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Abstract We present in this paper a new method for the design of evolving neuro-
fuzzy classifiers. The presented approach is based on a first-order Takagi-Sugeno
neuro-fuzzy model. We propose a modification on the premise structure in this model
and we provide the necessary learning formulas, with no problem-dependent param-
eters. We demonstrate by the experimental results the positive effect of this modifi-
cation on the overall classification performance.
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1 Introduction

Classification techniques appear frequently in many application areas, and become
the basic tool for almost any pattern recognition task. The main problem in classifi-
cation is to induce a classifier from a set of data samples. A large amount of samples
is needed to set up and evaluate a classification system that can achieve high accuracy,
and it is practically very difficult to have such number of samples covering the whole
feature space. Therefore, life-long classifier adaptationbecomes more and more an
essential point. Moreover, in many application contexts, the classifier needs to take
into account new unseen classes and to integrate them in the classification process,
which increases the need for “evolving” classifiers.

One good example of such applications is the use of online handwriting gesture
classifiers that aims at facilitating interactions with computers using pen-based in-
terfaces like whiteboards, tablet PCs, PDA...Etc. The maindrawback in the current
existing systems is that they are trained “offline” on a specific group of gestures and
then implemented to operate without changing their structure during the use. This
fixed structure does not allow the user to choose his own set ofgestures or to add new
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ones to assign them to new interactive commands (according to his special needs),
for example.

In our work, we aim at building a handwriting classifier, on-the-fly, from scratch
and using only few data. Thus, the classifier will be incrementally adapted to achieve
high recognition rates as soon as possible and to keep the system robust when intro-
ducing new unseen classes at any moment in the life-long learning process.

In order to clarify the meaning of the terms “incremental” and “online” learning,
one can compare them to the “batch” and “offline” learning as follows [Kasabov (2007)]:

– Batch versus incremental learning:In a batch mode of learning a predefined
training dataset is learned by the system through propagating this dataset several
times through the system. Each time the system optimizes itsstructure based on
the average value of the goal function over the whole dataset. The incremental
mode of learning is concerned with learning each data sampleseparately and the
data might exist only for a short time. After introducing each data sample, the sys-
tem makes changes in its structure to optimize the goal function. An incremental
learning algorithm must learn new data without fully destroying the knowledge
learned from old data and without the need to retrain the system on the old and
the new data.

– Offline versus online learning:In an offline learning mode, the system is trained
on a specific dataset and then implemented to operate in a realenvironment, with-
out changing its structure during the use. While in an online learning mode, the
model learns from new data during its use.

An incremental learning algorithm is defined in [Polikar et al. (2001)] as being
one that meets the following criteria: it should be able to learn additional infor-
mation from new data; it should not require access to the original data (i.e. data
used to train the existing classifier); it should preserve previously acquired knowl-
edge (it should not suffer fromcatastrophic forgetting, significant loss of original
learned knowledge); and it should be able to accommodate newclasses that may
be introduced with new data. Many of the existing “incremental learning” algo-
rithms are not truly incremental because at least one of the mentioned criteria is
violated. These criteria can be briefly expressed by the so called “plasticity-stability
dilemma”[Zwickel and Wills (2005)], which is that a system must be able to learn
in order to adapt to a changing environment but that constantchange can lead to an
unstable system that can learn new information only by forgetting everything it has
so far learned.

We can distinguish two main types of incremental learning algorithms: algorithms
for parameter incremental learning and algorithms for structure incremental learning.
The incremental learning of parameters can be considered as“adaptation” algorithm.
The structure in such systems is fixed and initialized at the beginning of the learning
process, and the system parameters are learned incrementally according to newly
available data. Some examples of these systems are presented in [Jang (1993)] and
[Mouchere et al. (2007)].

Most of structure incremental learning algorithms are based on the principle of the
ART clustering algorithm [Carpenter and Grossberg (1988)], such as [Carpenter et al. (1992)],
[Sadri et al. (2006)], [Gary G. (2001)]. The main problem of these systems is that
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they are sensitive to the selection of the vigilance parameter, to noise level in the
training data and to the order in which training data are presented.

