
DISCOVR: Distributed Collaborative Video Recorder
Jin Li and Cheng Huang

Communication and Collaboration Systems, Microsoft Research
One Microsoft Way, Bld. 113, Redmond, WA 98052

Email: {jinl,chengh}@microsoft.com

Abstract

The paper describes DISCOVR, a distributed collaborative video

recorder. DISCOVR is a P2P application that combines asynchro-

nous file sharing with synchronous on-demand media streaming.

DISCOVR uses a flat entity ID space, with the entity being any of the

media file, header, mega packets, index and metadata. All DISCOVR

entities may be asynchronously or synchronously distributed. DIS-

COVR adopts a sender-driven priority based sharing protocol. If the

user is on-demand viewing a media file, those packets that are to be

viewed in the near future will be put on the synchronous access list,

which prompts its connected peers and the peers that are indirectly

connected to fulfill the distribution of the on-demand packets in high

priority. By letting the peers engage in both asynchronous sharing

and synchronous on-demand streaming, DISCOVR promotes the

peers to remain online longer, thus improve the availability of the

P2P system and the overall performance.

1. Introduction
The popularity of peer-to-peer (P2P) application is on the rise.

Compared with the client-server architecture (such as the web server

and the media server), there is no absolute notion of clients or servers

in a P2P network. Instead, the peer nodes function as both clients and

servers to the other nodes on the network. In a P2P network, as the

demand of the service grows, the capacity (network bandwidth, stor-

age capacity and computing power) of the network grows as well.

Moreover, the capacity of the P2P network is provided collectively

by all the peers in the network. This is in sharp contrast to a client-

server architecture, where the capacity is fixed and paid for by the

server.

The first major P2P application for the masses was the Napster

P2P file sharing. Although the original Napster service has been shut

down by court order for copyright violations, its popularity opens the

floodgate of the decentralized P2P applications. Some popular P2P

file sharing applications are Gnutella[1], eDonkey, FastTrack and

BitTorrent. Gnutella was the earliest development, with completely

decentralized network and broadcast search message. The design goal

of Gnutella is that it should be virtually impossible to shut down.

However, the growing surge in popularity reveals the limits of the

Gnutella protocol’s scalability, as search message overwhelms data

exchanged and wasted huge resource in the network. FastTrack[2][3]

is a P2P protocol used by the Kazaa and its variants (Grokster and

iMesh). FastTrack shares files in P2P fashion, but uses supernodes

for semi-centralized search and indexing. eDonkey[4], another popu-

lar file sharing networks, utilizes servers as communication hubs. A

recent major development in P2P file sharing protocol is BitTor-

rent[5]. Written by Bram Cohen, BitTorrent breaks the file into

smaller fragments, and distributes the fragments in a P2P fashion. To

use BitTorrent, each user first downloads a torrent file, which con-

tained the address of a tracker node and the hashes of the fragments.

The hash prevents malicious attacker from corrupting the P2P con-

tent in distribution. The tracker node maintains a log of which users

are downloading the file and what their progresses are in the

download1. BitTorrent uses two unique mechanisms for efficient P2P

sharing. First, it distributes the fragments that are the “local rarest” to

the peers. This ensures that the fragments distributed to the peers can

be redistributed to the other peers, thus fully uses the peer’s band-

width resource. Second, a BitTorrent[5] peer uploads to the connect-

ing peers that are also uploading content to itself. This Tit-for-Tat

strategy gets rid of the leech behavior that plaques the common P2P

networks.

