
Energy and Time-Aware Inference Offloading for
DNN-based Applications in LEO Satellites

Yijie Chen, Qiyang Zhang, Yiran Zhang, Xiao Ma, Ao Zhou
State Key Laboratory of Networking and Switching Technology

Beijing University of Posts and Telecommunicatons,Beijing, China
{yijiechen;qyzhang;sgwang}@bupt.edu.cn, {yijiechen;qyzhang;sgwang}

Abstract—In recent years, Low Earth Orbit (LEO) satellites
have witnessed rapid development, with inference based on
Deep Neural Network (DNN) models emerging as the prevailing
technology for remote sensing satellite image recognition. How-
ever, the substantial computation capability and energy demands
of DNN models, coupled with the instability of the satellite-
ground link, pose significant challenges, burdening satellites with
limited power intake and hindering the timely completion of
tasks. Existing approaches, such as transmitting all images to
the ground for processing or executing DNN models on the
satellite, is unable to effectively address this issue. By exploiting
the internal hierarchical structure of DNNs and treating each
layer as an independent subtask, we propose a satellite-ground
collaborative computation partial offloading approach to address
this challenge. We formulate the problem of minimizing the
inference task execution time and onboard energy consumption
through offloading as an integer linear programming (ILP)
model. The complexity in solving the problem arises from the
combinatorial explosion in the discrete solution space. To address
this, we have designed an improved optimization algorithm
based on branch and bound. Simulation results illustrate that,
compared to the existing approaches, our algorithm improve the
performance by 10%-18%.

Index Terms—Inference offloading, LEO satellite, DNN-based
application, Performance

I. INTRODUCTION

With the continuous technological advancements and the
growing demand for space exploration, Low Earth orbit (LEO)
satellites, exemplified by constellations like SpaceX, OneWeb,
and Telesat [1], are rapidly evolving. LEO satellites serve
various purposes with Earth observation being a typical one.
This involves capturing ground images and using a Deep
Neural Network (DNN) model to infer occurrences such as
forest fires, terrain, and geomorphic changes [2], [3].

The prevailing approach involves transmitting all images to
the ground for processing, utilizing a traditional method known
as the “bent-pipe” architecture [4]. However, the capacity of
the satellite-ground link is limited, and the connection between
satellites and the ground links is often unreliable and periodic,
resulting in a significant amount of data remaining that cannot
be timely transmitted. An alternative solution involves execut-
ing DNN models on the satellite [5]. However, the majority
of LEO satellites are equipped with limited computing power
due to their small size and reliance on solar energy collection,

making it extremely challenging to run the entire large-scale
DNN models on energy-limited satellites [6]. As an alternative,
small-scale DNN models are considered, but they may not
guarantee the same level of inference accuracy [7].

To tackle this issue, we exploit the hierarchical structure
of DNNs and treat each layer as an independent subtask.
The input matrices of one layer are derived from the output
matrices of the preceding layer. A feasible strategy involves
executing certain layers on the LEO satellite while offloading
the remaining layers and the intermediate output to the ground.
Considering that the input matrices of most layers in the
DNN model tend to decrease compared to the initial input,
this strategy effectively utilizes the limited resources of LEO
satellites to significantly reduce the transmitted data size.

However, accurately selecting the appropriate layers for
offloading is a challenging task due to the following factors:
1) notable variations exist in the internal structure among
different DNNs; 2) due to the diverse nature of DNN layers,
different offloading strategies yield diverse performances; 3)
the constrained computation capability, link capacity, and
energy of LEO satellites all contributes to the execution
time and onboard energy consumption, making it a coupled
and complex problem. To overcome these challenges, we
establish a general model to ensure more generalizable results
and propose an energy and time-aware inference offloading
algorithm to address this problem.

The main contributions of this paper are as follows.
• To the best of our knowledge, we are the first to

investigate inference offloading based on the layered
architecture of the DNN model in LEO satellites.

• We formulate the problem as a constrained integer linear
programming (ILP) problem and propose an improved
algorithm based on branch and bound to address it.

• We evaluate the performance of the proposed algorithm
through simulations, demonstrating promising experi-
mental results that can support energy-efficient and time-
saving offloading.

II. BACKGROUND AND MOTIVATION

“bent pipe” architecture. Most current LEO satellites
still employ a communication model known as “bent pipe”
architecture. In this architecture, satellites serve as data-
transmitting relays without data processing capabilities. In par-979-8-3503-0322-3/23/$31.00 ©2023 IEEE

ar
X

iv
:2

31
1.

