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Abstract

An airport runway and taxiway (airside) area is a
highly dynamic and complex environment featuring inter-
actions between different types of vehicles (speed and di-
mension), under varying visibility and traffic conditions.
Airport ground movements are deemed safety-critical ac-
tivities, and safe-separation procedures must be maintained
by Air Traffic Controllers (ATCs). Large airports with
complicated runway-taxiway systems use advanced ground
surveillance systems. However, these systems have inher-
ent limitations and a lack of real-time analytics. In this
paper, we propose a novel computer-vision based frame-
work, namely “Deep4Air”, which can not only augment the
ground surveillance systems via the automated visual mon-
itoring of runways and taxiways for aircraft location, but
also provide real-time speed and distance analytics for air-
craft on runways and taxiways. The proposed framework
includes an adaptive deep neural network for efficiently de-
tecting and tracking aircraft. The experimental results show
an average precision of detection and tracking of up to
99.8% on simulated data with validations on surveillance
videos from the digital tower at George Bush Intercontinen-
tal Airport. The results also demonstrate that “Deep4Air”
can locate aircraft positions relative to the airport runway
and taxiway infrastructure with high accuracy. Further-
more, aircraft speed and separation distance are monitored
in real-time, providing enhanced safety management.

1. Introduction

Major airports worldwide have undertaken substantial
expansion programs to accommodate the steady growth in
air traffic, including the construction of new runways and
taxiways. However, putting new construction into opera-
tion increases the challenge of aircraft ground movement
control and monitoring. During the last five years alone,
approximately 1500 runway incursions have been reported
in the US alone, and their frequency has risen annually [3].
A runway incursion can be defined as “any occurrence at an
aerodrome involving the incorrect presence of an aircraft, a
vehicle, or a person on the protected area of a surface des-
ignated for landing and take-off of aircraft” [28]]. Conse-
quently, accurately detecting and tracking every (moving)
object in the airport airside is vital to reduce runway incur-
sions and maintain situation awareness for ATCs.

Typically, complex airside operations use advanced
surveillance systems, such as Advanced Surface Move-
ment Guidance and Control Systems (A-SMGCS) [6]]. An
A-SMGCS system provides four operational functions:
surveillance, control, routing, and guidance. For the surveil-
lance function, the system can use different sensors, includ-
ing Surface Movement Radar (SMR), Automatic Depen-
dent Surveillance-Broadcast (ADS-B), and Multilateration
(MLAT). However, these systems still have drawbacks in
terms of accuracy, cooperation, noise, and delay [15]. Pre-
cisely, ADS-B and MLAT require a transponder to be in-
stalled for communication. SMR does not need a transpon-
der, but it can incorrectly detect ground vehicles as aircraft.



Figure 1: Videos generated by the simulator featuring dif-
ferent environmental conditions. Image (1) is a full frame
of a sunny day, while the rest are quarter frames combining
rain, fog and snow with dusk and night.

Moreover, if there are obstacles, such as buildings or metal
objects, between the airplane and sensors, the plane’s mea-
sured position can differ from its actual location [20].

According to the International Civil Aviation Organiza-
tion, controllers continuously watch all flight operations on
and in the vicinity of an aerodrome by visual observation,
augmented in low visibility conditions by radar when avail-
able [27]]. More precisely, controllers must detect, recog-
nize, and identify the aircraft type, the corresponding air-
line, and its taxiway design group [38[39]. Also, they must
control and manage aircraft speed, direction, and location
on taxiways to minimize any potential risk of colli-
sion between different airplanes. With the ambitious growth
plans to serve more passengers and make air-travel safe and
efficient, airports and air navigation service providers are
implementing measures to accommodate technological ad-
vances in order to enable ATCs to work efficiently. Thus,
the concept of a camera-based surveillance system in an
airport has been broadly investigated [4}[18,30]. However,
these systems exploit traditional machine learning methods
to detect and recognize airplanes and ground vehicles in air-
craft parking areas.

