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Abstract

Bayesian network structures are usually built using only the data and starting from an empty 

network or from a naïve Bayes structure. Very often, in some domains, like medicine, a prior 

structure knowledge is already known. This structure can be automatically or manually refined in 

search for better performance models. In this work, we take Bayesian networks built by specialists 

and show that minor perturbations to this original network can yield better classifiers with a very 

small computational cost, while maintaining most of the intended meaning of the original model.
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1 Introduction

Bayesian networks are directed acyclic graphs that represent dependencies between 

variables in probabilistic models. In these networks, each node represents a variable of 

interest and the edges may represent causal dependencies between these variables. A 

Bayesian network encodes the Markov assumption that each variable is independent of its 

non-descendants, given just its parents. Each node (variable) is associated with a conditional 

probability table.

When used for knowledge representation, a network is simply a graphical model that 

represents relations among variables. This graphical model can be learned from data or can 

be manually built. In the latter case, the network encodes the knowledge of an expert and can 

serve as a basis for the construction of new networks. When learned only from data, the final 

graphical model (network structure) may not have a meaning for a specialist in the domain 

defined by the data.

In this work, we aim to gather the advantages of manual construction with the advantages of 

automatic construction, using ExpertBayes, a system that implements an algorithm that can 

refine previously built networks. ExpertBayes allows for (1) reducing the computational 
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costs involved in building a network only from the data, (2) embedding knowledge of an 

expert in the newly built network and (3) manual building of fresh new graphical 

representations. The main ExpertBayes algorithm is random and implements 3 operators: 

insertion, removal and reversal of edges. In all cases, nodes are also chosen randomly.

Our expert domains are prostate cancer and breast cancer. We used graphical models 

manually built by specialists as starting networks. Parameters are learned from the data, but 

can also be given by the specialists. We compare the performance of our original networks 

with the best network found using our random algorithm. Results are validated using 5-fold 

cross-validation. For different threshold values, results, both in the training and test sets, 

show that there is a statistically significant difference between the original network and the 

newly built networks. As far as we know, this is the first implementation of an algorithm 

capable of constructing Bayesian networks from prior knowledge in the form of a network 

structure. Previous works considered as initial network a naïve Bayes or an empty network 

[10,12,14,5]. As far as we know, the R package deal [2] is the only one that refines previous 

Bayesian structures, but our attempts to make it work were not successful, since the 

parameters computed for the new networks were not interpretable. We then decided to 

implement our own algorithm.

One important aspect of ExpertBayes is that it makes small perturbations to the original 

model thus maintaining its intended meaning. Besides refining pre-defined networks, 

ExpertBayes is interactive. It allows users to play with the network structure which is an 

important step in the integration of expert knowledge to the automatic learning process.

2 ExpertBayes: refining expert-based Bayesian networks

Most works in the literature that discuss methods for learning the structure of Bayesian 

networks focus on learning from an empty network or from data. However, in some 

domains, it is common to find Bayesian models manually built by experts, using tools such 

as GeNIe (a modeling environment developed by the Decision Systems Laboratory of the 

University of Pittsburgh, available at http://genie.sis.pitt.edu), Netica (https://

www.norsys.com/netica.html) or the WEKA Bayes editor [10]. Having an initial model 

brings at least two advantages: (1) from the point of view of the specialist, some expert 

knowledge has already being embedded to the model, with meaningful correlations among 

variables, (2) from the point of view of the structure learning algorithm, the search becomes 

less costly, since an initial structure is already known. In fact, in other areas, it is very 

common to use previous knowledge to reduce the search space for solutions. One classical 

example is the comb-like structure used as initial seed for DNA reconstruction algorithms 

based on Steiner minimum trees. In the past, the protein structure was searched for from an 

empty initial structure [15]. The discovery that most protein structures in the nature had a 

comb-like shape reduced the algorithm cost allowing to solve much bigger problems [11].

ExpertBayes uses a simple, yet efficient algorithm to refine the original network. This 

algorithm is shown in Figure 20. It reads the initial input network and training and test sets. 

