robot is
observed to be capable throwing the block to the buckets of the
first row nearest the robot base, but always fails when aiming
for the second row buckets that are further away. This happens
because during exploration the block almost never ends up
in one of the second row buckets, making it impossible to
generate hindsight goals for HER in these cases. Despite the
similar results in terms of performance, our method is more
sample efficient, as it converges faster than G-HGG, and more
significantly, for each policy update our method takes 72.8
seconds on average, while the average time per update when
using G-HGG is 396.5 seconds.

VI. CONCLUSION

We have presented a novel algorithm, which we called Q-
switch Mixture of Primitives Hindsight Experience Replay
(QMP-HER), that improves the sample efficiency and the
computation time of agents trained with HER by making use
of primitive skills (i.e., policies) learned in simpler tasks.
Instead of enforcing a curriculum for the behaviour policy
using these primitives, the critic network of the target policy
decides at each timestep during the exploration phase if the
actions suggested by the primitive policies might be useful or
not to solve the target task.

Future work arising from this publication could include find-
ing better primitives that replicate more specific behaviours,
possibly by clustering environment transitions of simple tasks
and replicating the behaviour of these clusters using any state-

of-the-art behavioural modelling technique, such as decision
transformers [21] or trajectory transformers [22].

One of the weaknesses of the algorithm presented in
this paper is the need for manually defined objectives and,
therefore, another future direction could explore employing
our method in conjunction with HGG, G-HGG as well as
other algorithms that propose intermediate goals during the
exploration phase, or even introducing a low-level parameter
policy that determines how to instantiate the primitives given
an environment state as in [16].

REFERENCES

[1] Nguyen, Hai, and Hung La. “Review of deep reinforcement learning for
robot manipulation.” In 2019 Third IEEE International Conference on
Robotic Computing (IRC), pp. 590-595. IEEE, 2019.

[2] Imtiaz, M., Yuansong Qiao, and Brian Lee. “Comparison of Two
Reinforcement Learning Algorithms for Robotic Pick and Place with
Non-Visual Sensing.” Int. J. Mech. Eng. Robot. Res 10, no. 10 (2021):
526-535.

[3] Manh, Tien Ngo, Cuong Nguyen Manh, Dung Pham Tien, Manh Tran
Van, Duyen Ha Thi Kim, and Duy Nguyen Duc. “Autonomous naviga-
tion for omnidirectional robot based on deep reinforcement learning.”
International Journal of Mechanical Engineering and Robotics Research
9, no. 8 (2020): 1134-1139.

[4] Plappert, Matthias, Marcin Andrychowicz, Alex Ray, Bob McGrew,
Bowen Baker, Glenn Powell, Jonas Schneider. “Multi-goal reinforcement
learning: Challenging robotics environments and request for research.”
arXiv preprint arXiv:1802.09464 (2018).

[5] Melnik, Andrew, Luca Lach, Matthias Plappert, Timo Korthals, Robert
Haschke, and Helge Ritter. “Using tactile sensing to improve the sample
efficiency and performance of deep deterministic policy gradients for
simulated in-hand manipulation tasks.” Frontiers in Robotics and AI 8
(2021): 538773.

[6] Sanchez, Francisco Roldan, Qiang Wang, David Cordova Bulens, Kevin
McGuinness, Stephen J. Redmond, and Noel E. O’Connor. “Hierarchical
reinforcement learning for in-hand robotic manipulation using Davenport
chained rotations.” In 2023 9th International Conference on Automation,
Robotics and Applications (ICARA), pp. 160-164. IEEE, 2023.

[7] Lillicrap, Timothy P., Jonathan J. Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver, and Daan Wierstra.
“Continuous control with deep reinforcement learning.” arXiv preprint
arXiv:1509.02971 (2015).

[8] Schaul, Tom, John Quan, Ioannis Antonoglou, and David Silver. “Pri-
oritized experience replay.” arXiv preprint arXiv:1511.05952 (2015).

[9] Zha, Daochen, Kwei-Herng Lai, Kaixiong Zhou, and Xia Hu. “Experi-
ence replay optimization.” arXiv preprint arXiv:1906.08387 (2019).

[10] Andrychowicz, Marcin, Filip Wolski, Alex Ray, Jonas Schneider, Rachel
Fong, Peter Welinder, Bob McGrew, Josh Tobin, Pieter Abbeel, and
Wojciech Zaremba. “Hindsight experience replay.” Advances in Neural
Information Processing Systems 30 (2017).

[11] Watkins, Christopher JCH, and Peter Dayan. “Q-learning.” Machine
Learning 8 (1992): 279-292.

http://arxiv.org/abs/1802.09464
http://arxiv.org/abs/1509.02971
http://arxiv.org/abs/1511.05952
http://arxiv.org/abs/1906.08387


[12] Dolcetta, I. Capuzzo, and Hitoshi Ishii. “Approximate solutions of the
Bellman equation of deterministic control theory.” Applied Mathematics
and Optimization 11, no. 1 (1984): 161-181.

[13] Tesauro, Gerald. “Temporal difference learning and TD-Gammon.”
Communications of the ACM 38, no. 3 (1995): 58-68.

[14] Ren, Zhizhou, Kefan Dong, Yuan Zhou, Qiang Liu, and Jian Peng. “Ex-
ploration via hindsight goal generation.” Advances in Neural Information
Processing Systems 32 (2019).

[15] Bing, Zhenshan, Matthias Brucker, Fabrice O. Morin, Rui Li, Xiaojie Su,
Kai Huang, and Alois Knoll. “Complex robotic manipulation via graph-
based hindsight goal generation.” IEEE transactions on neural networks
and learning systems 33, no. 12 (2021): 7863-7876.

[16] Nasiriany, Soroush, Huihan Liu, and Yuke Zhu. “Augmenting reinforce-
ment learning with behavior primitives for diverse manipulation tasks.”
In 2022 International Conference on Robotics and Automation (ICRA),
pp. 7477-7484. IEEE, 2022.

[17] Lee, Kimin, Michael Laskin, Aravind Srinivas, and Pieter Abbeel.
“Sunrise: A simple unified framework for ensemble learning in deep
reinforcement learning.” In International Conference on Machine Learn-
ing, pp. 6131-6141. PMLR, 2021.

[18] Yu, Tianhe, Aviral Kumar, Yevgen Chebotar, Karol Hausman, Sergey
Levine, and Chelsea Finn. “Conservative data sharing for multi-task
offline reinforcement learning.” Advances in Neural Information Pro-
cessing Systems 34 (2021): 11501-11516.

[19] Sasaki, Fumihiro, and Ryota Yamashina. “Behavioral cloning from noisy
demonstrations.” In International Conference on Learning Representa-
tions. 2020.

[20] Zhang, Grace, Ayush Jain, Injune Hwang, Shao-Hua Sun, and Joseph
J. Lim. “Efficient Multi-Task Reinforcement Learning via Selective
Behavior Sharing.” arXiv preprint arXiv:2302.00671 (2023).

[21] Chen, Lili, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover,
Misha Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch.
“Decision transformer: Reinforcement learning via sequence modeling.”
Advances in neural information processing systems 34 (2021): 15084-
15097.

[22] Janner, Michael, Qiyang Li, and Sergey Levine. “Offline reinforcement
learning as one big sequence modeling problem.” Advances in neural
information processing systems 34 (2021): 1273-1286.

http://arxiv.org/abs/2302.00671

	Introduction
	Background
	Q-learning
	Deep Deterministic Policy Gradients and Hindsight Experience Replay
	Ensemble of policies

	Method
	Experiments
	Environment
	Experimental setup

	Results
	Conclusion
	References

