

Direct Evolution of Hierarchical Solutions with

Self-Emergent Substructures

Xin Li1, Chi Zhou2, Weimin Xiao2, Peter C. Nelson1
1Department of Computer Science, University of Illinois at Chicago, Chicago, IL 60607

2Physical Realization Research Center of Motorola Labs, Schaumburg, IL 60196
1{xli1, nelson}@cs.uic.edu, 2{Chi.Zhou, awx003}@motorola.com

Abstract

Linear genotype representation and modularity have
continuously received extensive attention from the
Genetic Programming (GP) community. The advantages
of a linear genotype include a convenient and efficient
implementation scheme. However, most existing
techniques using a linear genotype follow the imperative
programming language paradigm and a direct
hierarchical composition for the functionality of the
solution is underachieved. Our work is based on Prefix
Gene Expression Programming (P-GEP), a new GP
method featured by a prefix notation based linear
genotype representation. Since P-GEP uses a functional
language paradigm, its framework results in natural self-
emergence of substructures as functional components
during the evolution. We propose to preserve and utilize
potentially useful emergent substructures via a dynamic
substructure library, empowering the algorithm to focus
the search on a higher level of the solution structure.
Preliminary experiments on the benchmark regression
problems have shown the effectiveness of this approach.

1. Introduction

Linear genotype representation has been a popular
alternative to the standard tree representation since the
introduction of Genetic Programming (GP), primarily due
to its convenient and efficient implementation scheme
with the linear strings. Some major techniques in this line
include linear genetic programming [13, 12], grammatical
evolution [11] and stack-based genetic programming [14,
15]. However, most of these approaches follow the
imperative programming language paradigm, mapping
linear genotype into instructions to compose a program
producing the corresponding solution. Although the stack-
based approach directly defines the functionality of the
solutions, its genotype-phenotype mapping mechanism
results in the real solution being segmented by the non-
effective (i.e., discarded) genes in the linear genotype
representation, and therefore its linear genotype is not

expressive enough for identifying the functional
components for the represented solution.

Meanwhile, it have been widely recognized in the
Genetic Programming (GP) community that to solve
complex problems, an ideal approach is to make the
algorithm capable of hierarchically forming the solution
from simpler components. The researched techniques
regarding modularity and hierarchy fall into the following
main categories: automatically defined functions [4, 6, 5],
module acquisition [7], adaptive representation [8],
hierarchical genetic programming [9] and subtree
encapsulation [16]. Most recently, Keijzer, Ryan and
Cattolico [17] have proposed a transferable library
technique to maintain subtrees improved over multiple
runs as beneficial modules for other difficult problems in
the same domain. However, most prior methods have
either predefined the structures of functional components
or relied on a tree representation, which are not very
efficient and somehow sacrifice the flexibility of the
evolutionary process itself. Some linear genotype
schemes have adopted an adapted version of the
aforementioned modularity approaches in tree
representation (e.g. [19]). However, again, few of them
directly perform on the functional structure of the
solutions.

In this paper, we present a more viable scheme of
incrementally identifying good solution structures based
on the framework of Prefix Gene Expression
Programming (P-GEP), a recently proposed GP method
with a linear genotype [18]. Enhanced from Gene
Expression Programming (GEP) [1, 2], P-GEP also
represents solutions as linear character strings of fixed
length (called chromosomes) which, in the subsequent
fitness evaluation, can be expressed as expression trees
(ETs) of different sizes and shapes. However, the linear
genotype of P-GEP adopts the prefix notation, instead of
Karva notation [1]. Consequently, in P-GEP a subtree of
the ET representing a complete function corresponds to a
coherent substring in the linear chromosome. This is
virtually a strict functional programming language
paradigm and therefore results in a natural hierarchy in

forming the solutions and the identification of solution
components becomes feasible within the linear genotype.