Napster, Gnutella, eDonkey, FastTrack and BitTorrent distribute

content in asynchronous mode. The file is shared piece by piece. And

all file pieces have to be delivered before the entire file can be

viewed. This leads to long waiting time if the file to be distributed is

large, e.g., a digital music or movie. Recently, a number of works

have investigated synchronous P2P content distribution, namely

broadcasting / streaming of the media files. The basic idea is to con-

struct an application-level multicast (ALM) tree that covers all re-

ceiving peers. The media server then broadcasts the media packets

through the ALM tree. For example, PeerCast [6] constructs a distri-

bution tree rooted at the sender for a live media streaming session. A

new receiver joins by traversing the tree starting at the root until it

reaches a node with sufficient remaining capacity. NICE [7] and

Zigzag [8] use hierarchical distribution trees and therefore can ac-

commodate a large number of peers. To improve reliability and en-

sure that the leaf nodes do not become leeches, multiple ALM trees

or a distribution mesh can be constructed. Each peer then receives

different portions (stripes) of the stream from multiple ALM trees.

CoopNet [10] employs multi-description coding and constructs mul-

tiple distribution trees (one tree for each description) spanning all

participants. SplitStream [11] provides a cooperative infrastructure

that can be used to distribute large files (e.g., software updates) as

well as streaming media. CoolStreaming [9] uses a BitTorrent like

protocol that forces data exchange during the media broadcast. These

are just a few examples of the many P2P media broadcast systems.

In this work, we develop DISCOVR, a distributed collaborative

video recorder that combines asynchronous file sharing with syn-

chronous media streaming. DISCOVR extends our previous work

1 A recent BitTorrent version includes trackless support. In practice,

it makes every client a lightweight tracker using a Kademlia dis-

tributed hash table (DHT). This lowers the barrier to publish the

content and eliminates a central point of failure. However, BitTor-

rent in trackless mode does not guarantee reliability. In trackless

mode, the content publisher also loses the control of the content

distribution: it cannot collect user statistics, and cannot stop the

torrent and the distribution.

14131­4244­0367­7/06/$20.00 ©2006 IEEE ICME 2006

PeerStreaming, which is an on-demand P2P streaming system. In

DISCOVR, the peers may switch between one of two modes: 1) in

the asynchronous mode, the peer asynchronously shares and retrieves

a list of media file for future viewing, and 2) in the synchronous

streaming mode, the peer receives and plays back the media from

arbitrary point designated by the user. The DISCOVR peers adopt a

sender-driven priority based sharing protocol that ensures the request

of the peers in both asynchronous and synchronous mode can be

accommodated to the best interest of both groups of peers. By letting

peers switch between streaming and asynchronous file sharing mode,

the DISCOVR peers benefit by participating in the P2P activity

longer, thus increases the available resources and capacity of the P2P

network, and boosts the performance of the P2P streaming.

In the following part of the paper, we will discuss the components

of the DISCOVR system in details. We discuss the media file format

in Section 2. We show the system and network architecture in Sec-

tion 3, and describe the sender-driven priority based sharing protocol

in Section 4. The DISCOVR operation and experimental results are

shown in Section 5. Finally, we give conclusions in Section 6.

2. Media File and Entity
The DISCOVR streaming media file, be it MPEG, AVI, windows

media or real, can be segmented into media header, packets and me-

dia index, as shown in Figure 1. The media header contains global

information of the media, e.g., the number of channels in the media,

the property and characteristic (audio sampling rate, video resolu-

tion/frame rate) of each channel, media codecs used, author/copyright

holder of the media, etc.. The body of the media consists of a se-

quence of media packets, each of which contains the compressed

bitstream of a certain channel (audio/video) spanning across a short

time period. Not all media packets are independently accessible. For

example, in MPEG/Windows Media coded video, the user may start

playing from any intra-coded frame, but not from any inter-coded

frame. We thus cut the media file on group-of-pictures (GOP)

boundaries, and group multiple audio/video packets into a mega

packet, which is the smallest random access unit of the media. The

media may have an optional index block, which converts access time

to packet location so that the media can be accessed randomly.

In DISCOVR, we define the basic sharing unit as an entity. All

DISCOVR entities share a flat ID space, e.g., a 128bit long word. In

DISCOVR, the media header, index, and each mega media packet are

all independent basic entities, each of which is a small file that can be

cached on the disk, be shared in the network, and be accessed. Each

basic entity may be further split into a number of fixed size blocks.

