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Abstract

Nervous systems and their constituent neurons often display complex dynamics in response

to inputs with simple characteristics. Until recently, these behaviors were not even classiÆed,let

alone understood. This lack of understanding impedes determination of the utility of dynamical

processing elements in artiÆcialneural networks. This paper summarizes a comparison of the

responses of an ionic permeability based neural model to periodic inhibitory driving with that

of a living preparation. Unlike previous, simpler models, duplication of most neuron response

types was excellent, and simulation results led to insights into neuron activities that were subse-

quently veriÆedby examination of the living data. It is hoped that knowledge of the underlying

physiological mechanisms and formal properties of neuron dynamics will lead to advances in

artiÆcialneural network computational theory.



    

1 Introduction

This paper presents a preliminary comparison of some behaviors found for a dynamic, ionic-

permeability-based neural model with those of the crayÆshslowly adapting stretch receptor organ

(SAO), both receiving periodic, pacemaker inhibitory input trains. The living preparation is of

interest as a prototypical inhibitory synapse, an elementary functional unit in nervous systems.

The model allows for exploration of the contributions of underlying mechanisms towards overall

neural activity. Nonlinear dynamical analysis techniques used throughout are intended to lead to

higher-level descriptions of neural dynamics which may be useful for improving understanding

of neural computation.

This work has already illuminated some previously misunderstood neural behaviors. For

brevity’s sake, details of the model, the living preparation, and data capture and analysis methods,

are omitted – they can be found in [?, ?]. It seems that this model is capable of reproducing

all behavioral forms found in the SAO, unlike simpler ones based on phase transition curves

or leaky integrators [?]. These corresponding model forms contain behavioral details that were

either obscured by or confused with noise in the SAO. This includes the presence of chaotic

dynamics, which reinforces the idea that the SAO is capable of producing chaotic outputs [?].

2 Complex Dynamics in Living Neurons

A neuron produces a series (or train) of short lived pulses, called Action Potentials (APs) as its

most obvious output. The timing of the APs, i.e., the times when they arise, are important. Here,

we assimilate the train of APs to a point process, with the resultant description the sequence of

times of occurrence, ht�� t�� � � �i. From these, one may extract the ordered series of interspike

intervals, hT�� T�� � � �i, Tn � tn � tn��.

By way of comparison, the typical output activity of artiÆcialneural network units may be
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either a real or binary value, considered analogous to a neuron’s time-averaged Æringfrequency,

�� �T , where �T is a mean over some range of Ti, computed for a reasonable time interval. Inte-

gration of inputs is performed by a weighted sum (with negative weights signifying inhibition),

and the resultant output produced by sending the sum through a squashing function, which is

nearly linear through much of its range. As a result, an increase in an inhibitory input causes

the neuron’s output value to monotonically decrease.

However, the result of periodic inhibition of a live pacemaker neuron at different input rates

is much more complex. The output rate versus input rate relation includes paradoxical behavior,

with a nonmonotonic response curve containing positive-slope locking regions alternating with

regions of negative-sloped, non-locked responses [?]. Thus, increasing inhibitory input can

either increase or decrease a neuron’s Æringrate, and different inputs can result in changing

output behavioral type. Here we concentrate on introducing three major behavioral categories

which the SAO and permeability model have in common.

Any behavior implies telltale relationships between input and output spike timings. Locked

forms exhibit a Æxed,repeating sequence of �i and Ti; we will call a behavior ™locked p�q” if

these sequences repeat every q outputs and p inputs, so �i � �i�q� Ti � Ti�q.

Intermittent is a descriptive term used for behaviors which might initially seem locked much

of the time, but are interrupted at irregular times by wild deviations in output. Upon closer

examination, they are revealed to be not quite periodic, only apparently so. This includes

quasiperiodic behaviors, such as phase slidings and walk-throughs, in which T�I � p�q, for

T�I irrational and (relatively small) integer p, q. The result is a phase drift or sliding in which

phases ™walk through” the full range in a non-standard manner.

