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Abstract 
  

Linear genotype representation and modularity have 
continuously received extensive attention from the 
Genetic Programming (GP) community. The advantages 
of a linear genotype include a convenient and efficient 
implementation scheme. However, most existing 
techniques using a linear genotype follow the imperative 
programming language paradigm and a direct 
hierarchical composition for the functionality of the 
solution is underachieved. Our work is based on Prefix 
Gene Expression Programming (P-GEP), a new GP 
method featured by a prefix notation based linear 
genotype representation. Since P-GEP uses a functional 
language paradigm, its framework results in natural self-
emergence of substructures as functional components 
during the evolution. We propose to preserve and utilize 
potentially useful emergent substructures via a dynamic 
substructure library, empowering the algorithm to focus 
the search on a higher level of the solution structure. 
Preliminary experiments on the benchmark regression 
problems have shown the effectiveness of this approach. 
 
1. Introduction 
 

Linear genotype representation has been a popular 
alternative to the standard tree representation since the 
introduction of Genetic Programming (GP), primarily due 
to its convenient and efficient implementation scheme 
with the linear strings. Some major techniques in this line 
include linear genetic programming [13, 12], grammatical 
evolution [11] and stack-based genetic programming [14, 
15]. However, most of these approaches follow the 
imperative programming language paradigm, mapping 
linear genotype into instructions to compose a program 
producing the corresponding solution. Although the stack-
based approach directly defines the functionality of the 
solutions, its genotype-phenotype mapping mechanism 
results in the real solution being segmented by the non-
effective (i.e., discarded) genes in the linear genotype 
representation, and therefore its linear genotype is not 

expressive enough for identifying the functional 
components for the represented solution. 

Meanwhile, it have been widely recognized in the 
Genetic Programming (GP) community that to solve 
complex problems, an ideal approach is to make the 
algorithm capable of hierarchically forming the solution 
from simpler components. The researched techniques 
regarding modularity and hierarchy fall into the following 
main categories: automatically defined functions [4, 6, 5], 
module acquisition [7], adaptive representation [8], 
hierarchical genetic programming [9] and subtree 
encapsulation [16]. Most recently, Keijzer, Ryan and 
Cattolico [17] have proposed a transferable library 
technique to maintain subtrees improved over multiple 
runs as beneficial modules for other difficult problems in 
the same domain. However, most prior methods have 
either predefined the structures of functional components 
or relied on a tree representation, which are not very 
efficient and somehow sacrifice the flexibility of the 
evolutionary process itself. Some linear genotype 
schemes have adopted an adapted version of the 
aforementioned modularity approaches in tree 
representation (e.g. [19]). However, again, few of them 
directly perform on the functional structure of the 
solutions. 

In this paper, we present a more viable scheme of 
incrementally identifying good solution structures based 
on the framework of Prefix Gene Expression 
Programming (P-GEP), a recently proposed GP method 
with a linear genotype [18]. Enhanced from Gene 
Expression Programming (GEP) [1, 2], P-GEP also 
represents solutions as linear character strings of fixed 
length (called chromosomes) which, in the subsequent 
fitness evaluation, can be expressed as expression trees 
(ETs) of different sizes and shapes. However, the linear 
genotype of P-GEP adopts the prefix notation, instead of 
Karva notation [1]. Consequently, in P-GEP a subtree of 
the ET representing a complete function corresponds to a 
coherent substring in the linear chromosome. This is 
virtually a strict functional programming language 
paradigm and therefore results in a natural hierarchy in 



forming the solutions and the identification of solution 
components becomes feasible within the linear genotype. 

The scheme presented in this paper encourages 
structured solutions by preserving and utilizing 
substructures that can self-emerge in the evolutionary 
process of P-GEP. Here the substructures mean functional 
building blocks as coherent elements in a linear genotype 
that help compose the solution. By saying self-emergence, 
we mean the substructure is generated, preserved, and 
evolved automatically during the P-GEP process. The 
implementation was realized via a dynamic substructure 
library equipped with two novel genetic operators for 
substructures, namely compression and expansion 
operators. Our hypothesis is that by making the naturally 
evolved useful substructures directly accessible for 
producing candidates in the later evolution, the P-GEP 
search process will have better performance in forming 
the final solution. 