The scheme presented in this paper encourages
structured solutions by preserving and utilizing
substructures that can self-emerge in the evolutionary
process of P-GEP. Here the substructures mean functional
building blocks as coherent elements in a linear genotype
that help compose the solution. By saying self-emergence,
we mean the substructure is generated, preserved, and
evolved automatically during the P-GEP process. The
implementation was realized via a dynamic substructure
library equipped with two novel genetic operators for
substructures, namely compression and expansion
operators. Our hypothesis is that by making the naturally
evolved useful substructures directly accessible for
producing candidates in the later evolution, the P-GEP
search process will have better performance in forming
the final solution.

To illustrate the applicability of proposed approach, an
artificial structured regression problem was first fully
examined. The experimental results demonstrated that this
work assists in finding meaningful building blocks to
incrementally form the final solution with a faster fitness
convergence. Additional experiments were run using six
benchmark regression problems from the Weka datasets,
comparing P-GEP, P-GEP with substructure library, and
standard model tree as implemented in WEKA knowledge
analysis tool [10]. These results have shown that P-GEP
with substructure library can find better regression
models, and emergent substructures play a significant role
in composing solutions.

2. A Brief Overview of P-GEP

 To solve a specific problem, P-GEP requires a
function set, terminal set, fitness function, control
parameters, and a stop condition.

Derived from GEP, each chromosome in P-GEP is a
fixed length character string, which can be composed of
any elements (also called genes) from the function or the
terminal sets. Using the elements from the function set
{+, -, *, /, sqrt} and the terminal set {a, b, c, d, 1}, the
following is an example P-GEP chromosome of length
fifteen, where “.” is used to delimit individual genes; sqrt
denotes the square-root function; 1 is a numeric constant;
and a, b, c, d are variable (or attribute) names.

sqrt.*.+.*.a.*.sqrt.a.b.c./.1.-.c.d (2.1)
P-GEP distinguishes itself from GEP with a new
genotype-phenotype mapping mechanism using a prefix
notation. A chromosome can be transformed into an ET
with a depth-first, left-to-right procedure. A chromosome
segment mapped into an ET is also called a prefix
expression. A branch of the ET stops growing when the
last node in this branch is a terminal. For instance, the ET
shown in Figure 1 corresponds to the sample chromosome

(2.1), and can be interpreted into a mathematical formula
as (2.2). The conversion of an ET into a prefix expression
is also very straightforward as traversing the nodes in the
tree in preorder to form the string. As GEP, in P-GEP all
of the chromosomes are of a fixed length, but the size of
ETs can vary, and the possible non-effective genes all
come at the end of the chromosome. The significance
with this genotype representation is that subtrees in an ET
with independent functionality now appear in the linear
chromosome as naturally coherent string segments, which
can be easily identified. Therefore, the linear genotype
also inherently encodes the complexity hierarchies of
solutions as revealed by the tree structure [18].

Figure 1. Example of P-GEP Expression Tree

 (2.2)

The P-GEP algorithm begins with the random

generation of linear fixed-length chromosomes for
individuals of the initial population. The fitness of each
individual is evaluated based on a pre-defined fitness
function after being mapped into an expression tree. The
individuals are selected with respect to fitness to
reproduce with modification. This process is repeated for
a pre-specified number of generations, or until a
satisfying solution has been found. In P-GEP, the
selection procedure is determined by roulette-wheel
sampling with elitism [3] based on individuals’ fitness,
and the genetic operators are in accordance with those
described in [2].

3. Emergent Substructures in P-GEP

Under the P-GEP’s genotype representation, a solution
is formed hierarchically upon substructures (defined as
functional building blocks coherent in a linear genotype
that help compose the solution). For example, in the
example chromosome (2.1), the following substrings are
all valid substructures:

{sqrt.*.+.*.a.*.sqrt.a.b.c./.1.-.c.d, /.1.-.c.d, -.c.d,
.+..a.*.sqrt.a.b.c./.1.-.c.d, +.*.a.*.sqrt.a.b.c,
.a..sqrt.a.b, *.sqrt.a.b, sqrt.a}.
When the linear chromosome subjects to the genetic

operations, substructures that will be generated are totally
determined by the evolutionary process. Due to their high
value in composing good solutions, some substructures
evolve and persist as single components (referred as self-

sqrt

*
+

* c
a *

bsqrt

a

1 -
c d

/

)1)((
dc

cbaa
−

+

emergence of substructures in P-GEP). These are
functional components favored by the search procedure
and can potentially be explicitly utilized to construct the
final solution. Since the direct measure for the fitness of a
substructure is not easy, we assume that fitter individuals
in the population also likely have good solution structure
components. If a substructure appears frequently in these
individuals, it is prone to be useful for composing the
final solution. We currently follow this intuition to
specify the emergent substructures in P-GEP as
substructures having a high appearance frequency in the
fittest individuals (called the elite group) among the
whole population.