13
50

9v
1

 [
cs

.D
C

]
 2

2
N

ov
 2

02
3

LEO
Satellites

Cloud Data
Center

RouterGround
Station

Input Layer

Hidden
Layer1

Hidden
Layer2

Hidden
Layer4

Output
Layer

Hidden
Layer3

（ ）

(𝟏

(𝟐

(𝟑)

(𝟒

(𝟓

Natural disaster:
Forest fire

Satellite

Ground

Fig. 1: Architecture of Satellite-Ground Collaborative Com-
puting.

ticular, Cheng et al. [8] proposed a satellite-ground integrated
network edge computing architecture that utilizes satellites to
enable access to cloud computing resources. Giuliari et al.
[9] introduced a kind of inter-networking approach, in which
ground stations work as access points or gateways for satellite
networks, in order to improve the efficiency of satellite data
transmission.

Nonetheless, the data transmission rate from the satellite to
the ground is significantly hindered by an unstable commu-
nication link and intermittent availability, resulting in a much
lower transmission rate compared to the data generation rate
on the satellite. Consequently, this led to a substantial increase
in the overall latency of entire tasks.

Satellite edge computing. Satellite edge computing has
been developed to facilitate on-orbit processing. Xu et al. [10]
presented a space-ground-sea integrated network architecture,
utilizing satellites as computational nodes for relevant tasks,
with the aim of minimizing user execution latency. Denby et al.
[5] proposed an Orbital edge computing system that performs
partial processing and data filtering on satellites. This system
aims to enhance downlink connections’ efficiency in saturated
satellites while considering energy limitations and payload
impacts. In the existing satellite edge computing schemes,
the entire inference process is executed on the satellite. This
approach imposes a heavy burden on the satellite due to
its limited computing resources and low energy acquisition
capabilities.

To address the above issues, We consider the varying
computational requirements and data volume at different layers
of DNNs and investigate a computation offloading strategy
aimed at reducing energy consumption and latency.

III. SYSTEM MODEL AND PROBLEM DEFINITION

In this section, we first introduce the system model, context,
and notation used in this work. We then provide a more
detailed description of the problem being considered.

A. System Model

Our satellite-ground collaborative architecture consists of
LEO satellites, ground stations, and cloud data centers, as
shown in Fig. 1. Every LEO satellite is equipped with
computationally and storage-capable payloads. This enables
edge-like satellites to process partial images and serve as
data transmission routers. When a satellite comes within the
connected range of a ground station, it becomes capable of
transmitting data to the ground station. Cloud data centers
offer substantial computational power, with some of them
directly attached to ground stations, while others are located at
a significant distance from the ground station. We denote this
architecture as G = (S∪DC ∪GS∪L), where S denotes the
set of low earth orbit satellites, DC denotes the set of cloud
data centers, GS denotes the set of ground stations, and L
denotes the set of links among LEO satellites, ground station
services, and cloud data centers, respectively.

B. Inference Offloading and Partitioning

Considering the characteristics of DNN models, task par-
titioning can be used to effectively alleviate the workload
on satellites and minimize data transmission. DNN models
typically consist of various layers, including input, hidden,
convolutional, pooling, and output layers, etc [11], [12]. Each
layer requires specific computing resources and incurs energy
consumption. Taking advantage of this insight, a large-scale
DNN task can be divided into subtasks corresponding to
different layers. Notably, convolutional layers employ smaller
kernels for feature extraction, while pooling layers reduce the
spatial dimensions of feature maps through aggregation and
downsampling. Consequently, as the DNN network advances
through its layers, the size of feature maps gradually decreases.
Considering the limited computational payload of satellites, it
is feasible to complete the DNN processing on the satellite up
to a specified layer before offloading the remaining data and
parameters to the ground. This approach substantially reduces
data transmission and processing on the satellite.