We propose a novel framework for airside surveillance
for airport ground movements to monitor runway and taxi-
way areas for better airside safety management. The pri-
mary objective is to improve safety by exploiting Convo-
lutional Neural Networks (ConvNets) and high-resolution
videos to detect aircraft. However, the state-of-the-art Con-
vNets [22}[31,[34] currently require significant processing
power to perform real-time detection. To overcome this,
we have built a specific ConvNet architecture that can run
faster than the state-of-the-art ConvNets, while achieving
a similar performance level. After detection, it is possi-
ble to track each aircraft in real-time. Furthermore, it can
also estimate the aircraft’s location, speed, and distance. Fi-
nally, by fusing camera and radar information, we can pro-
vide aircraft identification, including aircraft type and com-
pany. This information can be displayed on the screen with
different colors representing different meanings, potentially
reducing controller head-down times [29]. Our framework
takes advantage of the fact that digital towers fea-
ture a network of high-resolution cameras, covering a 360-
degree view of an airport, to provide the camera-based dig-
ital tower video. Typically, the network has up to 14 cam-
eras, of which 3 to 7 cameras will cover a runway and its
vicinity. Besides accuracy, speed is an essential factor in a
computer vision surveillance system. By reducing compu-
tational time, observation frequency can be increased, po-
tentially leading to enhanced safety.

The main contributions of our work can be summarized
as follows. First, we propose a novel framework for airside
safety management with the following functions: aircraft
detection and tracking in real-time, aircraft localization, and
both speed and direction estimation. Second, we present an
adaptive ConvNet architecture, which can run faster than
the state-of-the-art ConvNets while achieving similar per-
formance. Third, we provide a fusion of camera and radar
sources to retrieve the corresponding aircraft type and the
company information. Finally, we present a method of pro-
viding ATCs with information that assists their tasks with-
out the need to refocus away from the video display.

The rest of this paper is organized as follows. In Sec-
tion[2] we briefly review previous related works, and we de-
scribe video data in Section 3] We present our proposed
framework as well as construct different ConvNet architec-
tures for aircraft detection and tracking in SectionF_[l Then,
we detail experiment design and show our experimental re-
sults compared to other techniques in Section[5} Section [6]
discusses applications for air traffic control operations. Fi-
nally, the paper ends with conclusions and future work in
Section[7]



2. Related Works
2.1. Object Detection and Tracking

ConvNets have recently demonstrated enormous po-
tential in the computer vision field, including winning the
ImageNet Large Scale Visual Recognition Challenge [7] in
2012. After several refinements, ConvNets have be-
come the state-of-the-art models in object recognition. It is
inevitable to modify ConvNets for different computer vision
tasks, including object detection and tracking. In object de-
tection, region-of-interest approaches have shown
their advantages in terms of flexibility and accuracy. How-
ever, they tend to run more slowly compared to one-stage
approaches [24,31,[34]. We review three of the most suc-
cessful models based on different strengths, YOLOv3 ,
RetinaNet [22]], and EfficientDet [34]. By unifying several
object detection components into a single network, YOLO
executes exceptionally rapidly. Moreover, with a new back-
bone, DarkNet (which is faster and more accurate com-
pared to ResNet ), YOLOV3 became the fastest Con-
vNet among the state-of-the-art models at that time. How-
ever, without an extra network to narrow down the num-
ber of potential objects as two-stage approaches [11}[32],
one-stage methods suffer from the foreground-background
class imbalance problem [22]. By introducing focal loss,
RetinaNet can reduce the relative loss for well-classified ex-
amples to focus more on hard, misclassified examples. As
a result, RetinaNet currently surpasses the performance of
all existing two-stage ConvNets. EfficientDet proposes a
compound scaling method which uniformly scales differ-
ent network hyperparameters at the same time. In theory,
EfficientDet achieves better accuracy results with less cal-
culation time compared to other models [34].