To preserve and reuse the emergent substructures
during the P-GEP process, generally two steps are
involved, including determining the minimum required
appearance frequency in the elite group and extracting an
emergent substructure into a single representative symbol
(called derived gene). The first step is trivial and the
appearance frequency requirement is empirically set close
to the number of the elites. The second step requires more
crafts. First, since it is common that one substructure is
built upon the others, a brutal extraction can demolish the
hierarchical relationship between the substructures.
Moreover, an undistinguished hierarchy between
substructures will produce inaccurate statistics on their
appearance frequency, since an occurrence of one
substructure is also an occurrence of all of its component
substructures. A better choice is to incrementally extract
the substructures at different hierarchies (called
complexity level). The valid substructures of chromosome
(2.1) can be represented as derived genes shown in Table
1. The resulted implementation of emergent substructures
can then be simplified to only concern about a uniform
operator-parameter construction.

Table 1. Example of derived genes
Derived gene Substructures Complexity level

DG0 sqrt.a 0
DG1 -.c.d 0
DG2 *.DG0.b 1
DG3 /.1.DG1 1
DG4 *.a.DG2 2
DG5 +.DG4.c 3
DG6 *.DG5.DG3 4
DG7 sqrt.DG6 5

4. Compression and Expansion Operators

 Inspired by [7], we have designed two additional
genetic operators for dynamically implementing emergent
substructures in P-GEP as proposed in section 3.

Compression operator. The compression operator
compresses an emergent substructure into a single derived
gene. For the example chromosome (2.1), suppose the
substructure “sqrt.a” is first found as a qualified emergent
substructure and compressed into a derived gene DG0.

DG0 then replaces the original substring in the
chromosome to yield “sqrt.*.+.*.a.*.DG0.b.c./.1.-.c.d”.
Next, the compression operator can further operate on
substructures “-.c.d” (denoted by DG1) and “*.DG0.b”
(denoted by DG2) to produce an even more compact
solution “sqrt.*.+.*.a.DG2.c./.1.DG1”. Figure 2 illustrates
the above procedure with the downward solid arrows.

The significance of the compression operator is that it
assures that the compressed substructure is coherent under
the ordinary genetic operations. Moreover, the derived
genes are equivalent to position independent subroutines.
The evolutionary process is more flexible with the ability
of choosing constructive components of the solution from
both primitive genes and potentially useful subroutines.

Expansion operator. The expansion operator works
as opposite to the compression, by restoring a derived
gene symbol back to the gene segment it denotes, which
is also illustrated in Figure 2 with the upward dashed
arrows.

The expansion operator furthers the goal of preserving
only useful substructures to ease the search process. Since
the elite group evolves along with the general P-GEP
process, the emergent substructures also update over time.
A derived gene produced earlier may receive much less
usage in later generations as the evolutionary process digs
into the search space. The presence of useless derived
genes distracts the search process and increases
computational cost, and therefore expansion needs to be
applied. In addition, expansion enables the ever frozen
substructure piece to subject to the genetic operators
again, which may possibly tear the piece apart and
dramatically reframe the corresponding solution structure.
This fosters a diverse search space.

Figure 2. Illustration of compression and expansion
operators

5. Dynamic Substructure Library

 The dynamic substructure library maintains the
emergent substructures as derived genes dynamically
produced by the compression and expansion operators.
Figure 3 illustrates the basic architecture of the library
and its relationship with the rest of the P-GEP
evolutionary process.