To illustrate the applicability of proposed approach, an 
artificial structured regression problem was first fully 
examined. The experimental results demonstrated that this 
work assists in finding meaningful building blocks to 
incrementally form the final solution with a faster fitness 
convergence. Additional experiments were run using six 
benchmark regression problems from the Weka datasets, 
comparing P-GEP, P-GEP with substructure library, and 
standard model tree as implemented in WEKA knowledge 
analysis tool [10]. These results have shown that P-GEP 
with substructure library can find better regression 
models, and emergent substructures play a significant role 
in composing solutions.  
 
2. A Brief Overview of P-GEP 
 

 To solve a specific problem, P-GEP requires a 
function set, terminal set, fitness function, control 
parameters, and a stop condition. 

Derived from GEP, each chromosome in P-GEP is a 
fixed length character string, which can be composed of 
any elements (also called genes) from the function or the 
terminal sets. Using the elements from the function set 
{+, -, *, /, sqrt} and the terminal set {a, b, c, d, 1}, the 
following is an example P-GEP chromosome of length 
fifteen, where “.” is used to delimit individual genes; sqrt 
denotes the square-root function; 1 is a numeric constant; 
and a, b, c, d are variable (or attribute) names. 

sqrt.*.+.*.a.*.sqrt.a.b.c./.1.-.c.d              (2.1) 
P-GEP distinguishes itself from GEP with a new 
genotype-phenotype mapping mechanism using a prefix 
notation. A chromosome can be transformed into an ET 
with a depth-first, left-to-right procedure. A chromosome 
segment mapped into an ET is also called a prefix 
expression. A branch of the ET stops growing when the 
last node in this branch is a terminal. For instance, the ET 
shown in Figure 1 corresponds to the sample chromosome 

(2.1), and can be interpreted into a mathematical formula 
as (2.2). The conversion of an ET into a prefix expression 
is also very straightforward as traversing the nodes in the 
tree in preorder to form the string. As GEP, in P-GEP all 
of the chromosomes are of a fixed length, but the size of 
ETs can vary, and the possible non-effective genes all 
come at the end of the chromosome. The significance 
with this genotype representation is that subtrees in an ET 
with independent functionality now appear in the linear 
chromosome as naturally coherent string segments, which 
can be easily identified. Therefore, the linear genotype 
also inherently encodes the complexity hierarchies of 
solutions as revealed by the tree structure [18].  

 
 
 
 
 
 
 

 
 

Figure 1. Example of P-GEP Expression Tree 
 
                  (2.2) 
 
The P-GEP algorithm begins with the random 

generation of linear fixed-length chromosomes for 
individuals of the initial population. The fitness of each 
individual is evaluated based on a pre-defined fitness 
function after being mapped into an expression tree. The 
individuals are selected with respect to fitness to 
reproduce with modification. This process is repeated for 
a pre-specified number of generations, or until a 
satisfying solution has been found. In P-GEP, the 
selection procedure is determined by roulette-wheel 
sampling with elitism [3] based on individuals’ fitness, 
and the genetic operators are in accordance with those 
described in [2]. 
 
3. Emergent Substructures in P-GEP 
 

Under the P-GEP’s genotype representation, a solution 
is formed hierarchically upon substructures (defined as 
functional building blocks coherent in a linear genotype 
that help compose the solution). For example, in the 
example chromosome (2.1), the following substrings are 
all valid substructures:  

{sqrt.*.+.*.a.*.sqrt.a.b.c./.1.-.c.d,  /.1.-.c.d,  -.c.d, 
*.+.*.a.*.sqrt.a.b.c./.1.-.c.d,   +.*.a.*.sqrt.a.b.c, 
*.a.*.sqrt.a.b,  *.sqrt.a.b,  sqrt.a}.  
When the linear chromosome subjects to the genetic 

operations, substructures that will be generated are totally 
determined by the evolutionary process. Due to their high 
value in composing good solutions, some substructures 
evolve and persist as single components (referred as self-
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emergence of substructures in P-GEP). These are 
functional components favored by the search procedure 
and can potentially be explicitly utilized to construct the 
final solution. Since the direct measure for the fitness of a 
substructure is not easy, we assume that fitter individuals 
in the population also likely have good solution structure 
components. If a substructure appears frequently in these 
individuals, it is prone to be useful for composing the 
final solution. We currently follow this intuition to 
specify the emergent substructures in P-GEP as 
substructures having a high appearance frequency in the 
fittest individuals (called the elite group) among the 
whole population.  