To ensure the generalizability of our solution across differ-
ent DNN models, we adopted the following settings. Given
the diverse requirements and varying layer structures of DNN
models for different tasks, we didn’t concentrate on specific
DNNs. Furthermore, numerous excellent experiments have
already performed the partitioning of DNNs into subtasks
based on layers [13], [14]. Therefore, our focus is on the
offloading process after partitioning a DNN model into distinct
subtasks. The objective is to determine which layers of the
DNN should be processed onboard the satellite and which
layers should be offloaded for ground processing. Accordingly,
we denote r as a request for a DNN model based on its layer
structure. We divide r into {M1, ...Mk, ...MK}, where K is a
positive integer and 1 ≤ k ≤ K, Mk represents the subtasks
of request r. Let D be the original data size of request r.

C. Latency

An inference request for DNN models can be partitioned
into K tasks. The overall latency is determined by the latency

of each task. The latency can be divided into data processing
and data transmission latency.

Data processing latency. The latency of a task is influenced
by the computing resources available in the satellite and the
cloud data center assigned to this task, as well as the data
size being processed. In line with our previously established
settings, D represents the original data size of request r.
Additionally, the input matrix ratio of each layer is typically
bounded and predetermined, denoted as αk. Consequently, the
data size of each layer can be expressed as αk · D. And the
latency for processing Mk in the satellite Si can be expressed
as follows [15], [16], [17]:

δi,k = (αk ·D) · βi (1)

where βi is the latency for processing a unit amount of data
of Si, and the processing rate of different LEO satellites
varies depending on their payloads and operating environment.
Similarly, the latency for processing Mk on the cloud data
center can be expressed as follows:

δ
′

k = (αk ·D) · γ (2)

where γ represents the latency for processing a unit amount
of data in the cloud data center.

Data transmission latency. Due to the long data transmis-
sion time, it is important to consider the latency associated
with data transmission. When the satellite transmits data to
the ground station, multiple factors come into play and need
to be considered. Firstly, the satellite has a limited duration
of contact with the ground station during each orbital period,
typically around six minutes. Additionally, the connection be-
tween the satellite and the ground station undergoes dynamic
changes, resulting in a relatively low transmission rate, usually
less than 100 Mbps. Consequently, it is crucial to account for
situations where the satellite cannot complete the transmission
of all the required data within a single transmission cycle.
Considering these factors, the latency of transmitting data from
the satellite to the ground can be divided into two parts: the
latency of satellite data transmission and the latency of waiting
for data transmission when the ground station is out of contact
with the satellite during the operational cycle. Accordingly, the
latency for transmitting the input data of Mk from the satellite
to the ground can be expressed as follows:

t
′

k = t
′

tr + t
′

per =
αk ·D
Ri

+ tcyc · (⌈
αk ·D
Ri · tcon

⌉ − 1) (3)

where t
′

tr represents the transmission time for the input
data of Mk, while t

′

per denotes the waiting time during the
transmission of Mk. Ri corresponds to the transmission rate
from Satellite Si to the ground station. Additionally, tcyc is
the contact period time between the satellite and the ground
station, and tcon indicates the duration of communication
between a satellite and a ground station.

In scenarios where the data is transmitted to a ground station
without an associated cloud data center, the data must be
further transmitted to a cloud data center located at a certain
distance for processing. In this case, the transmission delay

of Mk from ground station p to cloud data center q can be
expressed as follows:

tg,c =
αk ·D
Rgp,cq

(4)

where Rgp,cq represents the data rate through the channel from
ground station p to cloud data center q.

The overall task completion time of task r comprises four
components: the execution time on the satellite, the data
transmission time from the satellite to the ground station, the
data transmission time from the ground station to the cloud
data center, and the subsequent task processing time in the
cloud data center. Let hk be a binary variable that indicates
whether Mk is executed on the satellite, where hk = 1
indicates that Mk is executed on the satellite; otherwise hk = 0
indicates that Mk is executed on the cloud data center. And
(hk−1 − hk) indicates the layer from which data needs to
be offloaded from the satellite to the ground. Thus, the total
latency of r is given by:

T =TSatellite + TStoG + TGtoC + TCloud

=

K∑
k=1

hk · δi,k +

K∑
k=1

(hk−1 − hk) · t
′

k

+

K∑
k=1

(hk−1 − hk) · tg,c +
K∑

k=1

(1− hk) · δ
′

k

(5)

D. Energy Consumption

The total energy consumed by task r is the sum of the
energy consumed by each subtask. However, the satellite’s
computational power is constrained by its payload capacity,
limited heat dissipation capabilities in space, and the low
energy acquisition rate of solar panels. Consequently, the
energy resources of satellites are severely restricted. Con-
versely, cloud data centers have an abundant electricity supply.
Therefore, from a practical perspective, our primary focus is on
conserving energy on the satellite. We further divide the energy
consumption on the satellite into two components: during data
processing and data transmission.