There are several important parameters defining the
dynamic substructure library: (1) the library length,

sqrt. *. +. *. a. *. sqrt. a. b. c. /. 1. -. c. d

sqrt. *. +. *. a. *. DG0. b. c. /. 1. -. c. d

sqrt. *. +. *. a. DG2. c. /. 1. DG1

Compression

CompressionCompression

Expansion

Expansion
Expansion

defining the maximum number of derived genes that can
be hold at any time; (2) the required appearance
frequency in the elite group, defining the criteria for a
derived gene; (3) the maximum complexity level, defining
the permitted maximum embedding hierarchy of the
derived genes; (4) a candidate substructure table (CST), to
store the potential emergent substructures from the
current elite group; (5) a substructure table (ST), to store
the qualified derived genes; and (6) a Boolean variable
bAppend, which indicates whether or not to append
derived genes to the primitive gene list. If it is a true
value, derived genes have promoted usage in composing
candidate solutions and more impact on evolution. These
adjustable parameters together produce a viable scheme
of incorporating useful emergent structure information
into the P-GEP process.

Figure 3. An overview of the dynamic substructure
library

In addition to the ordinary P-GEP process described in
Section 2.1, there is an additional substructure library
updating procedure if the best individual of the current
generation is improved beyond the previous generations.
This procedure consists of three phases: (1) compressing
and producing the candidate emergent substructures from
the elite group; (2) updating the substructure library with
the new set of eligible derived gene. This is done through
sorting the derived genes in both ST and CST by their
total appearance frequency in the current elite group, and
picking up the top list to refresh the substructure library;
and (3) updating the representation of the elite
chromosomes by replacing the occurrences of library
substructures with the corresponding derived gene names
as well as expanding the obsolete derived genes.

6. Experiments and Discussions

The technique of P-GEP with substructure library is
generally aimed at tackling the data mining problems with
complex underlying solution structures. However, for the
purpose of testing, regression problems are especially
suitable since they have a single target solution being
evolved, which can better reveal how the emergent
substructures relate to the solution structures.

6.1. A Simple Structured Regression Problem

We first experimented with an artificially structured

simple regression problem to verify our hypothesis about
the existence of emergent substructures, and the
advantage of incorporating them into the evolution. The
testing problem is shown in (6.1). A set of twenty-one
fitness cases equally spaced along the x axis from -10 to
10 inclusively were chosen for the experiments.

 (6.1)
(1) Experiment settings

The techniques under investigation included P-GEP, P-
GEP with the dynamic substructure library and with
(denoted as P-GEP_Add) or without (denoted as P-
GEP_noAdd) adding derived genes into the primitive
gene list. The general experiment setup is summarized as
follows: the chromosome size is 128; the population size
is 1000; the maximum number of generations is 500; the
crossover probability is 0.7, and the mutation and rotation
probability is 0.02; function and terminal sets are selected
as {+, -, *, /} and {1, 2, 3, 5, 7} respectively; the number
of elites is 4. Additionally, the parameters of the
substructure library for P-GEP_noAdd and P-GEP_Add
are: library length is 5 and maximum complexity level is
1; the required appearance frequency is 3 for P-
GEP_noAdd and 4 for P-GEP_Add.
(2) Experimental results

Finding 1: P-GEP algorithms with the substructure
library have better fitness convergence curves. Since
the ultimate goal is to find the optimal solution
effectively, we first examine the general fitness
convergence curves revealed by the evolutionary process
of every technique. In these experiments the fitness of a
solution is defined as the residual, which is better when
smaller. For each run of the experiment, the best fitness
value of every generation is recorded. Furthermore, the
inspection of the log files of the program finds out that the
most significant residual reduction at the early
generations are the pure result of the general P-GEP
evolutionary process. In other words, for P-GEP_noAdd
and P-GEP_Add, this kind of residual reduction usually
happens before any derived gene is pulled into the
substructure library. This is reasonable since the initial
population is highly diverse due to the random generation
procedure and the elites seldom share any substructure.
Therefore, we have plotted the average of this best fitness
value over ten runs from generation 100 to 500 for the P-
GEP algorithms in Figure 4.

Primitive Gene List

Population

Elite Group

Dynamic Substructure Library

Candidate Substructure Table

Substructure Table
DG0 +.x.1 ...
DG1 -.3.1 ...
DG2 *.DG0.x ...
...