The block is the smallest sending/receiving unit in the DISCOVR

network. The entire media forms a directory entity. DISCOVR does

not store the content for the directory entity, but forms a metadata file

that records the compositing entities of the directory entity. The

metadata file is an entity by itself and can be shared, accessed and

cached in the DISCOVR system. Multiple media files sharing the

same characteristics (e.g., a TV series) can be grouped into a bigger

directory entity with the metadata describing the compositing entities

as well. This way, DISCOVR may use the same protocol to share the

media header, mega packets, media index and metadata file, and may

easily identify the entity it shares.

3. System and Network Architecture
We show the system framework of DISCOVR in Figure 2. A DIS-

COVR peer consists of a P2P data engine and a streaming proxy. The

streaming proxy implements a mini http-based media server on a

local port (http://127.0.0.1:port/) that feeds data received by the P2P

data engine to the media viewer, such as the windows media player.

It also functions as the user interface of DISCOVR. The DISCOVR

P2P data engine responds to both the asynchronous file sharing re-

quest and synchronous streaming request, and adjusts the operation

mode of the DISCOVR peer accordingly.

The DISCOVR peer contributes both network bandwidth (for up-

loading content to the peers) and storage resource (for caching asyn-

chronous shared media). The DISCOVR peer is connected to one or

a cluster of supernodes, which track the list of entities shared by a

certain DISCOVR peer. Since DISCOVR has two operation modes:

asynchronous and synchronous, there are two lists for the shared

entities as well. For the list of media files that are asynchronously

shared for later viewing, the directory entities of the media file are

placed in the asynchronous sharing list. For synchronous media

streaming (e.g., viewing a media from a specific point), we place the

entities of the mega packets that will be accessed for near future

viewing on the synchronous sharing list, and place the directory en-

tity of the media file again in the asynchronous sharing list. Thus, the

on-demand media viewing peer are synchronously sharing the media

packets for immediate viewing, and are asynchronously sharing the

entire media file with the rest of the peers.

The DISCOVR supernode is designed to support a large number of

peer nodes. Compared with the supernode in the FastTrack system,

the DISCOVR supernode does not provide search functionality.

Compared with the tracker node in the BitTorrent network, the DIS-

COVR supernode does not track the availability and/or the file shar-

ing progress of the peers. Thus, most administrative traffic in the

DISCOVR system goes directly through the peers.

4. DISCOVR: Peer Operations

4.1 Upon Connection
Shown in Figure 2, the DISCOVR uses an unstructured redundant

network. Upon connection, the DISCOVR peer presents to the su-

pernode the asynchronously shared and synchronously shared entity

IDs. The supernode then points the DISCOVR peer to a number of

random peers (say 20) that have commonly shared files, either syn-

chronous or asynchronous, with the current peer. The DISCOVR

peer may then attempt to establish connections with the list of the

peers returned by the supernode.

Media Header

Mega Packet 1

Mega Packet 2

.

.

.

.

.

.

Mega Packet n

Metadata

=

Media Index

Media Header

Mega Packet 1

Mega Packet 2

.

.

.

.

.

.

Mega Packet n

Metadata

=

Media Index

Figure 1 Media structure and metadata.

DISCOVR

node

DISCOVR

node

DISCOVER

node

DISCOVR

node

supernode

DISCOVER

node

DISCOVR node

streaming proxy

(local)

P2P data

engine

media player

(WMP)

data

data

on-demand

request

data

DISCOVR

node

DISCOVR

node

DISCOVER

node

DISCOVR

node

supernode

DISCOVER

node

DISCOVR node

streaming proxy

(local)

P2P data

engine

media player

(WMP)

data

data

on-demand

request

data

DISCOVR node

streaming proxy

(local)

P2P data

engine

media player

(WMP)

data

data

on-demand

request

data

Figure 2 Distributed Collaborative Video Recorder

(DISCOVR): system and network architecture.