Energy consumption during data processing. Previous re-
search studies [18] and [19] have demonstrated that the energy
consumption of a processing unit is directly proportional to
both the task access rate and its maximum power consumption.
Therefore, our focus centers on the energy consumption model
of DNN processing units. As a result, the energy consumption
associated with executing Mk of r in Si can be expressed as
follows:

esatellitei,k = δi,k · (
αk ·D
ζi · δi,k

Pmax
i + P idel

i + P leak
i) (6)

where δi,k represents the latency for processing Mk in Si, ζi
indicates the maximum amount of data that can be processed
per unit time with maximum power, Pmax

i denotes the maxi-
mum power consumption of all GPU units on satellite i, P idle

i

represents the idle power consumption of satellite i, and P leak
i

refers to the power leakage of the GPU units on satellite i.

Energy consumption during data transmission. Recall
that t

′

tr denotes the transmission time for the input data of
Mk, while P off

i represents the data transmission power of
the antenna satellite i. The energy consumption of satellite i
during the transmission of the input data of Mk (or the output
data of Mk−1) to the ground can be expressed as:

eoffi,k = t
′

tr · P
off
i =

αk ·D
Ri

· P off
i (7)

Based on the aforementioned analysis, the comprehensive
energy consumption during the execution of a DNN inference
task can be formulated as follows:

E =

K∑
k=1

hk · esatellitei,k +

K∑
k=1

(hk−1 − hk) · eoffi,k (8)

E. Problem Formulation

The objective of this model is to effectively address the
optimization problem of minimizing energy consumption and
reducing task latency. This is achieved through the imple-
mentation of efficient partitioning and offloading techniques
for DNN models throughout the entire DNN inference pro-
cess. Considering the diverse nature of satellite tasks, certain
specific tasks require meeting low-latency requirements, es-
pecially critical applications like fire hazard detection. Con-
versely, for longer-duration detection tasks, such as remote
sensing observations of changes in terrain and landforms, con-
serving valuable energy resources on the satellite becomes of
utmost importance. Considering the varying importance of en-
ergy and latency in different applications, we incorporate both
factors into the optimization objective by applying appropriate
weights. Furthermore, to account for the disparate magnitudes
of energy and latency and to ensure that both factors are
effectively reflected in the objective function, normalization is
applied to both energy and latency. Consequently, the problem
can be formulated as an integer linear problem, expressed as
follows:

min Z = µ
E − Emin

Emax − Emin
+ λ

T − Tmin

Tmax − Tmin
(9)

s.t.:

γ ≥ γmax (10)

K∑
k=1

hk +

K∑
k=1

(1− hk) = K (11)

K∑
k=1

(hk − h1) ≤ 1 (12)

hk ≥ hk+1 (13)

hk ∈ {0, 1} (14)

where µ and λ are weighting coefficients, µ+ λ = 1. And
Z is the optimization objective. Eq. (10) specifies the upper

limit on the latency for processing a unit amount of data in a
cloud data center. Eq. (11) guarantees the integrity of request
r by ensuring that all subtasks Mk are executed either on
the satellite or in the cloud data center. Eq. (12) indicates
that when intermediate results of satellite execution need to
be transmitted, there should be exactly one. Eq. (13) makes
sure that the data before the down transmission is running
on the satellite, and the data after the down transmission is
running on the ground. Eq. (12) and Eq. (13) maintain the
continuity of request r. Eq. (14) restricts the binary variables.

The problem is an integer linear programming problem with
integer constraints, resulting in a combinatorial explosion in
the discrete solution space. So we need an algorithm to reduce
complexity while obtaining an approximate optimal solution.

IV. INFERENCE OFFLOADING ALGORITHM

We exploit the branch and bound technique to tackle the
integer linear programming problem. The branch and bound
method continuously partitions the problem space and applies
bounding conditions to each subproblem to discovery the
optimal solution or approximation optimal solution. Despite
being an exhaustive search algorithm, it efficiently reduces the
search space by intelligently pruning unnecessary branches.
The key idea involves expanding the feasible solution space of
the problem as a branching tree and searching for the optimal
solution within each branch.