+ - * / 1 3 x ...

CDG0 +.x.1 ...
CDG1 -.x.1 ...
CDG2 *.DG0.x ...
...

1

2

3
4

5

6

The process denoted by each numbered arrow:
1. Generate the initial population and continuously supply genetic material;
2. The ordinary P-GEP evolutionary process;
3. Generate candidate substructures;
4. Update the substructure table with the new eligible derived genes;
5. Update the elite group with the new substructure table;
6. Supply derived genes for the subsequent evolution.

+.x.*.3.-.x.1./.x.3....
/.*.x.*.3.3.-.x.1.+.1....
-.*.3.*.3.3.*.x.-.x.1./.1.3....
+.*.x.-.3.1.*.x.x.-.1.x.....

+.1.*.3.1.x.-./.+.3.3....
.x..x.x.-.3.-.1.x./.x.1....
-.x.3.+.-.3.1.x./.x.3....
......

)1()1(*2)1(*3 23 +++++= xxxy

Figure 4. The fitness convergence curves of P-GEP
algorithms

The curves exhibited in Figure 4 show the better
performance of the P-GEP algorithms with a substructure
library. Therefore, preserving and utilizing the emergent
substructures is a promising approach to further exploit
the advantages of P-GEP’s linear genotype. And in terms
of the finally converged average best fitness value, the
two versions of the P-GEP algorithms with a substructure
library seem to be competitive with each other. However,
further examination of the individual trials shows that P-
GEP_Add actually has found an ideal solution (which
exactly fits the given problem with a zero residual) for the
problem three times out of ten, while none of the other
techniques achieved even a single ideal solution.

Finding 2: dynamic substructure library helps find
useful derived genes. We further examined the three
ideal solutions evolved by the P-GEP_Add to see whether
derived genes helped compose these solutions. The final
solutions and their corresponding derived genes present in
the substructure library as of the last generation are
reported in Table 2, where it is clear that every ideal
solution benefited from the derived genes in its formation
during the evolution. Some very meaningful substructures
were discovered, such as “*.x.x” and “*.x.3”, which are
apparently useful functional components of the solution.
Table 2. Example of the evolved optimal solutions
composed of derived genes

Evolved ideal solution #1
Solution ((3*(x*((DA4*x)+5)))-DA3)+(7-(1+x))
Derived
genes

DA0: *.x.1; DA1: /.3.5; DA2: +.x.5;
DA3: *.x.x; DA4: -.DA2.1

Evolved ideal solution #2
Solution (3*((DA1/(1/DA2))-(3-(5+(x*1)+x))))-DA2
Derived
genes

DA0: *.x.x; DA1: +.x.3; DA2: +.DA0.x;
DA3: /.x.5; DA4: -.DA0.1

Evolved ideal solution #3
Solution ((DA3*DA2)+1)-(3-((DA2+1)+DA1))
Derived
genes

DA0: *.x.3; DA1: +.x.2; DA2: +.DA0.5;
DA3: *.DA1.x

Another fact revealed by Table 2 is that useful
emergent substructures can take every possible form as
long as they can work together with other genes to
produce the final solutions. For some other runs of the

experiments the most suitable and natural substructure
“+.x.1” was observed to emerge as a derived gene in the
middle of the evolution. However, it sometimes simply
faded from the substructure library due to its unpopularity
in the elite group at later generations, or was not fully
utilized by the evolution in composing a candidate
solution. Future research should investigate these cases.

6.2. Benchmark Testing

We further assessed the overall performance of P-GEP

with the dynamic substructure library technique by testing
on a set of six benchmark regression problems (shown in
Table 3) cited from WEKA knowledge analysis tool [10].