ConvNets have also been modified for object tracking.
These techniques are variously based on classification [26]],
similarity learning [21]], regression or correlation [36].
Before tracking, an object needs to be located first by a man-
ual or external algorithm. Therefore, another way to track
an object is tracking-by-detection. By detecting objects in
every frame, the objects can be mapped from current frames
to previous frames creating sequences as tracking. As ob-
jects in our task do not overlap, due to the height of the
digital tower camera as mentioned in Section [3| we imple-
ment tracking-by-detection as it is the simplest, and there-
fore computationally lightweight, method of tracking.

2.2. Camera-based systems for airport

There are different camera-based systems developed for
airport airside surveillance in many airports worldwide.
The INTERVUSE system proposes rectangular areas,
namely virtual detectors, to indicate the presence of aircraft.
A visual sensor data fusion server receives virtual detector
signals from every camera. It then sends these signals to a
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Figure 2: The proposed framework with different functions
for controllers. By detecting and tracking every aircraft in
runways/taxiways, the system can estimate their speed and
distance to notify controllers for any potential risk of run-
way incursions in an airport.

surveillance data server to track objects with additional in-
formation from radar. This system’s main advantage is the
reduction of computational requirements, as only specified
areas are processed. However, the system’s performance is
sensitive to virtual detector configurations and camera cali-
bration and light conditions. The TRAVIS system con-
sists of a scalable network of tracking units that uses cam-
eras to detect moving objects and provide results to a server.
The server tracks and visualizes moving objects in the scene
and alerts the presence of dangerous situations. The system
is flexible in that it can track multiple moving objects and
can be deployed in different environments. However, as the
system is based on background extraction, it is susceptible
to visual occlusion and overlap, and static or slow-moving
objects may not be detected. A system using pan-tilt-zoom
(PTZ) cameras to detect aircraft in parking zones has been
proposed [4]. Using PTZ cameras and Haar-like feature de-
tection, the system requires neither static view, calibrated
cameras, nor moving objects. However, this approach typ-
ically suffers from high false-positive detection. Moreover,
PTZ cameras only cover a small part of an airport and re-
quire a human operator. Most significantly, all of these sys-
tems perform surveillance of the airport apron area and do
not provide the airport runway and taxiway areas supervi-
sion. The work presented in this paper offers the monitoring
of runway and taxiway areas and real-time analytics. To the
best of our knowledge, this is the first work using a ConvNet
camera-based architecture to provide aircraft monitoring on
airport runways and taxiways.

3. Data Collection

Due to privacy issues, obtaining sufficient quality videos
from digital towers can be extremely difficult. To overcome
this, we generated videos of Changi Airport by using the
NARSIM simulator system [35] and created two separate



sets with the same properties for training and testing. Each
set contained videos with seven different visibility con-
ditions, created by combining weather conditions (sunny,
rain, snow, and fog), with the time of the day (noon, dusk,
and night), as shown in Figure [T} All videos are FHD reso-
Iution (1920 x 1080) taken from an 80m-tall tower. The sim-
ulator provides ground truth aircraft information every sec-
ond, similar to a conventional radar, including “call sign”,
“type”, “speed”, and “geographic location”. Frames are
extracted from the videos and manually labeled as bound-
ing boxes every second to synchronize information between
ground truth data and camera. As a result, we create a
dataset containing 14184 training and 14414 testing images.

Compared to well-known datasets, such as COCO
and Pascal VOC IEI] our video dataset has several differing
characteristics. First, our dataset contains high-resolution
frames, which will take more time to process. Second, there
is only one class, compared to 80 classes from COCO or 20
classes from Pascal VOC. Lastly, as the videos are captured
from the tower, aircraft do not overlap each other due to the
height of the camera.