The third behavior which will be considered has been called ™messy” because it can’t be

summarized brieØyor predicted reliably. It includes both erratic and stammering [?]. The erratic

case is now considered chaotic [?]. Stammering occurs for high IPSP input frequencies I � N ,
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in response to which the SAO is only able to produce outputs during narrow ™windows” of time.

Whether the SAO does produce an output during a particular window seems to be random, and

has been mostly attributed to the inØuenceof noise.

3 Modeling and Analysis

The model chosen to match the crayÆshSAO responses was developed by Edman, Gestrelius,

Grampp, and Sjölin for the lobster SAO and FAO (fast adapting stretch receptor organ) [?]. This

model, in additional to ion Øowduring APs, emphasizes between-spike ionic Øuxes,and therefore

also includes slow state variables and ionic concentration dependencies. It approximates well

the low-frequency spontaneous pacemaker Æringseen in the SAO.

We deal here with analysis of data from forced self-oscillators, with the system under study

an intrinsic oscillator, producing periodic output APs. When subjected to periodic forcing inputs,

the timing of its output changes, and it exhibits new behaviors. These may differ quantitatively

from the unperturbed (regularly spaced APs with different between-AP intervals) or it may differ

qualitatively (APs no longer separated by identical intervals). Analyzing these changes is a major

focus of this work.

As deÆnedin Figure ??, the times of the postsynaptic events are ht�� t�� � � � � tni, with the

interval between two such events Ti � ti� ti��. The presynaptic events are of Æxedinterval, I ,

and are used as reference times for analyses. The relation between the two trains is captured by

the cross interval between a postsynaptic event and the most recent presynaptic event, �i, also

called the phase, and usually normalized as a fraction of I .

A simple (but powerful) way of looking at the relationships between the neuron’s current

state and a past one is to plot them against each other. In many cases, it is not necessary to use

the entire state – one element from it (or some other measured quantity, such as the Ti or �i)
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Figure 1: A schematic view of input (presynaptic) and output (postsynaptic) trains. The input
events are regular, with interval I . The output events may be regular of irregular, with the time
of event i designated ti and the interval to preceding one Ti. Phases �i are measured as the time
between an output and the immediately preceding input, normalized to I .

can be used. For instance, by plotting �i versus �i�q, we obtain a qth order phase return map.

There are several characteristics of the return map which will be of interest in diagnosing

system behavior. First of all, if all of the plotted points fall within c small, discrete clusters

in a Ærst-ordermap, then locking would immediately be suspected. We would then proceed

to generate the return maps of order nc, for some reasonable range of integer n, to see if the

clusters fall on the diagonal. Clustering of points along the diagonal in the return map is key to

locking detection. If p�q locking is exhibited, then the qth order return map will have all points

on the diagonal (�i�q � �i). Additionally, these q outputs will occur in the same amount of

time that p inputs do, so that qT � pI .

When locking is not present, the points in a Ærst-orderreturn map will typically not fall into

discrete clusters. If they form a 1-dimensional curve, then additional techniques can be used to

analyze behavior. Quasiperiodicity, an irrational driver to driven ratio, results in the systematic

progression of T or � through the entire range of values, with current state information sufÆcient

to uniquely determine the future, and the return map will be a 1-1 invertible mapping. If a 1-

dimensional curve exists, but it is not 1-1, or there is no 1-D curve, then there are a variety of

possibilities, including stochastic, intermittency, and chaos.

Global behavior addresses the question of how behavior changes as we change the input –
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Figure 2: This graph shows the borders of selected locking behaviors for inhibitory input to
the permeability model. Cross-hatched areas correspond to other locking ratios or non-locked
behavior. Note the region to the right where inhibition shuts the simulated neuron down.

how the different behaviors of the system are related in the space made up of the input (or other)

parameters. Here we will be exploring the effects of input amplitude and frequency, and will

therefore be constructing two-dimensional Arnol’d maps.