To preserve and reuse the emergent substructures 
during the P-GEP process, generally two steps are 
involved, including determining the minimum required 
appearance frequency in the elite group and extracting an 
emergent substructure into a single representative symbol 
(called derived gene). The first step is trivial and the 
appearance frequency requirement is empirically set close 
to the number of the elites. The second step requires more 
crafts. First, since it is common that one substructure is 
built upon the others, a brutal extraction can demolish the 
hierarchical relationship between the substructures. 
Moreover, an undistinguished hierarchy between 
substructures will produce inaccurate statistics on their 
appearance frequency, since an occurrence of one 
substructure is also an occurrence of all of its component 
substructures. A better choice is to incrementally extract 
the substructures at different hierarchies (called 
complexity level). The valid substructures of chromosome 
(2.1) can be represented as derived genes shown in Table 
1. The resulted implementation of emergent substructures 
can then be simplified to only concern about a uniform 
operator-parameter construction.   

Table 1. Example of derived genes 
Derived gene Substructures Complexity level 

DG0 sqrt.a 0 
DG1 -.c.d 0 
DG2 *.DG0.b 1 
DG3 /.1.DG1 1 
DG4 *.a.DG2 2 
DG5 +.DG4.c 3 
DG6 *.DG5.DG3 4 
DG7 sqrt.DG6 5 

 
4. Compression and Expansion Operators 
 

 Inspired by [7], we have designed two additional 
genetic operators for dynamically implementing emergent 
substructures in P-GEP as proposed in section 3. 

Compression operator. The compression operator 
compresses an emergent substructure into a single derived 
gene. For the example chromosome (2.1), suppose the 
substructure “sqrt.a” is first found as a qualified emergent 
substructure and compressed into a derived gene DG0. 

DG0 then replaces the original substring in the 
chromosome to yield “sqrt.*.+.*.a.*.DG0.b.c./.1.-.c.d”. 
Next, the compression operator can further operate on 
substructures “-.c.d” (denoted by DG1) and “*.DG0.b” 
(denoted by DG2) to produce an even more compact 
solution “sqrt.*.+.*.a.DG2.c./.1.DG1”. Figure 2 illustrates 
the above procedure with the downward solid arrows. 

The significance of the compression operator is that it 
assures that the compressed substructure is coherent under 
the ordinary genetic operations. Moreover, the derived 
genes are equivalent to position independent subroutines. 
The evolutionary process is more flexible with the ability 
of choosing constructive components of the solution from 
both primitive genes and potentially useful subroutines. 

Expansion operator. The expansion operator works 
as opposite to the compression, by restoring a derived 
gene symbol back to the gene segment it denotes, which 
is also illustrated in Figure 2 with the upward dashed 
arrows.  

The expansion operator furthers the goal of preserving 
only useful substructures to ease the search process. Since 
the elite group evolves along with the general P-GEP 
process, the emergent substructures also update over time. 
A derived gene produced earlier may receive much less 
usage in later generations as the evolutionary process digs 
into the search space. The presence of useless derived 
genes distracts the search process and increases 
computational cost, and therefore expansion needs to be 
applied. In addition, expansion enables the ever frozen 
substructure piece to subject to the genetic operators 
again, which may possibly tear the piece apart and 
dramatically reframe the corresponding solution structure. 
This fosters a diverse search space.  