Table 3. Summary of the regression datasets
Dataset # of attributes # of cases Target variance
fruitfly 5 125 15.879
quake 4 2178 0.189
sensory 12 576 0.823
strike 7 625 560.660
housing 14 506 9.197
puma8NH 9 8192 5.622
(1) Experiment settings

This time we evaluated P-GEP_Add in comparison
with P-GEP, and the model tree (denoted as MT)
implemented in WEKA (a standard regression method for
inducing piecewise models). The general experiment
setup is the same as in the simple regression problem,
except that function and terminal sets are selected as {IF,
+, -, *, /, power, sqrt, log, exp, gauss, sigmoid, sin, cos,
tan, atan} and {PI, 1, 2, 3, 5, 7} respectively. The
parameters of the substructure library for P-GEP_Add
are: library length is 10 and maximum complexity level is
1; the required appearance frequency is 3.
(2) Experimental results

Each dataset has been separated into a training set
(with 80% of the data) and a testing set (with the
remaining data) by applying the StratifiedRemoveFolds
utility included in WEKA tool. For P-GEP methods, each
experiment has been run ten times with the average and
best results reported. Additionally, to make the results
comparable across the different datasets, the relative
residual (RR) is used for the measurement, as shown in
(6.2), where n is the number of cases; vi is the expected
value; vi’ is the predicted value; and v is the average of
the expected values. Table 4 gives the testing results.

 (6.2)

From Table 4, we can conclude the following for the

conducted experiments: (1) on average P-GEP_Add
performs consistly better than P-GEP, and the best runs of
P-GEP_Add have also achieved smaller residuals than P-
GEP for all of the datasets but fruitfly; (2) Although we
have run only 500 generations, P-GEP_Add has already
exhibited comparable performance to MT in terms of the
average results for all of the datasets but puma8NH, and

0
10
20
30
40
50
60
70
80
90
100

10
0

12
1

14
2

16
3

18
4

20
5

22
6

24
7

26
8

28
9

31
0

33
1

35
2

37
3

39
4

41
5

43
6

45
7

47
8

49
9

generation

be
st

 fi
tn

es
s/

re
si

du
al P-GEP

P-GEP_noAdd
P-GEP_Add

))(())((
1

2
1

2 ∑∑ ==
−′−= n

i i
n

i ii vvvvRR

the best runs of P-GEP_Add usually produce a better
solution than MT. Again, all of the best solutions found
by P-GEP_Add include derived genes from the
substructure library, which might indicate some critical
factors for the nature of the problems. Moreover, P-
GEP_Add induces a single model to fits the whole
dataset, as opposed to a number of linear models for the
sub-datasets in MT (which can easily go over twenty for a
bit complex problems). This is usually desirable when the
overall underlying trend of the data needs to be described.
Table 4. Summary of the predictive performance of P-
GEP_Add, P-GEP and MT on the benchmark
regression problems in terms of relative residual

Dataset P-GEP_Add P-GEP MT
 Avg Best Avg Best
Fruitfly 1.0043 0.9904 1.0193 0.9884 1.0000
Quake 0.9979 0.9955 0.9990 0.9966 1.0028
Sensory 0.9661 0.9145 1.0402 0.9848 1.1050
Strike 0.9685 0.9245 0.9736 0.9388 0.9437
Housing 0.5274 0.4480 0.5608 0.5265 0.5040
puma8NH 0.7270 0.6682 0.7898 0.7733 0.5713
Average 0.8652 0.8235 0.8971 0.8681 0.8545

7. Conclusions and Future Work

This paper has introduced a method to decompose the
evolution of solutions, by preserving and utilizing
emergent substructures in P-GEP, which adopts a prefix
notation based linear genotype to directly encode the
solution structure. The overall implementation scheme is
realized as P-GEP with a dynamic substructure library.
The preliminary experiments have shown that emergent
substructures do exist and can help construct the good
solutions without sacrificing the flexibility of the search
power inherent in the evolution.

Further research under this general topic will primarily
include the follows: (1) benchmark testing for the
proposed method as compared to the traditional ADF
approach in GP; (2) the current definition for emergent
substructures actually is the specification for derived
attributes (which act as terminals after being compressed).
More generally we can consider derived functions which
extract the functional elements of the substructure into an
abstract operator and parameterize the terminals. The
evolutionary process can therefore be guided more toward
the priority of discovering ideal solution structures.