In an Arnol’d map, system behavioral category, such as locked, quasiperiodic, or chaotic,

is plotted in the �F�A� plane (where normalized input frequency F � N�I , and input ampli-

tude A � �Psyn, measured by the maximum synaptic permeability). Lockings tend to occur in

relatively tall, narrow regions in this plane, hence they are given the appellation tongues. We

only diagnosed locking to construct approximate maps, and only for a limited number of ratios.

Areas between locking tongues may include other lockings or non-locked behaviors. Ranges

of input amplitude and normalized frequency were chosen, such that Amin � A � Amax and

Imin � I � Imax. A stepsize was used for both A and I , Astep and Istep, so that a simulation was

performed at each amplitude step for each frequency step, within the given ranges.
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The map for inhibitory input to the model is Figure ??. Non-locked behaviors occur in

the cross-hatched regions, while only the indicated locked forms arose in the white regions. A

sparse exploration of the �N�I� �Psyn� space was performed, approximately 20 points across and

30 down, for a total of about 500 simulations. It is important to note that such an Arnol’d

map cannot be constructed for the SAO itself, for, apart from inevitable time constraints, the

preparation’s synaptic strength is not an easily controllable variable.

4 Results

Several features in the Arnol’d map are immediately apparent. With inhibitory input, the model

can be shut down if the input frequency is too high. Additionally, locking tongues tend to narrow

at low amplitudes and at high ones (this is noticeable primarily for the 1�1 tongue), the former

the result of increasing number of non-locked behaviors, and the latter the ™squeezing” of the

range of frequencies within which the neuron will produce any output at all. With this map as

a guide, individual �N�I� �Psyn� pairs were explored, and behaviors were found which mimicked

well those found in the SAO, i.e. locked (omitted here), intermittent, and messy.

Forcing an oscillator beyond its entrainment limit can result in a type of intermittency called

quasiperiodicity, in which an almost (but not quite) locked condition exists [?]. In interval

and phase return maps, quasiperiodic behavior results in points on continuous, one-dimensional

curves. Phase return maps are also invertible and, since phases ™walk through” a range of values

before (almost) repeating, this behavior is identiÆedwith walkthroughs [?], noted also in the

SAO.

In the permeability model, two different type of apparently quasiperiodic behavior were

found, though they may represent extremes of a range of behaviors. Figure ?? shows example

graphs for intervals and phases for the model (A-D) and the SAO (E-H). In both cases, the
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Figure 3: Walkthrough in simulation and SAO. Intervals (simulation: A, C; SAO: E, G) and
phases (simulation: B, D; SAO: F, H). Intime (Ti vs. ti) plots (A, E) show preferred minimum
interval. Phases (B, F) alternate between long and short categories, which walk through the range
of values. Interval return maps (C, G) are ‘L’ shaped with ™elbows” on the diagonal. Phase
return maps (D, H) shows continuous curves. Simulation parameters: N�I � ��	, I � ��
��s,
T � �����s, �Psyn � 
��� ����cm/s.

7



Figure 4: Expanded view of ™elbow” portion of interval return map in Figure ??(C) indicates
Ænestructure.

interval return maps (C, G) are ‘L’ shaped, with the elbow on the diagonal. Additionally, the

phase return maps (D, H) contain points which fall along similar one-dimensional, invertible

curves.

A magniÆedview of the elbow in (C) is presented in Figure ??. We see that the interval

return map in Figures ??(C) and ?? is not invertible, and that there is a Ænestructure associated

with it. Nearby points fall on topologically distant parts of whatever object is described by

the map. This behavior is tentatively assigned to a pathway to chaos called collapse of the

quasiperiodicity.

In the SAO, two different types of unpredictable (or ™messy”) behaviors were identiÆed:

erratic and stammering [?, ?]. Erratic behavior occurs at relatively low presynaptic rates below

1�1 locking, and stammering occurs at high rates. We shall only comment on stammering here.