1414

Due to a variety of reasons, e.g., the presence of NAT/firewalls in

the network, it is possible that not all connections between the peers

can be established. In such a case, the DISCOVR peer may simply

request for more new peers from the supernode. The DISCOVR peer

may also terminate existing links and establish new links if its con-

nected peers leave the network, or if there is no interesting entities

from the connecting peers.

Let us now examine the operation after the peer connection is es-

tablished. Let the two connected peers be A and B, respectively.

Upon connection, the pair of peers first exchanges the list of asyn-

chronous and synchronously shared entities. If peer A just starts shar-

ing a media file, it will present the metadata that records the compo-

siting entities of the media file as the sharing entity. Once the meta-

data is delivered, the directory entity of the entire media file will be

listed as the sharing entity. Using the sharing entity list, both peers

can quickly identify the entities that are commonly shared between

the peers.

After the commonly shared entities are identified, the peers then

exchange an availability vector that is a compact representation of

what is held by the peer. For each entities (e.g., a media file), we first

use a three-state tag to express whether the entity is fully available at

the peer (tag ‘11’), is completely unavailable (tag ‘00’), or is partially

available (tag ‘10’). If a directory entity is partially available, we

further use the three-state tag (‘11’, ‘00’ or ‘10’) to identify if each of

the compositing entities is fully available, completely unavailable, or

partially available. If a basic entity is partially available, a bit vector

is further attached to indicate what blocks of the entity is available.

4.2 Sender-driven priority based sharing protocol
It is the task of the DISCOVR P2P data engine to allocate the re-

source of the peers (the upload bandwidth) among the network links

of the connected peers. Let us now consider a peer node A, which is

connected to a set of peer nodes {B1, B2, ……, Bn}. Furthermore, let

peer node Bi be connected to peer nodes {Ci,1, Ci,2, ……, Ci,m}. DIS-

COVR adopts a sender-driven priority based sharing protocol. For

each link from peer node A to Bi, peer A determines what content to

send in two steps: 1) throughput determination, 2) block determina-

tion.

For the first step, peer A will determine the proper throughput as-

signed to the link from A to Bi. We count the contribution of Bi to A

as xi, which is:

i syn asyncx Th Thα β= ⋅ + ⋅ , (1)

where Thsyn is the throughput of synchronous access content from A

to Bi, and Thasyn is the throughput of asynchronous access content

from A to Bi, α and β are weighting factors for the throughput alloca-

tion of synchronous and asynchronous content, respectively. We set

α >>β, so that wherever possible, the peer will first satisfy the syn-

chronous access request, while the asynchronous file sharing takes a

second priority. Let the upload bandwidth of peer A be upA. The peer

link from A to Bi will be assigned a throughput:

i
i A

i

x
Th up

x
= . (2)

DISCOVR also implements an optimistic unchoking similar to that

of BitTorrent[5]. The idea is to use the first available opportunity to

send a random block to a newly joined peer so that the peer may

quickly bootstrap itself. Afterwards, the throughput allocation in equ

(2) is followed.

In the second step, peer A determines what blocks to send to peer

Bi. First, peer A finds all sendable blocks to Bi. Those blocks belong

to commonly shared entities of peers A and Bi, are held by peer A and

are not delivered to peer Bi yet. We calculate a priority value for each

of the sendable blocks. The higher the priority value, the more valu-

able that the block is to peer Bi. The priority value of a sendable

block is the sum of the followings:

• receiver_on_demand [default=256]

Receiver_on_demand is added if the sendable block belongs to one

of the synchronously accessed entities of peer Bi. The re-

ceiver_on_demand is a very large value, which ensures that synchro-

nous accessing request is honored as much as possible.

• peer_on_demand_receiver [default=16]

Peer_on_demand_receiver is added if the sendable block belongs

to one of the synchronously accessed entities of any connected peer

Ci,j of peer Bi. The idea is that this sendable block has a high value to

peer Ci,j, and is thus of high resale value to peer Bi. If peer Bi are not

operating in synchronous accessing mode, these sendable blocks will

be sent first to ensure synchronous access of peer Ci,j can be com-

pleted.

