
This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002 
and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily 
reflect the views of the Assistant Secretary of Defense for Research and Engineering. 

 

Best of Both Worlds:  
High Performance Interactive and Batch Launching

 

Chansup Byun1, Jeremy Kepner1,2,3, William Arcand1, David Bestor1, Bill Bergeron1, Vijay Gadepally1,2, 
Michael Houle1, Matthew Hubbell1, Michael Jones1, Andrew Kirby1, Anna Klein1, Peter Michaleas1, Lauren Milechin4,  

Julie Mullen1, Andrew Prout1, Antonio Rosa1, Siddharth Samsi1, Charles Yee1, Albert Reuther1 
1MIT LLSC, 2MIT CSAIL, 3MIT Math, 4MIT EAPS 

Abstract—Rapid launch of thousands of jobs is essential for 
effective interactive supercomputing, big data analysis, and AI 
algorithm development.  Achieving thousands of launches per 
second has required hardware to be available to receive these jobs.  
This paper presents a novel preemptive approach to implement 
“spot” jobs on MIT SuperCloud systems allowing the resources to 
be fully utilized for both long running batch jobs while still 
providing fast launch for interactive jobs. The new approach 
separates the job preemption and scheduling operations and can 
achieve 100 times faster performance in the scheduling of a job 
with preemption when compared to using the standard scheduler-
provided automatic preemption-based capability.  The results 
demonstrate that the new approach can schedule interactive jobs 
preemptively at a performance comparable to when the required 
computing resources are idle and available. The spot job 
capability can be deployed without disrupting the interactive user 
experience while increasing the overall system utilization. 
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I. INTRODUCTION 
As we have observed from the TOP500 list [1], the 

computing facilities around the world continue to grow their 
capacity steadily and significantly over the years. With the 
increased computing capacity, many institutions have 
implemented mechanisms to achieve high utilization of their 
computing resources. For example, leading cloud service 
providers have offered spot instances (Amazon EC2 Spot 
Instance [2], Microsoft Azure Spot Virtual Machines [3]) or 
Google Preemptible Virtual Machines [4]). These vendors 
provide such services to increase the utilization of unused 
computing resources at a deeply discounted price, which is also 
beneficial for their customers. 

Since its beginnings, the MIT Lincoln Laboratory 
Supercomputing Center (LLSC) has been focused on 
developing a unique interactive, on-demand high-performance 
computing (HPC) environment in order to support many in-
house scientists and engineers. This system architecture has 
evolved into the MIT SuperCloud, a fusion of the four large 
computing ecosystems – supercomputing, enterprise computing, 
big data, and databases – into a coherent, unified platform that 
enables rapid prototyping capabilities across all four computing 
ecosystems. The MIT SuperCloud has spurred the development 
of a number of cross-ecosystem innovations in high 

performance databases [5, 6], database management [7], data 
protection [8], database federation [9, 10], data analytics [11], 
dynamic virtual machines [12, 13], and system monitoring [14]. 
This capability has grown in many dimensions. MIT 
SuperCloud not only continues to support parallel MATLAB 
and Octave jobs, but also jobs in Python [15], Julia [16], R [17], 
TensorFlow [18], PyTorch [19], and Caffe [20] along with 
parallel C, C++, Fortran, and Java applications with various 
flavors of message passing interface (MPI) [21].  

Furthermore, the TX-Green flagship system now has nearly 
70,000 cores available for users’ parallel jobs. The most 
significant jump in core count was the addition of 648 Intel Xeon 
Phi 64-core nodes [22, 23], each of which has 64 compute cores 
in a single processor socket laid out in a mesh configuration [24]. 
This equals 41,472 total cores across the 648 compute nodes, all 
connected by a non-blocking 10-Gigabit Ethernet network and a 
non-blocking Intel OmniPath low-latency network. Recently, 
we have added additional 9,000 cores of Intel Xeon Gold 
processor nodes, each of which has 40 compute cores with two 
Nvidia Volta V100 GPUs [25], all connected by a non-blocking 
25-Gigabit Ethernet network. 

Rapid launch of thousands of jobs is essential for effective 
interactive supercomputing, big data analysis, and AI algorithm 
development and is core MIT SuperCloud capability.  All MIT 
SuperCloud jobs are interactive and launch immediately.  
Achieving thousands of launches per second has required 
hardware to be available to receive these jobs.  As the system 
capacity of the MIT SuperCloud has increased significantly, the 
opportunity has presented itself  to dual use these processors to 
be both available to launch interactive launches and run 
preemptable batch jobs in the background. 