It is worth noting that we also managed to obtain real-
world videos from cameras at George Bush Intercontinen-
tal Airport (IAH), with permission. However, as no corre-
sponding radar ground truth information was included, and
the video duration is 30 minutes, they are not suitable for
training or validation. However, these videos are used as
a demonstration of real-world applicability in our experi-
ments, the details of which can be found in Section [6]

4. Methodology

In this section, we present the proposed framework for
airside safety management, describe our approaches for air-
craft detection and tracking in runways and taxiways, and
provide our method for estimating the distances between
different aircraft and each aircraft’s speed.

4.1. Overview Framework

Figure [2] shows the framework design, namely
“Deep4Air” (A Deep Learning Framework For Airport
Airside Surveillance), for the problem. Aside from the
video input, it also requires the reference location of the
airport taxiways, runways, and holding points. Calibration
is necessary to map a pixel location to a geographic area.
As shown later, object detection is used to detect and track
each aircraft in runway and taxiway areas.

The controller module uses the information from the pre-
vious modules for the processing steps, including the as-
signment of objects to corresponding locations and the es-
timation of both speed and distance between different air-
planes. Speed and distance estimation could then be used
to provide advanced warning assistance to ATCs if a safety
incident may be likely to occur. This functionality would

Figure 3: The taxiways (green), runways (red), and holding
points (blue) are defined based on their centerlines.

be of value, as an analysis of the National Transportation
Safety Board Aviation Incident Reports [5] identified a large
number of incidents that occurred due to insufficient consid-
eration being given to aircraft separation and/or clear run-
way status.

4.2. Input Data

To assign objects to their corresponding airport loca-
tions, we first define those locations. We define them man-
ually, although it is possible to detect them algorithmically.
We have taken this approach as the input videos in our ex-
periments are static; therefore, we only need to draw the
locations once, as their position relative to the video frames
does not change. Figure [3] shows an example of video in-
put. We define three different types of regions, each with
two points. The defined region types are taxiways (green),
runways (red), and holding points (blue), starting from the
holding points to the runway edges. To reduce the search
space, we also define the transitional relationships between
the different regions. For example, the next legal locations
of taxiway EP are taxiway P2, P3, and taxiway Q. By taking
this approach, we reduce the total search space for an ob-
ject, leading to a reduction in computational requirements
and increased accuracy. For example, if an aircraft is in
taxiway EP, the framework only focuses on taxiway P2, P3,
and taxiway Q instead of every region.

4.3. Calibration

To transfer from a video pixel location to a geographic
location, we need to calibrate each video. This process is
dependent on the camera location of the video source, rather
than the framework itself. Since the simulator does not pro-
vide camera information, camera calibration is not consid-
ered. Instead, we train a machine learning model to trans-
late every pixel point to its corresponding geographic point,
using the geographic location of all waypoints provided by
the simulator as training labels. Specifically, we build a lin-
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Figure 4: The ConvNet architecture consists of 5 identical blocks. After each block, the spatial dimensions (W; x H;) reduce
by half while number of channel (C;) doubles. The depthwise convolution layers are used in each block.
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Figure 5: The network architecture. It combines the new
backbone with small version of BiFPN to increase its speed.

ear regression model that estimates the geographic location
for a given pixel location. We collect IV pixel points (X)
with IV corresponding geographic points (Y) to construct
the data. The linear regression can be written as follows:

Y =Wf(X)+e (1)

where W is the weight learned from data during the training
process, f(.) can be viewed as the feature extraction func-
tion, and e is the irreducible error occurred when collecting
data. In this work, we choose f(X) as a polynomial func-
tion with degree k, as shown in Eq. . Here, the chosen
degree k should be large enough to prevent underfitting and
small enough to prevent overfitting. By experimentation,
we choose k = 5.
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4.4. Aircraft Detection

Due to the unique video dataset’s characteristics, the
state-of-the-art ConvNets can easily achieve high accuracy
results but do so relatively slowly, as shown in Figure[9] As
mentioned above, the speed of detection can enhance safety.
Therefore, we create AirNet, a customised ConvNet, which
can run faster but still achieve similar performance as the
state-of-the-art ConvNets.