• Local_rarity [default=1]

Local_rarity is added for each sender’s connected peer Bj (j≠i) that

is sharing but does not hold the block.

• Partial_entity_credit [default=4]

Partial_entity_credit is added for all the blocks belong to a par-

tially available entity of peer Bj. The idea is to add an extra incentive

to make the entity fully available.

• metadata_credit [default=16]

We give blocks of metadata entity extra priority for delivery.

4.3 Propose-to-send, confirm-to-receive and report-

arrival-block
The sendable blocks are then sorted by priorities. Peer A then

sends a propose-to-send (PTS) list of the highest priority blocks to

peer Bi. Peer Bi examines the PTS list, checks if the blocks have al-

ready been proposed by the other peers, and compiles a confirm-to-

receive (CTR) list and sends to peer A. The PTS request and the CTR

confirm serve as a lock mechanism that ensures no duplicate block is

sent. Because CTR list is an answer to the PTS request, CTR can

simply be a bit mask of the block proposed by peer A. Only those

blocks confirmed by the CTR message will be actually sent from peer

A to Bi. At the same time that the confirmation CTR message is sent

to peer A, peer Bi also compiles a report-arrival-block (RAB) mes-

sage and sends to its other connected peers {Ci,1, Ci,2, ……, Ci,m}.

Upon receiving the RAB messages, peer Ci,j treats the RAB blocks as

already held by peer Bi, and will not further propose the blocks. If for

certain reason peer A crashes and is unable to actually send the

blocks, peer Bi will send a negative RAB message to the peers {Ci,1,

Ci,2, ……, Ci,m} to re-allow the blocks in the RAB message to be

proposed by peer Ci,j.

The process above describes how peer A may find blocks to send

to its connected peer Bj. In similar process, peer Bj may find blocks to

send to its connected peer A and Ci,j. Because it is the sender that first

proposes the block, we say that DISCOVR adopts a sender-driven

priority based sharing protocol.

5. DISCOVR Operation and Experimental Results

1415

Table 1 Metadata of streamed media piece (samples).

Name Size Length Bitrate # of Entities

Dolphins 640x480 1:42 1.06mbps 21

Amazon 640x480 1:43 1.06mbps 23

Terminator 720x480 2:34:58 1.75mbps 1164

Die Hard 720x480 3:04:58 1.75mbps 1388

We demonstrate our DISCOVR system on a small P2P network

consisting of 1 supernode and n peer nodes. We use n=5 for this spe-

cific experiment. A set of windows media movies is distributed

through DISCOVR. The media includes short trailers, e.g., Delphins,

and full length movies, e.g. Die Hard. We show the metadata of some

sample movies in Table 1. Whenever a DISCOVR peer node is

launched, it places all the media trailers in the asynchronous file shar-

ing mode, and is downloading the media trailer for future viewing.

The user may issue on-demand streaming requests to any of the peer

node, for any media trailer (by clicking a URL of the trailer). An

operation screen of the DISCOVR can be shown in Figure 3. When a

user starts on-demand streaming of a media file, the media player

sends an on-demand command to the mini http proxy, which converts

the streaming request into a sequence of synchronous access requests

of media packets that are sent to the underlying P2P data engine. The

proxy implements an http-based streaming protocol and appears as a

regular streaming server to the media player. It receives media header

and packets from the P2P data engine, packs them conforming to the

http streaming protocol and delivers to the media player on a real-

time basis. It also supports VCR operations (e.g. seeking). The user

may drag the progress bar in the media player. When that occurs, the

media player will send a new http-seek request to the proxy, which

translates the seek request to the synchronous access command of

new media packets. The pending on-demand requests are cancelled,

and new on-demand access requests are generated based on the new

media playback position.

