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Abstract

For vertebrate mitochondrial genomes, some phyloge-
nies have been built by various methods with or without
sequence alignment. These methods are important for the
problem of classification and evolution. In this paper, we
propose two approaches to analyze the phylogenetic re-
lationship of 64 vertebrates using complete mitochondrial
genomes without sequence alignment. The first approach
combines discrete Fourier transform (DFT) with Kullback-
Leibler divergence (KLD) distance. The second one directly
uses a log-correlation distance. Both methods are based
on compositional vectors of DNA sequences or protein se-
quences from the complete genome. The phylogenetic trees
show that the mitochondrial genomes are separated into
three major groups. One group corresponds to mammals;
one group corresponds to fish; and the other one is Ar-
chosauria (including birds and reptiles). In particular, the
structure of the tree based on log-correlation distance are
roughly in agreement in topology with the current known
phylogenies of vertebrates.

1. Introduction

Vertebrate mitochondrial DNA is an important data
source for building the phylogeny, especially when com-
plete genomes are considered [1]. Mitochondrial genes
and genomes have the advantage that they are present in

∗Corresponding author Zu-Guo Yu, e-mail: yuzg1970@yahoo.com or
z.yu@qut.edu.au

high concentrations in many tissues, reliably amplified by
PCR, and can easily be enriched by purification of the mito-
chondria prior to DNA extraction (e.g.[2]). Mitochondrial
genomes also have a strong advantage over nuclear genes
in that they are unlikely to have experienced many intraspe-
cific recombination events [3].

Many phylogenies constructed by traditional methods
are based on alignment of sequences. But given that most
genomes contain millions to billions of sequence characters,
standard methods based on character-by-character com-
parisons performed over ambiguously resolved large-scale
alignments become impractical [4]. Hence, so far many new
methods to construct the tree of life without sequence align-
ment have been proposed, for example, information-based
methods [5,6], principal component analysis [7], singular
value decomposition (SVD) method [4,8], dynamical lan-
guage method [9], Markov model method [10,11], fractal
methods [12-15].

The phylogenetic signal in the protein sequences is often
obscured by noise and bias [16,17]. The SVD method [4,8]
is one way to subtract the noise and bias. Qi et al. [10];
and Yu et al. [9] proposed a Markov model and dynam-
ical language method to subtract the noise and bias. The
analyses based on these two methods using 103 prokary-
otes and 6 eukaryotes have yielded trees separating the three
domains of life, Archaea, Eubacteria and Eukarya with the
relationships among the taxa agreeing with those based on
traditional analyses. Then we applied these two methods to
analyze the phylogenetic relationships of complete chloro-
plast genomes [9,18]. Fourier transform has been used to
subtract the noise from a signal process. The Kullback-
Leibler divergence (KLD) is an important measure based
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on information theory [19] and it has been used to cluster
DNA fragments [20]. In the present study, we propose two
approaches, namely log-correlation distance, Fourier trans-
form plus Kullback-Leibler divergence distance, to analyze
a large number of vertebrate mitochondrial genomes.

2 Composition Vectors and distances

In this paper, three kinds of data from complete
genomes: whole DNA sequences (including protein-coding
and non-coding regions), all protein-coding DNA se-
quences and the amino acid sequences of all protein-coding
genes are analyzed. A DNA or protein sequence is formed
from 4 different nucleotides or 20 different kinds of amino
acids respectively. Each coding sequence in the complete
genome of an organism is translated into a protein sequence
using the genetic code (p. 122 of the book [21]).