In the SAO, after the arrival of an inhibitory spike, there is a period of time when the neuron

is unlikely to Ære.For low input frequency, it will recover and be able to Ærebefore the next

input. As the input frequency is increased, this ™recovered interval” is shortened, until it is a

narrow ™window” just around the input arrival time (� � �). Higher frequencies than that may

cause the neuron to be silenced completely.
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Figure 5: Stammering in simulation and SAO. Intervals (simulation: A, C; SAO: E, G) and
phases (simulation: B, D; SAO: F, H). Intime plot (A) shows acceleratory effect of inhibition
and extreme intervals which are multiples of driver. There are two classes of phases (B, F). Phases
in the simulation alternate (D). Simulation parameters: N�I � ���, I � �����s, T � ���
�s,
�Psyn � ���� ����cm/s.
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Figure 6: Enlargement of upper left ™point” from Figure ??(D) show the cluster has Ænestructure,
an extremum, and is not invertible.

This type of discretization occurs in both the SAO and the model, and is called windowing.

The Øuctuationof excitability may be more complex, having multiple windows after an IPSP,

separated by silent periods. Figure ?? corresponds to multiple-window situations (in both cases,

with two windows per inhibitory spike). There are two windows visible in the phasetime plots

(B, F), one around the time of arrival of the input (note � � � � � � �), and the other

longer phase. The behavior is not regular, as evidenced by the interval return maps (C, G).

Multiple windows were clear and relatively frequent in simulation data; the latter Ændingsled to

recognizing them also in SAO data where they were less apparent and had been missed initially.

Simulation results permit a more discerning dissection of the data, as can be seen in the

enlargement of what appear to be points in the return maps (Figure ??). These ™points” have

a structure, the result of an underlying deterministic process. These two islands express the

same folding and stretching behavior that has been seen in sinusoidally forced autonomously

oscillating squid giant axons [?]. Though it had been previously concluded that stammering in

the SAO is the result of noise [?, ?], this suggests that there may be an underlying deterministic

process which is ™washed out” by the noise.
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5 Conclusions

The permeability model examined here reproduced extensively the variety of behaviors exhibited

by the preparation. Only the briefest of comparisons has been included here. This reproduction

is important because simpler models, based on phase transition curves (PTCs) or leaky integra-

tors, generate exclusively locked discharges, even when considerably modiÆed[?]. The model

was also useful for improving our understanding of the messy behaviors. In erratic forms, it

showed how common sliding is, both of intervals and phases (walkthroughs). In stammering, it

demonstrated that tight clusters could have special structures suggesting chaotic behaviors within

relatively small volumes. Both Ændings,noticed Ærstin the simulations, were subsequently iden-

tiÆedin the SAO data (where they had been missed initially). The presence of chaotic dynamics

in a deterministic model is strong evidence for it underlying the corresponding behaviors of the

living preparation, reinforcing evidence from other tests [?].

This model is expressed in terms of physiologically relevant entities (e.g., permeabilities,

pumps), and therefore allows the exploration of how each basic mechanism contributes to the

genesis of each discharge form. Not only can such a model be analyzed more thoroughly,

but it can also serve to guide biological experiments in parallel with theoretical investigations.

Determining the computational implications of these dynamics can similarly proceed in parallel

with experimental investigation of their functional consequences.

While typical ANN models emphasize smooth, continuous transfer functions across synapses,

living neurons do not behave accordingly, exhibiting complex input/output relationships, which

depend not only on average input frequency, but also on the timing pattern of input spike trains

(such as regular, periodic, or aperiodic). This has been amply demonstrated for regularly spaced

periodic input [?]. The continuing emphasis of ANN work on simple models entails the risk of

the Æeldbecoming irrelevant to the underlying neuroscience.
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We assert that the dynamics of individual processing elements, and the concommittent com-

plexity of potential behaviors, is essential for the construction of ANNs whose performance

is meant to approximate that of biological systems – that ™� � � knowledge of connectivity and

synaptic weights alone are not sufÆcientto account for the operation and capabilities of neural

networks� � � ” [?]. The dynamics of individual neurons, and the temporal relationships among

groups of them, are essential ingredients.
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