It then uses a standard method to initialize the probability tables, by counting the case 

frequency of the training set for each table entry. Having the prior network and conditional 
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probability tables, the algorithm makes small perturbations to the original model. It first 

chooses a pair of nodes, then it randomly chooses to add, remove or revert an edge. If the 

operation is to add an edge, it will randomly choose the edge direction. Operations are 

applied if no cycle is produced. At each of these steps, conditional probability tables are 

updated, if necessary, i.e., if any node affected belongs to the Markov blanket of the 

classifier node. A score of the new model is calculated for the training set and only the best 

pair network/score is retained when the repeat cycle ends. This best network is then applied 

to the test set (last step, line 20 of the algorithm). A global score metrics is used, the number 

of correctly classified instances, according to a threshold of 0.5.

Algorithm 1

ExpertBayes

The modifications performed by ExpertBayes are always over the original network. This 

was strategically chosen in order to cause a minimum interference on the expert knowledge 

represented in the graphical model. ExpertBayes has also the capability of creating a new 

network only from the data if the user has no initial network to provide.
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3 Materials and Methods

The manual construction of a Bayesian network can be tedious and time-consuming. 

However, the knowledge encoded in the graphical model and possibly in the prior 

probabilities is very valuable. We are lucky enough to have two of these networks. One was 

built for the domain of prostate cancer and the second one was built for breast cancer.

In the prostate cancer domain, variables were collected [13] taking into account three 

different moments in time: (1) during a medical appointment, (2) after auxiliary exams are 

performed and (3) five years after a radical prostatectomy. Such variables are age, weight, 

family history, systolic and diastolic arterial blood pressure, hemoglobin rate, hypoecogenic 

nodules, prostate specific-antigen (psa), clinical status, doubling time PSA, prostate size, 

among others. Five years after the surgery, we assess morbidity for those patients.

The data for breast cancer was collected from patients of the University of Wisconsin 

Medical Hospital. Mammography features were annotated according to the BI-RADS 

(Breast Imaging and Data Reporting System) [4]. These include breast density, mass density, 

presence of mass or calcifications and their types, architectural distortion, among others. 

One variable indicates the diagnostic and can have values malignant or benign, to indicate 

the type of finding.

A third set of data was used, also with mammographic features from the University of 

Wisconsin Medical Hospital, but with a different set of patients and a smaller number of 

variables.

3.1 Original Bayesian Networks

Two of our networks were built by specialists while the third one was built by us. The 

Bayesian networks built by our specialists are shown in Figures 1 [13] and 2 [3].

We call them Original Networks. Both of them were built by specialists in prostate cancer 

and breast cancer using high risk and low risk factors mentioned in the literature and their 

own experience. Prior probabilities are taken from the training data. The class variable for 

the breast cancer data is CatDx. In other words, the classifying task is to predict a malignant 

or benign finding. The class variable for the prostate cancer data is the life expectancy five 

years after the surgery, called class in Figure 1.

The third network was also manually built using the model of Figure 2 as a basis, but with a 

smaller set of features used in another work [8]. The class variable is Outcome with values 

malignant or benign.

3.2 Datasets

The characteristics of the datasets used are shown in Table 1. The three of them have only 

two classes. For Breast Cancer (1) and Breast Cancer (2), the Pos column indicates the 

number of malignant cases and the Neg column indicates the number of benign cases. For 

Prostate Cancer, the Pos column indicates the number of patients that did not survive 5 years 

after surgery.
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The dataset for Prostate Cancer is available from http://lib.stat.cmu.edu/S/Harrell/data/

descriptions/prostate.html [1].

For each one of the datasets, variables with numerical values were discretized according to 

reference values in the domain (for example, variables such as age and size are discretized in 

intervals with a clinical meaning). The same discretized datasets were used with all 

algorithms.