In this paper, we present how we overcame the shortcomings 
of the standard scheduler-provided automatic preemption 
approach in order to meet the requirements of the MIT 
SuperCloud environment. In the new approach, we have 
separated the job scheduling and preemption operations. In 
addition, we reserve a pre-defined number of compute nodes for 
an incoming interactive job, which enables immediate fast job 
launch. In order to keep the minimum computing resources 
available, a cron-job script is used to requeue the low priority 
spot job or jobs as needed in the “last-in, first-out” order. In the 
paper, we have compared the scheduling performance of the 
normal (high-priority) jobs between the scheduler preemption 



and the MIT SuperCloud developed process. The new process 
has improved the scheduling performance significantly as 
compared to that of the scheduler-provided preemption 
approach and can even provide comparable performance as 
compared to the baseline scheduling performance of an 
interactive job without preemption.  

II. APPROACH 
Initially, we looked at the preemption feature [26], available 

with the current MIT SuperCloud resource management 
software (i.e., scheduler). The preemption feature has been 
available with modern resource management software [27, 28, 
29] for a while.  The preemption feature can preempt a low 
priority job when a high priority job is submitted but there are 
not enough compute resources to accommodate the high priority 
job. The preemption can be done manually by a privileged user 
or automatically if it is enabled by the resource management 
software. For the MIT SuperCloud cluster systems which serves 
numerous jobs from many users, it is desirable to configure 
automatic preemption by the scheduler.  

However, it turned out that scheduling high priority job with 
preemption took a lot longer than the usual job scheduling time 
without preemption. This significant performance degradation, 
which is discussed in a later section, in the scheduling time 
would cause adverse impact on user experience in submitting 
interactive, on-demand jobs and therefore was not suitable for 
the production MIT SuperCloud systems. 

A. Preemption by Scheduler 
When we investigated how to implement the spot jobs to 

help some users who needed large number of simulations while 
they were limited to their regular resource limits, we looked at 
the preemption feature provided by the resource management 
software such as Slurm [27], which has been used at MIT 
SuperCloud for a few years now.  

Slurm provides variety of choices with regard to enabling the 
preemption capability [26] for a given cluster system. We are 
not going to discuss about all the details here, but we will 
describe what is relevant to our use cases. In order to automate 
the preemption of low-priority spot jobs, we need to configure a 
few parameters. With Slurm, we need to define a couple of 
parameters, PreemptMode and PreemptType in the slurm.conf 
configuration file. Also, it is desirable to preempt the youngest 
spot job first before any older spot jobs in order to increase the 
chance that older spot jobs will finish execution. This 
preemption behavior can be achieved by activating the 
“preempt_youngest_first” option in the SchedulerParameters 
setting. 

What we would like to setup is a mechanism that enables 
users to submit spot jobs, and those spot jobs can be preempted 
by any regular priority interactive jobs when there are not 
enough resources available without preempting the spot jobs. 
There are multiple ways to achieve this preemption setup with 
Slurm but the QoS (Quality of Service) based preemption is the 
most suitable for the MIT SuperCloud requirement. Then, the 
next thing to decide is what type of preemption modes are 
suitable for our users. Slurm provides the following preemption 
modes: CANCEL, GANG, REQUEUE, SUSPEND. In the MIT 
SuperCloud, we do not want to share the resources between the 

preempted job, so the GANG option is not suitable for us. Also, 
since we want to provide the full memory for the interactive job, 
the SUSPEND mode is not suitable either. Then, there remain 
only two viable options: CANCEL and REQUEUE. However, 
the CANCEL mode actually cancels the spot job if a spot job 
needs to be preempted. This is inconvenient for the spot job 
owner because the owner needs to become aware that the spot 
job had been cancelled and resubmit it. Therefore, we decided 
to use the QoS based preemption with the REQUEUE mode 
when preempting the spot job. 

The QoS based preemption can be implemented by setting a 
dependency relationship between the low-priority QoS 
designated for spot jobs and the normal QoS for regular priority 
interactive jobs. When an interactive job is submitted, if needed, 
it can trigger the preemption of a spot job or jobs with the 
preconfigured “preemption mode” with the QoS dependency 
relation. For our purpose, the preemption mode is set as 
“REQUEUE” so that the cancelled spot job is resubmitted and 
executed when the requested resources for the spot jobs become 
available. 