In an online incremental learning algorithm, the training set is not available a
priori, since the learning examples come over time. Although online learning systems
can continuously update and improve their models, not all ofthem are necessarily
based on a real incremental approach. For some systems the model is completely
rebuilt at each step of learning using all available data, they are systems with “full
instance memory” [Reinke and Michalski (1988)]. On the other hand, if the learning
algorithm modifies the model using only the last available learning example, it is
called a system with “no instance memory” [Littlestone (1991)]. A third category is
that of systems with “partial instance memory”, which select and maintain a reduced
subset of learning examples to use them in the next learning step [Aha et al. (1991)].

Evolving neuro-fuzzy models [Angelov and Filev (2003)] have been successfully
used in many modeling and classification problems during thelast years. Several in-
cremental learning algorithms have been proposed for the evolving structure iden-
tification and the recursive parameters learning (Denfis[Song and Kasabov (2000)],
Flexfis[Lughofer (2008)], eTS[Angelov and Filev (2004)], eTS+[Angelov (2010)] etc.).
One of the most used neuro-fuzzy models is the First-order Takagi-Sugeno fuzzy
model. It usually has a linear consequent part and its premise part can be learned
from data (no expert is needed). These models can address problems with either sin-
gle output or multi-output. It consists of a set of fuzzy rules of the following form:

Rulei : IF x is close toPiTHEN y1i = l1i (x), ..., y
k
i = lki (x) (1)

wherelmi (x) is the linear consequent function of the rulei for the classm. The
Prototype P is defined by a center and a fuzzy zone of influence.A membership
function must be defined in order to calculate the “closeness” degree between x and
P (considering its center and its fuzzy zone of influence).

In the existing approaches, the zone of influence has often a hyper-spherical form
[Yager and Filev (1993)] [Angelov (2004)]. It has then the same radius for all the
feature space dimensions, and it can be represented by a diagonal covariance matrix
with identical values on the diagonal.

More sophisticated form is presented in [Angelov and Zhou (2006)] that allows
the zone radius to have different values for the different dimensions (still diagonal
covariance matrix but with different values on the diagonal). This ability results in
hyper-elliptical zones where the ellipses are still parallel to the feature space axes.

In this paper, we go a step ahead in the structure of the fuzzy prototypes in first
order TS models by allowing them to have a hyper-elliptical form non-parallel to the
feature space axes. This form enables the model to take into consideration the correla-
tions that can exist between the features, and is represented by normal (non-diagonal)
covariance matrices. We calculate the prototype centers and covariance matrices in a
recursive way with zero problem-dependent parameters. We use a membership func-
tion based on a well-known multivariate probability distribution function. By ex-
perimenting this structure on our handwritten gesture problem and other benchmark
multi-class problems, we show its useful effect on the overall system output and the
linear consequent learning. We also propose two different methods for incremen-



4

tal adaptation of prototypes, and we compare experimentally these two incremental
learning models with a well-known reference model.

The rest of the paper is organized as follows: We describe in Section 2 the archi-
tecture of our neuro-fuzzy classifier. Then, the different elements of the used online
incremental learning algorithm are detailed in Section III. We present our experimen-
tal results in Section IV before concluding in Section 5.

2 System architecture

As aforementioned, our system is based on first-order Takagi-Sugeno (TS) fuzzy in-
ference system. It consists of a set of fuzzy rules of the following form:

Rulei : IF x is close toPiTHEN y1i = l1i (x), ..., y
k
i = lki (x) (2)

wherelmi (x) is the linear consequent function of the rulei for the classm:

lmi (x) = π
m
i x = ami0 + ami1x1 + ami2x2 + ...+ aminxn (3)

wheren is the size of the input vector. Singleton consequences (lmi (x) = ami ) are
sometimes used instead of linear functions in order to get simpler models that are
called zero-order TS models. To find the class ofx, its membership degreeβi(x) to
each fuzzy prototype is first computed. After normalizing these membership degrees,
the sum-product inference is used to compute the system output for each class:

ym(x) =

r
∑

i=1

β̄i(x) l
m
i (x) (4)

wherer is the number of fuzzy rules in the system. The winning class label is given
by finding the maximal output and taking the corresponding class label as response:

class(x) = y = argmax ym(x) m = 1, .., k (5)