3.3 Methodology

We used 5-fold cross-validation to train and test our models. We compared the score of the 

original network with the score of ExpertBayes. We also used WEKA [10] to build the 

network structure from the data with the K2 [7] and TAN [9] algorithms. K2 is a greedy 

algorithm that, given an upper bound to the number of parents for a node, tries to find a set 

of parents that maximizes the likelihood of the class variable. TAN (Tree Augmented Naïve 

Bayes) starts from a naïve Bayes structure where the tree is formed by calculating the 

maximum weight spanning tree using Chow and Liu algorithm [6]. In practice, TAN 

generates a tree over naïve Bayes structure, where each node has at most two parents, being 

one of them the class variable. We ran both algorithms with default values and both start 

from a naïve Bayes structure. The best networks found are shown and contrasted to the 

original network and to the network produced by ExpertBayes.

4 Results

In this Section, we present the results measured using CCI (percentage of Correctly 

Classified Instances) and Precision-Recall curves. Precision-Recall curves are less sensitive 

to imbalanced data which is the case of our datasets. We also discuss about the quality of the 

generated networks.

4.1 Quantitative Analysis

CCI Table 2 shows the results (Correctly Classified Instances - CCI) for each test set and 

each network. Results are shown in percentages and are macro-averaged across the five 

folds. All results are shown for a probability threshold of 0.5.

For the Prostate Cancer data, ExpertBayes is better than WEKA-TAN with p < 0:01. The 

difference is not statistically significant between the ExpertBayes and the Original Network 

results and ExpertBayes and WEKA-K2.

With p < 0:004, for Breast Cancer (1), ExpertBayes produces better results than the Original 

Network (63% CCI against 49% CCI of the original network). With the same p-value, 

ExpertBayes (63% CCI) is also better than WEKA-K2 (59%). With p < 0:002, ExpertBayes 

is better than WEKA-TAN (57%).

For Breast Cancer (2), WEKA-K2 is better than ExpertBayes with p < 0:003. WEKA-TAN 

is also better than ExpertBayes with p < 0:008. ExpertBayes is only better than the original 

network, with p < 0:009.

Recall that these results are achieved with a threshold of 0.5.
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Precision-Recall Analysis—Instead of looking only at CCI with a threshold value of 

0.5, we also plotted Precision-Recall curves. Figure 4 shows the curves for the three 

datasets. Results are shown for the test sets after cross-validation. We used values of 0.02 

and 0.1 (threshold values commonly used in clinical practice for mammography analysis) 

and also varied the thresholds in the interval 0.2–1.0.

The baseline precision for the three datasets are: 71% for Prostate Cancer, 55% for Breast 

Cancer (1) and 37% for Breast Cancer (2). These baseline values correspond to classifying 

every case as belonging to one class. For Breast Cancer (1) and Breast Cancer (2), this class 

is malignant. For Prostate Cancer, the class is not survival.

The first important conclusion we can take from these curves is that ExpertBayes is capable 

of improving Precision over the other models, at the same Recall level. In practice, this 

means that a smaller number of healthy patients will be sent to inconvenient procedures in 

the case of breast cancer analysis and a smaller number of patients will have a wrong 

prognostic of not survival after 5 years of surgery for the Prostate cancer analysis.

The second conclusion we can take is that expert-based models applied to data produce 

better performance than the traditional network structures built only from the data. This 

means that expert knowledge is very useful to help giving an initial efficient structure. This 

happened to all datasets.

A third conclusion we can take is that a small set of features can have a significant impact on 

the performance of the classifier. If we compare Figure 4b with Figure 4c, all classifiers for 

Breast Cancer (2) outperform the classifiers of Breast Cancer (1). This may indicate that to 

prove malignancy, an expert need to look at a fewer number of features.

One caveat, though, needs to be avoided. If we look at the performance of the model 

produced by ExpertBayes for Breast Cancer (1), this is perfect for a given threshold, with 

maximum Recall and maximum Precision. This can happen when variables are highly 

correlated as is the case of Disease and CatDx. In our experiments, WEKA did not capture 

this correlation because the initial network used is a naïve structure (no variable ever has an 

edge directed to the class variable). As we allow edge reversal, the best network found is 

exactly one where Disease has an edge directed to the CatDx class variable. However, this is 

an excellent opportunity to the interactive aspect of ExpertBayes, since the expert now can 

notice that this happens and can remove one of the nodes or prevent the reverted correlation 

from happening.