8. References

[1] C. Ferreira, “Gene Expression Programming: a New
Adaptive Algorithm for Solving Problems”, Complex Systems
13(2), 2001, pp. 87-129.
[2] C. Zhou, W. Xiao, P.C. Nelson, and T.M. Tirpak, “Evolving
Accurate and Compact Classification Rules with Gene

Expression Programming”, IEEE Transactions on Evolutionary
Computation 7(6), 2003, pp. 519-531.
[3] D.E. Goldberg, Genetic Algorithms in Search, Optimization,
and Machine Learning, Addison-Wesley Pub. Co., 1989.
[4] J. Koza, Genetic Programming II: Automatic Discovery of
Reusable Programs, MIT Press, Cambridge, MA, 1994.
[5] T. Yu and C. Clack, “PolyGP: A Polymorphic Genetic
Programming System in Haskell”, in Late Breaking Paper at
Genetic Programming Conference(GP-97), Stanford, CA, 1997.
[6] O. Brock, “Evolving Reusable Subroutines for Genetic
Programming”, in Artificial Life at Stanford, edited by J. Koza,
Stanford, CA, 1994.
[7] P.J. Angeline, “Genetic Programming and Emergent
Intelligence”, in Advances in Genetic Programming, edited by
K.E. Kinnear Jr., MIT Press, Cambridge, MA, 1994, pp. 75-98.
[8] J.P. Rosca and D.H. Ballard, “Hierarchical Self-Organization
in Genetic Programming”, in Proceedings of the11th
International Conference on Machine Learning, Morgan
Kaufmann, 1994.
[9] W. Banzhaf, D. Banscherus, and P. Dittrichc, “Hierarchical
Genetic Programming using Local Modules”, Series
Computational Intelligence, Internal Report of SFB 531, No.
56/99, ISSN 1433-3325, University of Dortmund, Germany,
1999.
[10] I.H. Witten and E. Frank, Data Mining: Practical machine
learning tools with Java implementations. Morgan Kaufmann,
San Francisco, 2000.
[11] C. Ryan, J.J. Collins, and M. O’Neill, “Grammatical
Evolution: Evolving Programs for an Arbitrary Language”, in
EuroGP’1998(LNCS1391), Springer-Verlag, 1998, pp. 83-96.
[12] W.B. Langdon and W. Banzhaf, “Repeated Sequences in
Linear GP Genomes”, in Late-breaking Papers at GECCO-
2004, Seattle, WA, 2004.
[13] M. Brameier and W. Banzhaf, “A Comparison of Linear
Genetic Programming and Neural Networks in Medical Data
Mining”, IEEE Transactions on Evolutionary Computation 5(1),
2001, pp. 17-26.
[14] T. Perkis, “Stack-Based Genetic Programming”, in
Proceedings of the 1994 IEEE World Congress on
Computational Intelligence, Orlando, FL, 1994, pp. 148-153.
[15] L. Spector and A. Robinson, “Genetic Programming and
Autoconstructive Evolution with the Push Programming
Language”, Genetic Programming and Evolvable Machines 3,
Kluwer Acdemic Publishers, Netherlands, 2002, pp. 7-40.
[16] S.C. Roberts, D. Howard, and J.R. Koza, “Evolving
modules in genetic programming by subtree encapsulation”, in
Proceedings of EuroGP’2001(LNCS2038), Springer-Verlag,
Lake Como, Italy, 2001, pp. 160-175.
[17] M. Keijzer, C. Ryan, and M. Cattolico, “Run Transferable
Libraries – Learning Functional Bias in Problem Domains”, in
Proceedings of GECCO-2004, Seattle, WA, 2004, pp. 531-542.
[18] X. Li, C. Zhou, W. Xiao, and P.C. Nelson, “Prefix Gene
Expression Programming”, in Late Breaking Paper at the
Genetic and Evolutionary Computation Conference(GECCO-
2005), Washington, D.C., 2005.
[19] M. O’Neill and C. Ryan, “Grammar Based Function
Definition in Grammatical Evolution”, in Proceedings of the
Genetic and Evolutionary Computation Conference(GECCO-
2000), 2000, pp. 485-490.