 
 
 
 
 
 
 
 

 
 
Figure 2. Illustration of compression and expansion 
operators 

 
5. Dynamic Substructure Library 
 

 The dynamic substructure library maintains the 
emergent substructures as derived genes dynamically 
produced by the compression and expansion operators. 
Figure 3 illustrates the basic architecture of the library 
and its relationship with the rest of the P-GEP 
evolutionary process.  

There are several important parameters defining the 
dynamic substructure library: (1) the library length, 

sqrt.  *.  +.  *.  a.  *. sqrt.  a.  b. c.  /.  1.  -. c.  d

sqrt.  *.  +.  *.  a.  *. DG0.    b. c.  /.  1.  -. c.  d

sqrt.  *.  +.  *.  a. DG2. c.  /.  1. DG1
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defining the maximum number of derived genes that can 
be hold at any time; (2) the required appearance 
frequency in the elite group, defining the criteria for a 
derived gene; (3) the maximum complexity level, defining 
the permitted maximum embedding hierarchy of the 
derived genes; (4) a candidate substructure table (CST), to 
store the potential emergent substructures from the 
current elite group; (5) a substructure table (ST), to store 
the qualified derived genes; and (6) a Boolean variable 
bAppend, which indicates whether or not to append 
derived genes to the primitive gene list. If it is a true 
value, derived genes have promoted usage in composing 
candidate solutions and more impact on evolution. These 
adjustable parameters together produce a viable scheme 
of incorporating useful emergent structure information 
into the P-GEP process. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 3. An overview of the dynamic substructure 
library 

In addition to the ordinary P-GEP process described in 
Section 2.1, there is an additional substructure library 
updating procedure if the best individual of the current 
generation is improved beyond the previous generations. 
This procedure consists of three phases: (1) compressing 
and producing the candidate emergent substructures from 
the elite group; (2) updating the substructure library with 
the new set of eligible derived gene. This is done through 
sorting the derived genes in both ST and CST by their 
total appearance frequency in the current elite group, and 
picking up the top list to refresh the substructure library; 
and (3) updating the representation of the elite 
chromosomes by replacing the occurrences of library 
substructures with the corresponding derived gene names 
as well as expanding the obsolete derived genes. 

 
6. Experiments and Discussions 

The technique of P-GEP with substructure library is 
generally aimed at tackling the data mining problems with 
complex underlying solution structures. However, for the 
purpose of testing, regression problems are especially 
suitable since they have a single target solution being 
evolved, which can better reveal how the emergent 
substructures relate to the solution structures. 

 
6.1. A Simple Structured Regression Problem 

 
We first experimented with an artificially structured 

simple regression problem to verify our hypothesis about 
the existence of emergent substructures, and the 
advantage of incorporating them into the evolution. The 
testing problem is shown in (6.1). A set of twenty-one 
fitness cases equally spaced along the x axis from -10 to 
10 inclusively were chosen for the experiments. 

                  (6.1) 
(1) Experiment settings 

The techniques under investigation included P-GEP, P-
GEP with the dynamic substructure library and with 
(denoted as P-GEP_Add) or without (denoted as P-
GEP_noAdd) adding derived genes into the primitive 
gene list. The general experiment setup is summarized as 
follows: the chromosome size is 128; the population size 
is 1000; the maximum number of generations is 500; the 
crossover probability is 0.7, and the mutation and rotation 
probability is 0.02; function and terminal sets are selected 
as {+, -, *, /} and {1, 2, 3, 5, 7} respectively; the number 
of elites is 4. Additionally, the parameters of the 
substructure library for P-GEP_noAdd and P-GEP_Add 
are: library length is 5 and maximum complexity level is 
1; the required appearance frequency is 3 for P-
GEP_noAdd and 4 for P-GEP_Add. 
(2) Experimental results   

Finding 1: P-GEP algorithms with the substructure 
library have better fitness convergence curves. Since 
the ultimate goal is to find the optimal solution 
effectively, we first examine the general fitness 
convergence curves revealed by the evolutionary process 
of every technique. In these experiments the fitness of a 
solution is defined as the residual, which is better when 
smaller. For each run of the experiment, the best fitness 
value of every generation is recorded. Furthermore, the 
inspection of the log files of the program finds out that the 
most significant residual reduction at the early 
generations are the pure result of  the general P-GEP 
evolutionary process. In other words, for P-GEP_noAdd 
and P-GEP_Add, this kind of residual reduction usually 
happens before any derived gene is pulled into the 
substructure library. This is reasonable since the initial 
population is highly diverse due to the random generation 
procedure and the elites seldom share any substructure. 
Therefore, we have plotted the average of this best fitness 
value over ten runs from generation 100 to 500 for the P-
GEP algorithms in Figure 4.  