The detailed algorithm is given in Algorithm 1, which is
referred to as integer linear programming based on branch and
bound method (ILPB). First, initialize the decision variables
H , and set the upper bound of the optimal solution (lines 1-3).
Next, call the ILPB function and return the offloading optimal
decision (lines 4-5). The remaining part is the definition of the
ILPB function. When the recursion boundary is reached, return
the result (lines 7-9). If the current H satisfies the constraint
conditions and is a feasible solution, evaluate the solution. If
the current solution Z is better than the optimal solution Ans,
update the optimal solution to the current solution; otherwise,
Terminate this condition and return. (lines 10-17). Select an
undecided integer variable hk, and for each possible value of
the variable, if the current function value plus the minimum
possible value of the remaining variables is less than the
optimal solution Ans, update the set of decision variables and
the optimal solution. Call the ILPB function in the current
situation (lines 18-26). This approach effectively reduces the
computational complexity by eliminating the consideration of
numerous subsets. The presence of integer constraints in the
problem results in a combinatorial explosion within the search
space.

V. EXPERIMENTS

In this section, we evaluate the performance of our proposed
algorithm by comparing it with the following two algorithms:

• All tasks are offloaded to the ground (ARG): The
satellite transmits all captured data to the ground station,
which then transfers them to the cloud data center for
centralized processing.

Algorithm 1: Inference Offloading Algorithm
Input: G = (S ∪DC ∪GS ∪ L), a sequence of tasks

M1, ...Mk, ...,MK that belong to r, which
need to operation in the limited time. The
weighting coefficients: λ and µ

Output: An offloading decision hk for the inference
request.

1 H = {h1, ...hk, ...hK} = {0};
// Initial offloading state

2 Cons← Constrains(10)− (14);
3 Ans← inf ;
4 ILPB(H,Cons,Ans);
// Call ILPB function

5 Return best offloading decision H;
6 Function ILPB({hk}, Cons,Ans):
7 if |Ans′ −Ans| < 1e− 5 then
8 return;
9 end

// Recursive Termination Condition
10 if all Cons satisfied then
11 if Z < Ans then
12 Ans← Z;

// Update the optimal solution
13 update H;

// Update the offloading
solution

14 end
15 else
16 return;
17 end
18 foreach undetermined hk in H do
19 foreach possible value of hk do
20 if Z(hk) +minZ({hk}) < Ans then
21 update H;
22 Ans← Z(hk) +minZ({hk});
23 Ans′ = ILPB(H,ZMin, Cons,Ans);

// Recursively call the
ILPB function to the
next state

24 end
25 end
26 end

• All tasks are completed on the satellite (ARS): The
satellite autonomously executes the entire DNN task on
its onboard payload.

A. Experiment Setup

In the simulation, we utilize the experiment parameters
from a real-world LEO satellite constellation named “Tian-
suan Constellation”1. Satellites of this constellation operate at
an orbital altitude of approximately 500 km and pass over a

1http://www.tiansuan.org.cn/

ground station for data transmission every 8 hours. The data
transmission duration per pass is approximately 6 minutes,
and the transmission rate fluctuates within the range of [10,
100] Mbps. The parameters βi and γj on processing unit
amount (1 KB) of data in the satellite and cloud data center are
varied from ranges [0.01, 0.03] seconds and [0.0001, 0.001]
seconds, respectively. The parameter αj is varied from 0.05k

to 0.9k, considering the reduction in the size of the input
data for a layer compared to the input data of the previous
layer. The max processing powers of a satellite are set to
[1, 10] Watt [20]. And the size of input computation task is
set to [1,1000] GB. Due to the large values of energy and
time consumption, we represent the results after applying a
logarithmic transformation.

B. Experiment Results

As illustrated in Fig. 2, the energy and time consumption
of the three algorithms varies with different initial data sizes.
As expected, all three algorithms demonstrate increased energy
and time consumption with a larger initial data size. The ILPB
algorithm consistently outperforms others in terms of energy
and time consumption. Moreover, it exhibits a slower growth
rate as the initial data size increases. Our method achieves a
significant reduction in overall time and energy consumption,
amounting to just 10%-18% of the average values obtained
from ARG plus ARS.