We regard DNA sequences or protein sequences as sym-
bolic sequences. In such a sequence of length L, there
are a total of N = 4K (for DNA sequences) or 20K

(for protein sequences) possible types of strings of length
K. We use a window of length K and slide it through
the sequences by shifting one position at a time to deter-
mine the frequencies of each of the N kinds of strings
in each genome. The observed frequency p(s1s2 · · · sK)
of a K-string s1s2 · · · sK is defined as p(s1s2 · · · sK) =
n(s1s2 · · · sK)/(L − K + 1), where n(s1s2 · · · sK) is the
number of times that s1s2 · · · sK appears in this sequence.
For the DNA or amino acid sequences of the protein-
coding genes, denoting by m the number of coding se-
quences or protein sequences from each complete genome,
the observed frequency of a K-string s1s2 · · · sK is defined
as (

∑m
j=1 nj(s1s2 · · · sK))/(

∑m
j=1(Lj − K + 1)); here

nj(s1s2 · · · sK) means the number of times that s1s2 · · · sK

appears in the jth coding sequence and Lj the length of
the jth coding sequence in this complete genome. For all
possible strings s1s2 · · · sK , we use p(s1s2 · · · sK) as com-
ponents to form a composition vector for a genome. To
further simplify the notation, we use pi for the i-th com-
ponent corresponding to the string type i , i = 1, · · · , N
(the N strings are arranged in a fixed order as the alpha-
betical order). Hence we construct a composition vector
P = (p1, p2, · · · , pN ) for a genome.

1) Discrete Fourier Transform: In order to high-
light the selective diversification of sequence composi-
tion, we propose to use the Fourier transform to subtract
the random background (noise and bias) from the sim-
ple counting results. Once we have the composition vec-
tor P = (p1, p2, · · · , pN ), we define the discrete Fourier
transform by DFT (f) = 1

N

∑N−1
j=0 pje

−2πijf/N , f =
0, 1, · · · , N − 1, and i is the complex number defined by
i2 = −1. Then we define Xj = |DFT (j + 1)|, j =
1, 2, · · · , N which is the square root of the power spec-

trum. We use the N -point fast Fourier transform to get
Xj , j = 1, 2, · · · , N .

For protein sequences case, the vector P that we de-
scribed is identical to the peptide frequency vector used by
Stuart et al. [4,8]. Starting from the vector P , Stuart et al.
[4,8] used Singular Value Decomposition (SVD) and then
Dimension Reduction on their constructed matrix.

For all possible K-strings s1s2 · · · sK , we use
X(s1s2 · · · sK) as components to form a spectrum
vector for a genome. To further simplify the notation, we
use Xj for the j-th component corresponding to the string
type j, j = 1, · · · , N (the N strings are arranged in a fixed
order as the alphabetical order). Hence we construct a
spectrum vector X = (X1,X2, · · · ,XN ) for genome X ,
and likewise Y = (Y1, Y2, · · · , YN ) for genome Y .

The Kullback-Leibler divergence (KLD) is defined as
KL(X|Y ) =

∑N
j=1 Xj log(Xj/Yj), when Xj , Yj �= 0.

Then the Kullback-Leibler divergence distance is defined
by KLD(X,Y ) = [KL(X|Y ) + KL(Y |X)]/2.

2) Log-correlation distance: We denote the compo-
sition vector of genome A as P = (p1, p2, · · · , pN ) and
that of genome B as Q = (q1, q2, · · · , qN ). At first, we
define the cosine value of the angle θ of two vectors P
and Q as cosθ = (

∑N
j=1 pjqj)/[

∑N
j=1 p2

j × ∑N
j=1 q2

j ]
1
2 .

Then we define the distance of two vectors P and Q as
d1(P,Q) = −log[(1+ cosθ)/2]. Stuart et al. [4,8] used the
log-correlation distance after the SVD step. Here we use
log-correlation distance directly on the composition vector
from the genome.

Distance matrices for all the genomes under study using
the above two kinds of distances are then computed for con-
struction of phylogenetic trees. We construct all trees using
the neighbor-joining (NJ) method [22] in the PHYLIP pack-
age [23].