In Figure 4, we show the bandwidth allocation of a DISCOVR

peer during the on-demand streaming process. In the figure, a DIS-

COVR client is synchronously streaming media from four other peers

simultaneously. We show the throughput contribution of each of the

four connected peers in Figure 4. We notice that each DISCOVR

peer shares about 1/4th of the serving load of the client. Moreover, we

show the overhead of the DISCOVR protocol (the PTS, CTR, and

RAB messages in comparison to actual data sent) in the top-most

portion. We find that the overhead of the DISCOVR protocol is only

0.5% on average and thus almost negligible (and cannot be seen

clearly in the figure) compared to data traffic. DISCOVR is a light-

weight protocol that may support simultaneous asynchronous file

sharing and synchronous media streaming.

6. Conclusions
We present DISCOVR, a P2P application that combines asynchro-

nous file sharing with synchronous on-demand media streaming.

DISCOVR uses a flat entity ID space for everything shared: media

file, header, mega packets, index and metadata. All DISCOVR enti-

ties may be asynchronously or synchronously accessed. In DIS-

COVR, the peer nodes may flexibly switch between file sharing and

media streaming modes, and use DISCOVR for both tasks.

7. References
[1] S. Saroiu, K. P. Gummadi and S. D. Gribble, “Measuring and

analyzing the characteristics of Napster and Gnutella hosts”, in Proc.

2003 Multimedia Systems, vol. 9, no. 2, Aug. 2003, pp. 170-184.

[2] H. Choon, N. Sarana and B. Rajkumar, “P2P networks for con-

tent sharing”, Technical report, GRIDS-TR-2003-7, Univ. of Mel-

bourne, Australia, Dec. 2003.

[3] A. Sharma, “The FastTrack Network”, PC Quest magazine,

Sept. 12, 2002.

[4] T. Hobfeld, K. Leibnitz, R. Pries, K. Tutschku, P. Tran-Gai, and

K. Pawlikowski, “Information diffusion in eDonkey file sharing net-

works”, Univ. of Wurzburg, Rep. No. 341, Sept. 2004.

[5] B. Cohen, “Incentives build robustness in BitTorrent”, in Proc.

Workshop on Economics of peer-to-peer systems, 2003.

[6] H. Deshpande, M. Bawa and H. Garcia-Molina, “Streaming

Live Media over a Peer-to-Peer Network”, Stanford database group

technical report (2001-20), Aug. 2001.

[7] S. Banerjee, B. Bhattacharjee, C. Kommareddy, and G.

Varghese, “Scalable application layer multicast”, Proc. Of ACM SIG-

COMM’02, pp. 205–220, Pittsburgh, PA, USA, August 2002.

[8] D. Tran, K. Hua, and T. Do. Zigzag, “ZIGZAG: An efficient

peer-to-peer scheme for media streaming”, In Proc. of IEEE INFO-

COM’03, San Francisco, CA, USA, April 2003.

[9] CoolStreaming, http://www.coolstreaming.org.

[10] V. Padmanabhan and K. Sripanidkulchai, “The Case for Co-

operative Networking”, In Proc. of the First International Work-

shop on Peer-to-Peer Systems (IPTPS), Cambridge, MA, USA,

March 2002.

[11] M. Castro, P. Druschel, A-M. Kermarrec, A. Nandi, A. Row-

stron and A. Singh, "SplitStream: High-bandwidth content distribu-

tion in a cooperative environment", In Proc. of the International

Workshop on Peer-to-Peer Systems, Berkeley, CA, February, 2003.

[12] X. Jiang, Y. Dong, D. Xu, B. Bhargava, "GnuStream: a P2P

Media streaming system prototype", In Proc of IEEE Intern. Conf. on

Multimedia and Expo (ICME 2003), Baltimore, MD, June 2003.

[13] J. Li, “PeerStreaming: A practical receiver-driven peer-to-peer

media streaming system”, in MSR-TR-2004-101. Sept. 2004.

Figure 3 DISCOVR operation scene.

0

20

40

60

80

100

120

140

160

time (sec)

p
e

e
r

ra
te

/a
v

g
 t

h
ro

u
g

h
p

u
t

(%
)

overhead
peer 4
peer 3
peer 2
peer 1

10 20 30 40 500

Figure 4 DISCOVR: peer throughput distribution.

1416