Next, we study the energy and time consumption associated
with the IPLB, ARG, and ARS algorithms under varying
data transmission rates between the satellite and the ground
station. As illustrated in Fig. 3, the transmission rate is ranged
from 10 to 100 MB/s with a step size of 10. The results
demonstrate that the proposed IPLB algorithm consistently
achieves lower energy consumption and latency compared to
the ARG and ARS algorithms. Moreover, as the data trans-
mission rate between the satellite and the ground increases,
both the IPLB and ARG demonstrate decreased total time
and energy consumption required on the satellite. However,
the energy consumption of the ARS method remains largely
unaffected by the data transmission rate due to its exclusive
execution of tasks on the satellite.

Finally, we study the energy and time consumption of the
IPLB, ARG, and ARS algorithms across various proportions
of time and energy, as illustrated in Fig. 4. When the ratio
between λ and µ is set to 1:0, indicating that energy consump-
tion is not considered, both the ILPB and ARG algorithms
demonstrate comparable total time delays for task execution.
Notably, the total time of both the ILPB and ARG algorithms
is lower than that of the ARS algorithm. However, when the
ratio between λ and µ is set to 0:1, the ILPB algorithm
surpasses the ARG algorithm by a substantial margin, indi-
cating its superiority in energy consumption. Moreover, as the
proportion of µ increases, the ILPB algorithm significantly
reduces energy consumption while maintaining shorter time
delays, thereby conserving valuable energy resources on the
satellite.

22

24

26

28

30

1 10 30 50 100 200 300 400 500 1000
6

8

10

12

14

16

18

The initial data size for the task(GB)

lg
(

E
 +

T

)

ARG
ARS
ILPB

Fig. 2: The total consumption of tasks in
different initial data size.

26

27

28

10 20 30 40 50 60 70 80 90 100
13

14

15

16

17

18

Downlink bandwidth(Mb/S)

lg
(

E
 +

T

)

ARG
ARS
ILPB

Fig. 3: The total consumption of tasks in
different transmission rate.

24

25

26

27

28

1:0 2:1 1.5:1 1.2:1 1:1 1:1.2 1:1.5 1:2 0:1
12

13

14

15

16

17

18

The proportion of and

lg
(

E
 +

T

)

ARG
ARS
ILPB

Fig. 4: The total consumption of tasks in
different portion for time and energy.

VI. CONCLUSION
This paper addresses the inference offloading problem via

satellite-ground collaborative computing, aiming to address
challenges associated with limited energy acquisition, insuffi-
cient computational resources, and poor satellite-ground com-
munication. We utilize the hierarchical structure of DNNs to
partition tasks into subtasks and establish an inference offload-
ing scheme based on a comprehensive metric that encompasses
both delay and energy consumption. We incorporate the branch
and bound method into the ILP framework to achieve efficient
problem-solving. Simulation results validate the effectiveness
of the proposed ILPB algorithm in reducing both time and
delay. Under different initial data sizes and transmission rates,
the algorithm proposed in this paper outperforms the other
two strategies. We believe that our approach delivers valuable
information and provides an excellent tool that facilitates
a more detailed exploration of the inference tasks of LEO
satellites. The future work can reduce task complexity through
some model lightweight techniques.

VII. ACKNOWLEDGEMENT

This work was supported by the National Natural Science
Foundation of China under grants U21B2016 and 62032003.

REFERENCES

[1] I. Del Portillo, B. G. Cameron, and E. F. Crawley, “A technical
comparison of three low earth orbit satellite constellation systems to
provide global broadband,” Acta astronautica, vol. 159, pp. 123–135,
2019.

[2] W. Liu, G. Ren, R. Yu, S. Guo, J. Zhu, and L. Zhang, “Image-adaptive
yolo for object detection in adverse weather conditions,” in Proceedings
of the AAAI Conference on Artificial Intelligence, vol. 36, no. 2, 2022,
pp. 1792–1800.

[3] Z. Zou, K. Chen, Z. Shi, Y. Guo, and J. Ye, “Object detection in 20
years: A survey,” Proceedings of the IEEE, 2023.

[4] D. Fischer, D. Basin, K. Eckstein, and T. Engel, “Predictable mobile
routing for spacecraft networks,” IEEE Transactions on Mobile Com-
puting, vol. 12, no. 6, pp. 1174–1187, 2012.

[5] B. Denby, K. Chintalapudi, R. Chandra, B. Lucia, and S. Noghabi, “Ko-
dan: Addressing the computational bottleneck in space,” in Proceedings
of the 28th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 3, 2023, pp.
392–403.