Firstly, the input images are made rectangular, rather
than square, with a W x H ratio of approximately 1.78. This
step is undertaken as the videos are captured from only one
source with a resolution of 1920 x 1080. By doing this, the
computation time is reduced by approximately 10% without
compromising detection accuracy.

Secondly, we build a new backbone divided into five
identical blocks as shown in Figure 4] The first convolu-
tional layer is used to create Wy x Hy X Cyy from W x H x 3.
Then, the outputs after each block are W; x H; x C;, where
Wi+1 = %WZ, Hi—i—l = %Hi, Ci+1 = 1501 Each
block exploits the depthwise convolution, which tremen-
dously reduces the number of parameters [14,|33]. The
first 1 x 1 convolutional layer acts as an expansion layer
to uncompress data by expanding the number of channels
W; x H; x nC;. The 5 x 5 depthwise convolutional layer
with stride 2 aim to filter data and reduce the spatial di-
mension to half %Wl X %HZ x nC;. The last 1 x 1 convo-
lutional layer acts as a projection layer to compress data to
1W; x 1 H; x 1.5C;. The batch norm layers [16] are stacked
after the convolutional and depthwise convolutional layers.

Thirdly, we modify a bidirectional feature pyramid net-
work (BiFPN) [34]] as a featured network. Since we prior-
itize speed, our feature network can be viewed as a small
implementation of BiFPN, as shown in Figure 5]

4.5. Aircraft Tracking

We apply the aircraft detection algorithm, as explained
above, to detect aircraft. For comparison purposes, we mon-
itor all aircraft at the same rate as the radar (every second).
By comparing each bounding box of the current frame with
the previous frame’s bounding boxes, we can map the air-
craft with last movement sequences. Figure[6] shows an ex-
ample of an aircraft detected and tracked by the proposed
detection algorithm.

4.6. Region Assignment

The assignment process is described as follows. First,
we calculate intersections between each aircraft and the re-



Figure 6: Aircraft tracking by detection. By comparing air-
craft bounding boxes from previous frames, the algorithm
can map them with the current frame.

Figure 7: The region assignment function assigns aircraft to
specific regions.

gions. If there is no intersection, the aircraft does not belong
to any region. If there is only one intersection, we assign the
aircraft to that region. If there is more than one intersected
region, we need to calculate the aircraft’s speed. If the air-
craft is stationary, the aircraft is assigned to the same region
as the previous time. If it is moving, we calculate its direc-
tion using its tracked trajectory, ranging from 0° to 360°,
and compare it with the region directions. The aircraft is
mapped to the region having the smallest difference in di-
rection. Figure[7]shows the region assignment results.

4.7. Speed and Distance Estimation

We can estimate aircraft speed by calculating the dis-
tance of a sequence of points over time. Intuitively, we
choose the center points of bounding boxes resulting se-
quence of points X = (z!,z%),t € (1,...,T). Considering
the bounding boxes tend not to be stable, a moving average
with step n is applied as 7" = 1 Z;:tfn 2. Then, X

are transferred to geographic locations Y by Eq. (I) with
e = 0. Finally, the speed is calculated by the distances di-
vided by the times between two consecutive points. Also,
we can compute the corresponding distance by the haver-

sine formula [37]:

Figure 8: Aircraft speed and the distance between two air-
craft or between the aircraft to the next region are estimated.
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The distances between each pair of airplanes in the same
region are estimated. First, we need to find every pair of
aircraft in the same area. Next, intersection points between
each plane and the region are computed. Depending on air-
craft position, there are one or two intersection points for
each aircraft. These two points represent the head and the
tail of the plane. Therefore, we can calculate the following
four distances between each pair of airplanes: from the tail
to the tail, the head to the head, the head to the tail, and the
tail to the head, by Eq. (3). The shortest distance is from
the tail of the leading aircraft to the head of the trailing air-
craft. The distances from aircraft to the next regions are
also estimated. Similar to the distance between two planes,
intersection points between the aircraft and the current area
can be calculated, representing the aircraft head and tail.
The point in the next region is estimated as an intersection
between that region and the current region by Eq. (3). Fig-
ure|§| shows the estimated results. The speed units are knots,
while distance units are feet.