3 Genome Data set

For the convenience to compare our methods with
those proposed by other people, we use the same genome
data set used by Stuart et al. [8]. The whole DNA
sequences (including protein-coding and non-coding re-
gions), all protein-coding DNA sequences and all pro-
tein sequences of these complete genomes were obtained
from the NCBI genome database (http://www.ncbi.nlm.
nih.gov/genbank/genomes). Species represented in the
analysis include the following: Alligator mississippiensis
(Amis), Artibeus jamaicensis (Ajam), Aythya Americana
(Aame), Balaenoptera musculus (Bmus), Balaenoptera
physalus (Bphy), Bos taurus (Btau), Canis familiaris
(Cfam), Carassius auratus (Caur), Cavia porcellus (Cpor),
Ceratotherium simum (Csim), Chelonia mydas (Cmyd),
Chrysemys picta (Cpic), Ciconia boyciana (Cboy), Ci-
conia ciconia (Ccic), Corvus frugilegus (Cfru), Crossos-
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toma lacustre (Clac), Cyprinus carpio (Ccar), Danio re-
rio (Drer), Dasypus novemcinctus (Dnov), Didelphis vir-
giniana (Dvir), Dinodon semicarinatus (Dsem), Equus
asinus (Easi), Equus caballus (Ecab), Erinaceus eu-
ropaeus (Eeur), Eumeces egregius (Eegr), Falco peregri-
nus (Fper), Felis catus (Fcat), Gadus morhua (Gmor),
Gallus gallus (Ggal), Gorilla gorilla (Ggor), Halichoerus
grypus (Hgry), Hippopotamus amphibius (Hamp), Homo
sapiens (Hsap), Latimeria chalumnae (Lcha), Loxodonta
africana (Lafr), Macropus robustus (Mrob), Mus mus-
culus (Mmus), Mustelus manazo (Mman), Myoxus glis
(Mgli), Oncorhynchus mykiss (Omyk), Ornithorhynchus
anatinus (Oana), Orycteropus afer (Oafe), Oryctolagus cu-
niculus (Ocun), Ovis aries (Oari), Paralichthys olivaceus
(Poli), Pelomedusa subrufa (Psub), Phoca vitulina (Pvit),
Polypterus ornatipinnis (Porn), Pongo pygmaeus abelii
(Ppyg), Protopterus dolloi (Pdol), Raja radiata (Rrad), Rat-
tus norvegicus (Rnor), Rhea americana (Rame), Rhinoceros
unicornis (Runi), Salmo salar (Ssal), Salvelinus alpinus
(Salp), Salvelinus fontinalis (Sfon), Scyliorhinus canic-
ula (Scan), Smithornis sharpei (Ssha), Squalus acanthias
(Saca), Struthio camelus (Scam), Sus scrofa (Sscr), Talpa
europaea (Teur), and Vidua chalybeata (Vcha). The words
in the brackets are the abbreviations of the names of these
organisms used in our phylogenetic trees (Figures. 1 and 2).

4 Results and Discussion

Three kinds of sequences mentioned in the previous
section from complete mitochondrial genomes of the se-
lected 64 vertebrates were analyzed. The trees of K =
3 to 6 based on all protein sequences and the trees of
K ≤ 13 based on the whole DNA sequences and all
protein-coding DNA sequences using Fourier transform
with KLD distance, and log-correlation distance, are con-
structed. The program implementing these two methods
and the distance matrices we obtained can be provided
via email. After comparison all the trees we constructed
with the traditional classification of the selected 64 ver-
tebrates (the reader can refer the traditional classification
from the KEGG database: click ”complete mitochondrial
Genomes” on http://www.genome.jp/kegg/genes.html)), for
Fourier transform with KLD distance approach, we find that
the tree of K = 5 using all protein sequences is the best
tree (shown in Figure 1); for the log-correlation distance
method, the tree of K = 12 using the whole genome DNA
sequences is the best one and we show it in Figure 2.

The phylogenetic trees show (Figures. 1 and 2) that
the mitochondrial genomes are separated into three major
groups. One group corresponds to mammals; one group
corresponds to fish; and the other one is Archosauria (in-
cluding birds and reptiles). In particular, the structure of the
tree in Figure 2 based on the log-correlation distance are
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Figure 1. Neighbor-joining (NJ) phylogenetic
tree of mitochondrial genomes based on DFT
with KLD distance in the case K = 5 us-
ing the protein sequences from the complete
genomes.
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largely in agreement in topology with the current known
phylogenies of vertebrates.