The membership degree can be calculated in many ways. For hyper-spherical or
axes-parallel hyper-elliptical prototypes, the membership degree can be computed
depending on the prototype centerµi and the radius valueσi (the same value in all
the dimensions for the former, and different values for the later). In this case, the
Gaussian membership function is generally used. The value of βi(x) can then be
computed as follows:

βi(x) =

n
∏

j=1

exp(−
‖x− µi‖

2
j

2σ2
ij

) (6)

It must then be normalized as follows:

β̄i(x) =
βi(x)

∑r

j=1 βj(x)
(7)
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In our model, where the fuzzy influence zones of the prototypetake a rotated
hyper-elliptical form, the membership degree is computed by the prototype centerµi

and its variance-covariance matrixAi:

Ai =









σ2
1 c12 ... c1n

c21 σ2
2 ... c2n

... ... ... ...
cn1 cn2 ... σ

2
n









i

(8)

wherec12(= c21) is the covariance ofx1 andx2, and so on. In order to calculate
the membership degree, we use the multivariate Cauchy probability distribution. The
value ofβi(x) is computed in our model as follows:

βi(x) =
1

2π
√

|Ai|

[

1 + (x− µi)
tA−1

i (x− µi)
]−n+1

2 (9)

The difference between the two types of premises is illustrated in fig.1 (data from
“Iris” dataset [Frank and Asuncion (2010)]).

3 On-line incremental learning algorithm

The incremental learning algorithm of our model consists ofthree different tasks: the
creation of new rules, the adaptation of the existing rule’spremises, and the tuning
of the linear consequent parameters. These three tasks mustbe done in an online in-
cremental mode and all the needed calculation must be completely recursive. For the
incremental rule creation, we adapt a technique of incremental clustering. Coupling
this technique with the incremental adaptation of the premises of the rules is part of
the originality of our learning model. We propose two different methods for adapting
the premises, and we use a modified version of the recursive least squares method for
estimating the linear consequent parameters in incremental manner.We will describe
in this section the different parts of the learning algorithm.

3.1 Incremental clustering

In an online incremental learning problem, training data become available continu-
ously, and the system must be learned using the first-arriveddata, and then continue
to evolve in a transparent manner from the user viewpoint. Classic clustering algo-
rithms need to know all the objects in order to perform the clustering and each time
we modify the set of objects, it is necessary to cluster the whole collection again. As
mentioned in the introduction, a very important criterion of an efficient incremental
learning solution is avoiding (or minimizing) access to previous learning data. Thus,
we need algorithm able to update the clusters each time a new data become available,
without neither rebuilding the whole set of clusters, nor requiring access to previous
data.
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Fig. 1 The zone of influence of a prototype is parallel to the axes in (a), (c) and (e), while the rotated zones
in (b), (d) and (f) through the use a multidimensional probability distribution result in a more accurate data
modeling.

When introducing a new training sample in an online learning mode, it will either
reinforce the information contained in the previous data and represented by the cur-
rent clustering, or bring enough information to form a new cluster or modify an exist-
ing one. The importance of a given sample in the clustering process can be evaluated
by itspotentialvalue. The potential of a sample is defined as inverse of the sum of dis-
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tances between a data sample and all the other data samples [Yager and Filev (1993)]:

Pot(x(t)) =
1

1 +
∑t−1

i=1 ‖x(t)− x(i)‖
2 (10)

A recursive method for the calculation of the potential of a new sample was intro-
duced in [Angelov and Filev (2004)], which made this technique a promised solution
for any incremental clustering problem. The recursive formula avoids memorizing
the whole previous data but keeps - using few variables - the density distribution in
the feature space based on the previous data:

Pot(x(t)) =
t− 1

(t− 1)α(t) + γ(t)− 2ζ(t) + t− 1
(11)

where

α(t) =

n
∑

j=1

x2j (t) (12)

γ(t) = γ(t− 1) + α(t− 1), γ(1) = 0 (13)

ζ(t) =
n
∑

j=1

xj(t)ηj(t), ηj(t) = ηj(t− 1) + xj(t− 1), ηj(1) = 0 (14)

Introducing a new sample affects the potential values of thecenters of the existing
clusters, which can be recursively updated by the followingequation:

Pot(µi) =
(t− 1)Pot(µi)

t− 2 + Pot(µi) + Pot(µi)
∑n

j=1 ‖µi − x(t− 1)‖2j
(15)

If the potential of the new sample is higher than the potential of the existing
centers then this sample will be a center of a new cluster and anew fuzzy rule will
be formed in the case of our neuro-fuzzy model. So, the centerof the new prototype
µr+1 = xk and its covariance matrixAr+1 = ǫI, whereI is the identity matrix of
sizen andǫ is a problem-independent parameter and can generally be setto 10−2.

3.2 Premise adaptation

This adaptation process allows to incrementally update theprototype centers coordi-
nations according to each new available learning data, and to recursively compute the
prototype covariance matrices in order to give them the rotated hyper-elliptical form.
For each new samplexk, the center and the covariance matrix of the prototype that
has the highest activation degree are updated. We present two different approaches of
adaptation; the first method is purely statistical, while the second takes into account
the error or the confusion during the recognition of the new example.
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3.2.1 Statistical recursive adaptation

In this method, the center coordination of the selected prototype is recalculated as
follows:

µi =
si − 1

si
µi +

1

si
xt (16)

wheresi represents the number of updates that have been applied so far on this pro-
totype. The covariance matrix is recursively computed as follows:

Ai =
si − 1

si
Ai +

1

si − 1
(xt − µi)(xt − µi)

T (17)

For practical issues, since the membership degree can be calculated using only
A−1(|A| = 1

|A−1| ), and in order to avoid any matrix inversion, we use an updating

rule forA−1 directly [De Backer and Scheunders (2001)]:

A−1
i =

A−1
i

1− α
−

α

1− α
·
(A−1

i (xt − µi)) · (A
−1
i (xt − µi))

T

1 + α((xt − µi)TA
−1
i (xt − µi))

(18)

wherea = 1
si−1 .

3.2.2 Confusion-driven recursive adaptation

We propose a second method of adaptation in which the adjustment is made in “super-
vised” manner. To guide the adaptation of premises to improve system performance,
we focus on examples that are either misrecognized, or “hardly” well recognized.
This is translated by adding in the adaptation formulas a weightw that will be cal-
culated for each new instance and it represents the importance to be assigned to this
example in the process of adaption. The adaptation formulasare then given as fol-
lows:

µi =
si − w

si
µi +

w

si
xt (19)

Ai =
si − w

si
Ai +

w

si − 1
(xt − µi)(xt − µi)

T (20)

w = 1− [yc − ync] w ∈ [0, 2] (21)

where

ync = argmax ym m = 1..k & m 6= c (22)

In words,w is inversely proportional to the difference between the true label score
of xt (yc) and the highest value between the other (wrong) classes’ scores (ync). Thus,
the value ofw tends to 0 whenxt is “strongly” well recognized, and to 2 when it is
misrecognized.
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3.3 Linear consequent tuning

The tuning of the linear consequent parameters in a first-order TS model can be done
using weighted Recursive Least Square method (wRLS) [Angelov et al. (2008)]. The
wRLS method can be applied in either local or global manner. Consequent parameters
of each rule are optimized separately in the former, while parameters of all the rules
are optimized together in the latter. LetΠ be the matrix of all the linear consequents
parameters in first-order FIS :

Π =









π
1
1 π

2
1 ... π

k
1

π
1
2 π

2
2 ... π

k
2

... ... ... ...
π

1
r π

2
r ... π

k
r









(23)

wherem is the number of classes, andr is the number of fuzzy rules; It can be
globally and incrementally estimated by:

Πt = Πt−1 + Ctψt(Yt − ψT
t Πt−1) ; Π1 = 0 (24)

Ct = Ct−1 −
Ct−1ψtψ

T
t Ct−1

1 + ψT
t Ct−1ψt

; C1 = ΩI (25)

whereψt = [β1(xt)xt, β2(xt)xt, ..., βr(xt)xt] is the input vector weighted by the
activation levels of the prototypes,I is the identity matrix andΩ is a large positive
number, typically between 100 and 10,000. Small values ofΩ slow down the learn-
ing, while too largeΩ can prevent parameters converging properly. The value must
then be estimated to be a good compromise between these two points.Ω = 1000 is
adequate for most cases.Yt is a 1-by-k target vector of the input vectorxt. In classi-
cal classification problems, the value of the correct class in the target vector is set to
one, and the rest to zero.

When a new rule is added to the system, its consequent parameters are initialized
by the weighted average of the parameters of the other rules,while the parameters of
the other rules do not change:

Πt =















π
1
1(t−1) π

2
1(t−1) ... π

k
1(t−1)

π
1
2(t−1) π

2
2(t−1) ... π

k
2(t−1)

... ... ... ...
π

1
r(t−1) π

2
r(t−1) ... π

k
r(t−1)

π
1
(r+1)t π

2
(r+1)t ... π

k
(r+1)t















(26)

where

π
c
(r+1)t =

r
∑

i=1

βi(xt)π
c
i(t−1) (27)

In addition, the covariance matrixC is extended as follows:
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Ct =













ρ
[

Ct−1

] [

0
]

[

0
]





Ω ... 0
... ... ...
0 ... Ω

















(28)

whereρ = (r2 + 1)/r2.
The complete learning algorithm can be summarized by Algorithm 1.

Algorithm 1: First-order Takagi-Sugeno online incremental learning algorithm

foreachnew samplex do
if x is the first sample of a new classthen

create a new fuzzy prototype based atx;
initialize its potential by 1;
add a new fuzzy rule to the system;
extend the consequent parameters matrix as in (26) and (27);
update and extend the covariance matrix as in (28);

else
calculate the activations of the fuzzy rules by (9);
determine the winning class label by [5];
get the true class label;
calculate the potential ofx by (11);
update the potentials of the existing prototypes centers using (15);
if Pot(x) > Pot(µi) ∀i ∈ [1, R] then

if x is close to an existing centerµi then
let x be the new center of the prototypePi and keep the same
consequents of therulei;

else
create a new fuzzy prototype based atx;
initialize its potential by 1;
add a new fuzzy rule to the system;
extend the consequent parameters matrix as in (26) and (27);
update and extend the covariance matrix as in (28);

end
end
Apply premise adaptation according toxb by either (16) and (18) or
(19) and (20);
update the consequents parameters using (24) and (25);

end
end
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Fig. 2 Handwritten gestures in the dataset SIGN

4 Experimental results

In this section, we analyze the performance and behavior of our model of incre-
mental learning on two types of experience. The first experiment is conducted on
an incremental learning problem related to our specific application context, online
handwritten gesture recognition. In the second part of thisexperimental study, we
test our model on well-known classification benchmarks, allowing comparing our re-
sults with non-incremental learning methods, while offering the opportunity to other
incremental approaches to compare with our method.

4.1 Online handwritten gesture recognition

We led the experiments on the “SIGN” database, which is a database of on-line hand-
written gestures (figure 2). It is composed of 25 different gestures drawn by 11 dif-
ferent writers on Tablet PCs. Each writer has drawn 100 samples of each gesture,i.e.
2,500 gestures in each writer-specific dataset. The dataset(and additional informa-
tion on the data collection protocol) can be found in [SIGN (2010)]. Each gesture is
described by a set of 10 features. The presented results are the average of results of
11 different tests for the 11 writers.