5. Experiments and Results
5.1. Training ConvNets

The training image set is split into training and validation
sets in the training process, with a ratio of 9:1, respectively.
Therefore, we have 12766, 1418, and 14414 images on
the training, validation, and test sets. We choose YOLOv3
with Darknet53, RetinaNet with Resnet50, and EfficientDet
with EfficientNet to compare with AirNet. First, the AirNet
backbone is trained while the rest use backbones trained by
ImageNet . Then, we train four models with the same
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Figure 9: The model running time versus the corresponding
performance on simulated dataset in our experiments.

Model Res | Params | Time AP
Retina 896 36M 192 | 0.9937
1408 36M 228 | 0.9976
1920 36M 298 | 0.9987
YOLOV3 896 61M 201 | 0.9842
1408 61M 373 | 0.9953
EfficientDet | 1152 4M 172 | 0.9879
1408 ™ 241 | 0.9981
AirNet 1152 | 0.25M 127 | 0.9788
1408 | 0.32M 155 | 0.9861
1664 | 0.58M 195 | 0.9957
1920 | 1.03M | 230 | 0.9980

Table 1: The experimental results, including the input reso-
lution, the number of parameters, the running time and the
average precision, from different networks.

scheme. We use Adam optimizer [[17] with learning rate
le — 3. We implement a learning schedule and an early stop
mechanism for the experiments. For the learning schedule,
we reduce the learning rate by a factor of ten once validation
loss no longer decreases in a period of three epochs. If val-
idation loss does not decrease in a period of ten epochs, the
training process is stopped. Hyper-parameters are tuned for
speed/performance trade-off. In YOLOV3 and RetinaNet,
the only hyper-parameter is the input resolution, while Air-
Net and EfficientNet also have several layers and filters.
We operate test experiments on a computer with two In-
tel(R) Xeon(R) Silver 4114 CPUs with 40 threads running
at 2.2GHz, 32GB of RAM, and an Nvidia GeForce GTX
1080 GPU. We calculate speed on each image in the test set
and report the average time.
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Figure 10: A precision-recall curve of AirNet@ 1152 with
different conditions.
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Figure 11: Estimated and actual aircraft positions chosen
randomly.

5.2. Results

5.2.1 Aircraft Detection

Table T]and Figure [9]presents the comparison of these Con-
vNets. As there is only one class and no overlap, all Con-
vNets can achieve high results. Since YOLOv3 uses Dark-
net53 with a huge number of parameters, the execution time
is slower compared to the other architectures. Importantly,
our model runs faster, whilst still achieving high perfor-
mance, when compared to other models. Moreover, Air-
Net has fewer parameters, which are more easily loaded on
low-power machines.

In tracking-by-detection, false-negative detecting in
some frames is acceptable as objects still can be mapped
of the last detected frames. Therefore, we choose Air-
Net@1152 for the framework detector. Figure|10[shows the
precision-recall curve of the model with different visibility
conditions. As expected, object detection at night has the
lowest performance. Also, detecting an object during rain
is easier than during snow.



Percentiles(%) | 5 25 50 75 95
Error (m) 1.13 | 3.29 | 5.85 | 9.59 | 16.88

Table 2: Different percentiles of aircraft position error.