4.2 Bayes Networks as Knowledge Representation

Examples of the best networks produced by ExpertBayes and WEKA-K2 and WEKA-TAN 

are shown in Figure 5 for Prostate Cancer and in Figures 6 and 7 for Breast Cancer (1) and 

Breast Cancer (2).

The best networks produced by ExpertBayes maintain the original structure with its intended 

meaning and show one single modification to the original model by adding, removing or 

reversing an edge. For example, for Prostate Cancer, Figure 5a, a better network was 
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produced that shows a relation between the diastolic blood pressure (dbp) and the class 

variable. It remains to the specialist to evaluate if this has some clinical meaning. For Breast 

Cancer (1), the best network is found when a correlation is established between 

MassMargins and the class variable (Figure 6a). It is well known from the literature in breast 

cancer that some BI-RADS factors are very indicative of malignancy and MassMargins is 

one of them. For Breast Cancer (2) (Figure 7a, the best network produced by ExpertBayes 

has an added edge between MassShape and Outcome, indicating that besides Age and 

BreastDensity, MassShape has also some influence on the class variable.

Results produced with the WEKA tool show networks very different from the ones built by 

experts. This was expected since the model is built only from the data and not all possible 

networks are searched for due to the complexity of searching for all possible models. The 

K2 algorithm found that the best model for all datasets was the naïve Bayes model. Both 

models produced using K2 and TAN convey another meaning to the specialist that is quite 

different from the initial intended meaning. This happened with all networks produced by 

WEKA, for both datasets.

5 Conclusions

We implemented a tool that can allow the probabilistic study of manually built bayesian 

networks. ExpertBayes is capable of taking as input a network structure, learn the initial 

parameters, and iterate, producing minor modifications to the original network structure, 

searching for a better model while not interfering too much with the expert knowledge 

represented in the graphical model. ExpertBayes makes small modifications to the original 

model and obtain better results than the original model and better than models learned only 

from the data. Building a Bayesian network structure from the data or from a naïve Bayes 

structure is very time-consuming given that the search space is combinatorial. ExpertBayes 

takes the advantage of starting from a pre-defined structure. In other words, it does not build 

the structure from scratch and takes advantage of expert knowledge to start searching for 

better models. Moreover, it maintains the basic structure of the original network keeping its 

intended meaning. ExpertBayes is also an interactive tool with a graphical user interface 

(GUI) that allows users to play with their models thus exploring new structures that give rise 

to a search for other models. We did not stress this issue in this work as our focus was on 

showing that ExpertBayes can refine well pre-defined models. Our main goal for the future 

is to improve the algorithm in order to have better prediction performance, possibly using 

more and quality data and different search and parameter learning methods. We also intend 

to embed in Expert-Bayes a detection of highly correlations that exist among variables to 

warn the expert. If this is done before learning we could avoid producing unnecessary 

interactions between the user and the system.
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Fig. 1. 
Original Network Model for Prostate Cancer
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Fig. 2. 
Original Network Model for Breast Cancer (1)
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Fig. 3. 
Original Network Model for Breast Cancer (2)
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Fig. 4. 
Precision-Recall Curves for various thresholds
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Fig. 5. 
Best Models for Prostate Cancer
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Fig. 6. 
Best Models for Breast Cancer (1)
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Fig. 7. 
Best Models for Breast Cancer (2)
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Table 1

Datasets Descriptions

Dataset Number of Instances Number of Variables Pos Neg

Prostate Cancer 496 11 352 144

Breast Cancer (1) 100 34 55 45

Breast Cancer (2) 241 8 88 153
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Table 2

CCI test set - averaged across 5-folds

Dataset Original ExpertBayes WEKA-K2 WEKA-TAN

Prostate Cancer 74 76 74 71

Breast Cancer (1) 49 63 59 57

Breast Cancer (2) 49 64 80 79
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