Primitive Gene List

Population

Elite Group

Dynamic Substructure Library

Candidate Substructure Table

Substructure Table
DG0 +.x.1 ...
DG1 -.3.1 ...
DG2 *.DG0.x ...
... ... ...

+ - * / 1 3 x ...

CDG0 +.x.1 ...
CDG1 -.x.1 ...
CDG2 *.DG0.x ...
... ... ...

1

2

3
4

5

6

The process denoted by each numbered arrow:
1.  Generate the initial population and continuously supply genetic material;
2.  The ordinary P-GEP evolutionary process;
3.  Generate candidate substructures;
4.  Update the substructure table with the new eligible derived genes;
5.  Update the elite group with the new substructure table;
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Figure 4. The fitness convergence curves of P-GEP 
algorithms 

The curves exhibited in Figure 4 show the better 
performance of the P-GEP algorithms with a substructure 
library. Therefore, preserving and utilizing the emergent 
substructures is a promising approach to further exploit 
the advantages of P-GEP’s linear genotype. And in terms 
of the finally converged average best fitness value, the 
two versions of the P-GEP algorithms with a substructure 
library seem to be competitive with each other. However, 
further examination of the individual trials shows that P-
GEP_Add actually has found an ideal solution (which 
exactly fits the given problem with a zero residual) for the 
problem three times out of ten, while none of the other 
techniques achieved even a single ideal solution. 

Finding 2: dynamic substructure library helps find 
useful derived genes. We further examined the three 
ideal solutions evolved by the P-GEP_Add to see whether 
derived genes helped compose these solutions. The final 
solutions and their corresponding derived genes present in 
the substructure library as of the last generation are 
reported in Table 2, where it is clear that every ideal 
solution benefited from the derived genes in its formation 
during the evolution. Some very meaningful substructures 
were discovered, such as “*.x.x” and “*.x.3”, which are 
apparently useful functional components of the solution.  
Table 2. Example of the evolved optimal solutions 
composed of derived genes 

Evolved ideal solution #1 
Solution ((3*(x*((DA4*x)+5)))-DA3)+(7-(1+x)) 
Derived 
genes 

DA0: *.x.1; DA1: /.3.5; DA2: +.x.5;  
DA3: *.x.x; DA4: -.DA2.1 

Evolved ideal solution #2 
Solution (3*((DA1/(1/DA2))-(3-(5+(x*1)+x))))-DA2 
Derived 
genes 

DA0: *.x.x; DA1: +.x.3; DA2: +.DA0.x;  
DA3: /.x.5; DA4: -.DA0.1 

Evolved ideal solution #3 
Solution ((DA3*DA2)+1)-(3-((DA2+1)+DA1)) 
Derived 
genes  

DA0: *.x.3; DA1: +.x.2; DA2: +.DA0.5;  
DA3: *.DA1.x 

Another fact revealed by Table 2 is that useful 
emergent substructures can take every possible form as 
long as they can work together with other genes to 
produce the final solutions. For some other runs of the 

experiments the most suitable and natural substructure 
“+.x.1” was observed to emerge as a derived gene in the 
middle of the evolution. However, it sometimes simply 
faded from the substructure library due to its unpopularity 
in the elite group at later generations, or was not fully 
utilized by the evolution in composing a candidate 
solution. Future research should investigate these cases.  

 
6.2. Benchmark Testing 

 
We further assessed the overall performance of P-GEP 

with the dynamic substructure library technique by testing 
on a set of six benchmark regression problems (shown in 
Table 3) cited from WEKA knowledge analysis tool [10]. 