5.2.2 Speed and Distance Estimation

Speed and distance estimation are calculated using geo-
graphic coordinates, as shown in Eq. (3). It follows that if
the aircraft’s estimated position error is minimized, then the
speed/distance estimation error will also be minimized. The
aircraft’s position error of the ASDE-X system [1]] has been
measured with a mean of 6.99m, with individual position
errors sometimes exceeding 24.1m [20]. By validating 90
aircraft movements with 21524 points, the proposed frame-
work’s average position error achieves similar performance,
with a mean of 7.09m. The position error percentiles can
be visualized in Table[2} Figure[IT]shows estimated and ac-
tual aircraft positions chosen randomly with mean errors of
5.98m.

As the speed and distance estimation errors can theo-
retically be twice the position errors over two successive
frames, we therefore implement a moving average speed es-
timation scheme.

6. Validation and Applications

A list of visual features has been identified for tower con-
trollers []'33[] In this section, we examine the provision of
these functions.

First, when controllers look at the screen, it is vital to
ensure that they can obtain information as soon as possi-
ble. The earlier safety deviations are detected by ATCs, the
more time they have to deal with them proactively [25]]. By
using colors, the framework can indicate whether aircraft
are moving or stationary, or their current regional location.
Figure [12] shows an example of displaying these types of
information. Aircraft on the same regional locations have
the same colors. Also, black text indicates moving aircraft
while white text indicates stationary aircraft, which can as-
sist in the prediction of separation violations.

Second, after aircraft detection and recognition, the con-
trollers need detailed information such as aircraft callsign
and types. More aircraft information can be retrieved from
the aircraft type, such as the length, wingspan, the number
of engines, and so on [2]]. Currently, this type of informa-
tion is challenging to obtain via camera. However, by the
fusion of data from camera and radar sources, the system
can display this information via video overlay, as shown in
Figure [[3] By tracking every aircraft, we know their po-
sitions as pixel coordinates over time. By calibration, we
can translate these pixel coordinates to a sequence of geo-
graphic locations over time. Finally, we can map aircraft

0.08 kts

Figure 12: Aircraft information, including moving or sta-
tionary aircraft and their location, is displayed by colors.

Figure 13: Aircraft information from radar including call-
sign and type is displayed on the screen.

on the screen to the aircraft radar tracks by comparing these
geographic locations.

As a demonstration of the Deep4Air framework, we use
real-world videos from a digital tower at George Bush In-
tercontinental Airport. There are 14 FHD cameras produc-
ing eight frames per second (fps). As our detector config-
uration takes 127ms for a 1920 x 1080 image, we need to
pre-process the videos to meet the real-time requirement.
First, we select three cameras that capture the main part
of the runway and taxiways. Next, the sky background is
removed to reduce computation resulting in a 2944 x 896
image. The framework not only provides geographic coor-
dinates, as shown in Figure [T4] but also detects aircraft and
estimates speed and distance at a rate of 6 fps, as depicted

in Figure[T3]

7. Conclusion

We have proposed a novel framework that can monitor
airport runways and taxiways, and perform essential tasks
including assigning aircraft to corresponding regions, esti-
mating aircraft speed, the distance between two aircraft, and
the distance of aircraft to their next areas. We also presented
an efficient deep learning model for aircraft detection with



Figure 14: George Bush Intercontinental Airport captured
by three cameras from the digital tower with geographic co-
ordinate provided by Deep4Air framework.

Figure 15: Aircraft detection and speed/distance estimation
by Deep4Air framework.

high average precision (99.8%) and promising experimen-
tal results. As the framework features a high update rate and
can detect and track non-cooperative entities, it overcomes
these radar surveillance system limitations. With these re-
sults, the Deep4Air framework can be used as the primary
system for small or medium airports, or a secondary surveil-
lance system for larger airports.

We intend to extend this work by integrating the frame-
work with real-world videos and conducting human-in-the-
loop trials. Also, by combining actual flight plan data with
distance and speed estimation, we can investigate collision
prediction functionality.
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