In the non-mammalian group,the fish and birds cluster
as distinct groups as expected (Figures 1 and 2). But the
interrelationships among the birds are not consistent with
traditional view. In the cluster of fish, the chondrichthyes
(cartilaginous fish) cluster as a group but osteichthyes (bony
fish) are separated as two clades by the branch of chon-
drichthyes. The relationships among cartilaginous fish are
similar to those in Stuart et al. [8]. The overall phylogeny
of fish, including the relationship between cartilaginous fish
and bony fish, is currently uncertain [8]. Within the rep-
tiles, the reptiles group together, the three turtles (Cmyd,
Cpic and Psub) group together as a branch and the Alliga-
tor mississippiensis (Amis) places closer to birds than other
reptiles as expected in Figure 2. In Figure 1, the reptiles are
separated into two parts by the branch birds, so it is not as
good as Figure 2.

Within the mammals in Figure 2, perissodactyls, carni-
vores and cetartiodactyls are grouped together as expected
[8,24-26]. In Figure 1, cetartiodactyls are separated into
two parts. In both trees these three groups form the ferun-
gulates, together with the mole (Teur) and the bat (Ajam), as
observed in recent independent analyses [8,27,28]. For the
rest of the mammals, in both trees, primates, rodents and
non-eutherians are grouped together. In Figure 2, the non-
eutherians [Marsupalia (Dvir and Mrob) and Monotremata
(Oana)] are located at the root of all the mammals included
in the study, which is the same to the results previously re-
ported [4,8,29,30]. The rabbit (Ocun) is found to be close
to rodents as expected in Figure 2. Because all rodents do
not gather as a branch, our methods can not give the answer
on the unsolved issue on the monophyly of rodents [30]. In
the trees presented by Li et al. [5] and Stuart et al.[8], the
guinea pig (Cpor) does not group with other rodents also.

Fourier transform with KLD distance approach just pro-
vides an alternative method to construct the phylogenetic
tree. From the analysis given above, we can say log-
correlation distance method is better than Fourier transform
with KLD distance approach for the data set we considered.
For same value of K, the log-correlation distance method
is faster than the Fourier transform with KLD distance ap-
proach.

We also compared the tree of K = 4 using log-
correlation distance directly on the protein sequences from
genomes with the tree obtained using on the protein se-
quences in Stuart et al.[8] (they use K = 4). We found
that the tree shown in Stuart et al.[8] is better. This means
the SVD step in the method of Stuart et al.[8] is necessary.
The results from Figure 2 tell us that can get satisfied tree
without the help of SVD step if we use the whole genome
DNA sequences. In the SVD with log-correlation distance
method, one need determine two free parameters, K and the

number of singular values kept. In current methods, we just
need determine one free parameters K.

Our simple distance analyses on the complete mitochon-
drial genomes have yielded trees that are in roughly agree-
ment with our current knowledge on the phylogenetic re-
lationships in different groups of vertebrates as elucidated
previously by traditional analyses of the mitochondrial
genomes and other molecular/ultrastructural approaches.
Our approach circumvents the ambiguity in the selection
of genes from complete genomes for phylogenetic recon-
struction, and is also faster than the traditional approaches
of phylogenetic analysis, particularly when dealing with a
large number of genomes. Moreover, since multiple se-
quence alignment is not necessary, the intrinsic problems
associated with this complex procedure can be avoided. By
using the log-correlation distance, we do not need an addi-
tional step to subtract the noise from the composition vec-
tors. Our numerical result indicates the log- correlation can
fulfill this function. Further theoretical study on why log-
correlation has the function of noise subtraction is interest-
ing and necessary. Comparing with the method proposed in
Li et al. [5], our methods are more direct and faster, and the
results are better from the biological point of view.
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