Table 3. Summary of the regression datasets 
Dataset # of attributes # of cases Target  variance 
fruitfly 5 125 15.879 
quake 4 2178 0.189 
sensory 12 576 0.823 
strike 7 625 560.660 
housing 14 506 9.197 
puma8NH 9 8192 5.622 
(1) Experiment settings 

This time we evaluated P-GEP_Add in comparison 
with P-GEP, and the model tree (denoted as MT) 
implemented in WEKA (a standard regression method for 
inducing piecewise models). The general experiment 
setup is the same as in the simple regression problem, 
except that function and terminal sets are selected as {IF, 
+, -, *, /, power, sqrt, log, exp, gauss, sigmoid, sin, cos, 
tan, atan} and {PI, 1, 2, 3, 5, 7} respectively. The 
parameters of the substructure library for P-GEP_Add 
are: library length is 10 and maximum complexity level is 
1; the required appearance frequency is 3. 
(2) Experimental results 

Each dataset has been separated into a training set 
(with 80% of the data) and a testing set (with the 
remaining data) by applying the StratifiedRemoveFolds 
utility included in WEKA tool. For P-GEP methods, each 
experiment has been run ten times with the average and 
best results reported. Additionally, to make the results 
comparable across the different datasets, the relative 
residual (RR) is used for the measurement, as shown in 
(6.2), where n is the number of cases; vi is the expected 
value; vi’ is the predicted value; and v is the average of 
the expected values. Table 4 gives the testing results. 

                            (6.2)  
 
From Table 4, we can conclude the following for the 

conducted experiments: (1) on average P-GEP_Add 
performs consistly better than P-GEP, and the best runs of 
P-GEP_Add have also achieved smaller residuals than P-
GEP for all of the datasets but fruitfly; (2) Although we 
have run only 500 generations, P-GEP_Add has already 
exhibited comparable performance to MT in terms of the 
average results for all of the datasets but puma8NH, and 
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the best runs of P-GEP_Add usually produce a better 
solution than MT. Again, all of the best solutions found 
by P-GEP_Add include derived genes from the 
substructure library, which might indicate some critical 
factors for the nature of the problems. Moreover, P-
GEP_Add induces a single model to fits the whole 
dataset, as opposed to a number of linear models for the 
sub-datasets in MT (which can easily go over twenty for a 
bit complex problems). This is usually desirable when the 
overall underlying trend of the data needs to be described.  
Table 4. Summary of the predictive performance of P-
GEP_Add, P-GEP and MT on the benchmark 
regression problems in terms of relative residual 

Dataset P-GEP_Add P-GEP MT 
 Avg Best Avg Best  
Fruitfly 1.0043 0.9904 1.0193 0.9884 1.0000 
Quake 0.9979 0.9955 0.9990 0.9966 1.0028 
Sensory 0.9661 0.9145 1.0402 0.9848 1.1050 
Strike 0.9685 0.9245 0.9736 0.9388 0.9437 
Housing 0.5274 0.4480 0.5608 0.5265 0.5040 
puma8NH 0.7270 0.6682 0.7898 0.7733 0.5713 
Average 0.8652 0.8235 0.8971 0.8681 0.8545 

 
7. Conclusions and Future Work 
 

This paper has introduced a method to decompose the 
evolution of solutions, by preserving and utilizing 
emergent substructures in P-GEP, which adopts a prefix 
notation based linear genotype to directly encode the 
solution structure. The overall implementation scheme is 
realized as P-GEP with a dynamic substructure library. 
The preliminary experiments have shown that emergent 
substructures do exist and can help construct the good 
solutions without sacrificing the flexibility of the search 
power inherent in the evolution.   

Further research under this general topic will primarily 
include the follows: (1) benchmark testing for the 
proposed method as compared to the traditional ADF 
approach in GP; (2) the current definition for emergent 
substructures actually is the specification for derived 
attributes (which act as terminals after being compressed). 
More generally we can consider derived functions which 
extract the functional elements of the substructure into an 
abstract operator and parameterize the terminals. The 
evolutionary process can therefore be guided more toward 
the priority of discovering ideal solution structures. 
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