4.2 UCI repository datasets

Besides the SIGN dataset, we evaluate the presented neuro-fuzzy model on some
benchmark problems form the UCI machine learning repository [Frank and Asuncion (2010)].
We particularly focus in this work on multi-class problems.We have chosen the next
datasets:

– CoverType: The aim of this problem is to predict forest cover type from 12 car-
tographical variables. Seven classes of forest cover typesare considered in this
dataset. We use in our experiment a subset of 2100 instances.

– PenDigits: The objective is to classify the ten digits represented by their hand-
writing information from pressure sensitive tablet PC. Each digits is represented
by 16 features. The dataset contains about 11000 instances.
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Table 1 Misclassification rates for different consequent types

– Segment: Each instance in the dataset represents a 3x3 region from 7 outdoor
images. The aim is to find the image from which the region was taken. Each
region is characterized by 19 numerical attributes. There are 2310 instances in
the dataset.

– Letters: The objective is to identify each of a large number of black-and-white
rectangular pixel displays as one of the 26 capital letters in the English alpha-
bet. Each letter is represented by 16 primitive numerical attributes. The dataset
contains 20000 instances.

We use 75% of each dataset for the incremental learning process and the rest is
used to estimate the performance during and at the end of the learning process. In
order to get the results unbiased by the data order effect, werepeat the experiment
for each dataset 40 times with different random data orders and the mean results
and standard deviations are presented in the figures and the tables. Three incremental
learning models are compared in this experiment:

(I) Euclidean + statistical adaptation: an evolving first-order TS classifier with
parallel-to-axes hyper-elliptical prototypes (this model is equivalent to eClass
model [Angelov et al. (2008)]),

(II) Mahalanobis + statistical adaptation: our extended version with rotated hyper-
elliptical prototypes (covariances between features are considered). The adap-
tation of prototypes is purely statistical (section 3.2.1)

(III) Mahalanobis + confusion-driven adaptation: prototypes adaptation is based on
the degrees of confusion (section 3.2.2) in this model.

As for the premise structure, several variants of consequent functions and their
learning algorithm can be used as aforementioned. We have measured the impact of
these variants on the classification accuracy using the enhanced premise structure
on the five datasets. Table 1 shows a comparison between zero-order and first-order
model and between local consequent optimization and globalconsequent optimiza-
tion, for a hyper-elliptical premise structure with statistical adaptation. We can note
that first-order models are more performant than zero-orderones, but with the price
of having more parameters. On the other hand, we note that both local and global
consequents optimization give almost the same results, with the advantage of having
less parameter using the local optimization.
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Table 2 Misclassification rates for different premise structures

Thus, we choose in the next experiment a local consequent optimization algo-
rithm, and we compare the three premise structures that we have mentioned above.
Results are shown for both zero-order and first-order models. We note from Table 2
that our improved models outperform the reference model. With the improved struc-
ture of premises, the rate of misclassification generally decreases from 10% to 50%,
according to the classification problem. We can also notice that the confusion-driven
premise adaptation helps in correcting some classificationerrors and improves the
system’s performance compared to the statistical adaptation. Almost the same results
are obtained for either zero-order or first-order consequents.

We show in figure 3, 4, 5 and 6 the evolution of classification performance dur-
ing the incremental learning process using the three different premise structures. We
show in figure the evolution of classification performance during the incremental
learning process using the three different premise structures. We notice the stability
and the superiority of the performance using the improved premise structure.

5 Conclusion

An improvement on the premise structure of Takagi-Sugeno neuro-fuzzy classifier
had been presented in this paper. The rotated fuzzy zones of influence in the pre-
sented model enable the premise “layer” to consider the correlations that may exist
between input features and boost the overall performance ofthe classifier. An appro-
priate recursive premise adaptation methods are coupled with a known incremental
clustering technique and used with the recursive least squares method to learn the
classifier in one-pass incremental mode. The proposed enhancements reduce the mis-
classification rate by more than 30% for our specific classification problem (online
handwritten gesture recognition), and these good results are also obtained on several
benchmark classification problems.
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Fig. 3 Evolution of performance during the incremental learning process(SIGN)
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