[6] F. Davoli, C. Kourogiorgas, M. Marchese, A. Panagopoulos, and F. Pa-
trone, “Small satellites and cubesats: Survey of structures, architectures,
and protocols,” International Journal of Satellite Communications and
Networking, vol. 37, no. 4, pp. 343–359, 2019.

[7] Z. Lai, H. Li, Q. Wu, Q. Ni, M. Lv, J. Li, J. Wu, J. Liu, and Y. Li,
“Integrating space edge computing with terrestrial networks for futuristic
6g pervasive on-demand services.”

[8] N. Cheng, F. Lyu, W. Quan, C. Zhou, H. He, W. Shi, and X. Shen,
“Space/aerial-assisted computing offloading for iot applications: A
learning-based approach,” IEEE Journal on Selected Areas in Commu-
nications, vol. 37, no. 5, pp. 1117–1129, 2019.

[9] G. Giuliari, T. Klenze, M. Legner, D. Basin, A. Perrig, and A. Singla,
“Internet backbones in space,” ACM SIGCOMM Computer Communi-
cation Review, vol. 50, no. 1, pp. 25–37, 2020.

[10] F. Xu, F. Yang, C. Zhao, and S. Wu, “Deep reinforcement learning
based joint edge resource management in maritime network,” China
Communications, vol. 17, no. 5, pp. 211–222, 2020.

[11] Q. Zhang, X. Li, X. Che, X. Ma, A. Zhou, M. Xu, S. Wang, Y. Ma,
and X. Liu, “A comprehensive benchmark of deep learning libraries
on mobile devices,” in Proceedings of the ACM Web Conference 2022,
2022, pp. 3298–3307.

[12] Q. Zhang, X. Che, Y. Chen, X. Ma, M. Xu, S. Dustdar, X. Liu,
and S. Wang, “A comprehensive deep learning library benchmark and
optimal library selection,” IEEE Transactions on Mobile Computing,
2023.

[13] C. Hu, W. Bao, D. Wang, and F. Liu, “Dynamic adaptive dnn surgery
for inference acceleration on the edge,” in IEEE INFOCOM 2019-IEEE
Conference on Computer Communications. IEEE, 2019, pp. 1423–
1431.

[14] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “Ionn: Incremental
offloading of neural network computations from mobile devices to edge
servers,” in Proceedings of the ACM symposium on cloud computing,
2018, pp. 401–411.

[15] J. Chen, S. Chen, Q. Wang, B. Cao, G. Feng, and J. Hu, “iraf: A
deep reinforcement learning approach for collaborative mobile edge
computing iot networks,” IEEE Internet of Things Journal, vol. 6, no. 4,
pp. 7011–7024, 2019.

[16] H.-J. Jeong, H.-J. Lee, C. H. Shin, and S.-M. Moon, “Ionn: Incremental
offloading of neural network computations from mobile devices to edge
servers,” in Proceedings of the ACM symposium on cloud computing,
2018, pp. 401–411.

[17] Q. Yang, X. Luo, P. Li, T. Miyazaki, and X. Wang, “Computation
offloading for fast cnn inference in edge computing,” in Proceedings
of the Conference on Research in Adaptive and Convergent Systems,
2019, pp. 101–106.

[18] S. Hong and H. Kim, “An integrated gpu power and performance model,”
in Proceedings of the 37th annual international symposium on Computer
architecture, 2010, pp. 280–289.

[19] C. Luo and R. Suda, “A performance and energy consumption analytical
model for gpu,” in 2011 IEEE ninth international conference on depend-
able, autonomic and secure computing. IEEE, 2011, pp. 658–665.

[20] C. X. Mavromoustakis, G. Kormentzas, G. Mastorakis, A. Bourdena,
E. Pallis, and C. D. Dimitriou, “Joint energy and delay-aware scheme
for 5g mobile cognitive radio networks,” in 2014 IEEE Global Commu-
nications Conference. IEEE, 2014, pp. 2624–2630.

	Introduction
	Background and Motivation
	SYSTEM MODEL AND PROBLEM DEFINITION
	System Model
	Inference Offloading and Partitioning
	Latency
	Energy Consumption
	Problem Formulation

	Inference Offloading Algorithm
	EXPERIMENTS
	Experiment Setup
	Experiment Results

	CONCLUSION
	Acknowledgement
	References