With the QoS based preemption setup for the MIT 
SuperCloud systems, users can submit low-priority spot jobs 
without being restricted by their normal resource limits. Those 
spot jobs can be preempted by any interactive job if the 
interactive job needs resources used by the spot jobs. In addition, 
it should be noted that Slurm can be easily configured to use a 
single partition to serve both the normal and spot jobs or to use 
two separate partitions, one for interactive jobs and the other for 
spot jobs. Unfortunately, we observed that the scheduling 
performance for the interactive jobs with scheduler-driven 
automatic preemption was degraded significantly as compared 
to the scheduling time without preemption as discussed in the 
next section, regardless of a single or dual partition 
configurations. 

B. Preemption by a Cron-job script 
The poor scheduling performance with preemption has been 

a major stumbling block to implementation for the MIT 
SuperCloud production environment because we are interested 
in providing similar low latency scheduling performance of 
interactive jobs with or without preemption for the MIT 
SuperCloud users. Thus, we tried another approach, based on the 
fact that Slurm can preempt any jobs very quickly as a separate 
operation. The new approach is to separate the job preemption 
and scheduling operations (resource allocation [32]) with the 
scheduler by preempting a spot job in advance before submitting 
an interactive job. In this approach, we first used the Lua job 
submission script feature available with Slurm to detect a job 
submission and to preempt a spot job if needed. But this attempt 
did not work because, although it could detect the job 
submission, it failed to execute any Slurm commands under the 
Lua job submission script environment. So, as an alternative 
experiment, we modified the Slurm batch job submission 
command, sbatch, to insert a manual requeue operation before 
actually submitting an interactive job itself on a dedicated 
environment. In this experiment, we measured the scheduling 
time starting from the moment when the preemption operation 
was started.  



As demonstrated in the next section, we found that this 
approach could reduce the scheduling time of interactive jobs 
with preemption significantly. So, we decided to use a cron-job 
script to do the preemption operation instead of the automatic 
preemption by the scheduler. However, since the preemption 
operation is done outside of the scheduler, it is difficult to 
preempt any spot jobs in advance when a newly submitted 
interactive job requires the preemption of compute resources 
being used by spot jobs. In order to overcome this limitation, the 
cluster system maintains a pre-defined number of compute 
nodes available. It is reasonable to set the amount to be 
equivalent to the resource limits per user. With this cluster setup, 
when an interactive job is submitted, it gets scheduled quickly. 
Then, as an independent and separate process, a cron-job script 
running at a one-minute interval with a privileged mode, makes 
sure that it preempts any running spot jobs if there are not 
enough idle nodes available for another interactive job 
submission.  

When preempting spot jobs, the cron-job script is designed 
to preempt spot jobs in the “last-in, first-out” order until it frees 
up the amount of resources needed. Then, the cron-job script 
updates the spot QoS parameter, MaxTRESPerUser, 
accordingly. This parameter prevents spot jobs from filling up 
the pre-defined number of compute nodes. This cron-job script 
prepares the cluster system to be ready for another incoming 
interactive job. If there are no running interactive jobs in the 
cluster system, spot jobs can fill up the system except the pre-
defined idle nodes being kept free for an incoming interactive 
job, since the cron-job script monitors the cluster system usage 
and updates the MaxTRESPerUser parameter regularly. 
However, since the preemption is done outside of the scheduler 
by a cron-job script, there may be a situation that, if another job 
gets submitted within a minute right after one job is submitted, 
the second job may have to wait until the cron-job script can 
preempt any running spot jobs. It should be noted that this 
approach does not require priority dependency setup between 
the interactive job and the spot job. Instead, spot jobs are 
attached with a spot-job specific QoS when they are submitted 
so that the cron-job script can distinguish between the normal 
and spot jobs. 

Fig. 1. Summary of various approaches to implement the spot job feature.  

Figure 1 summarizes the various approaches we tried to 
implement the spot job feature in the MIT SuperCloud systems. 
The figure was adapted from reference 32 in order to show 
where each approach is applied in the general scheduler 

architecture.  The Slurm automatic preemption is categorized as 
“Resource Allocation Policies” in Figure 1. The Lua job 
submission script approach is categorized as “Queue 
Management Policies” in Figure 1.  Finally, the cron-job script 
based preemption is represented as a separate independent 
process.  In the scheduling process, the preemption step has to 
be performed before the resource allocation step. Depending on 
the preemption mode, the preempted job can be either 
resubmitted or cancelled. 

III. PERFORMANCE BENCHMARKS 
When implementing the spot job capability on the MIT 

SuperCloud systems, we wanted to make sure that this new 
capability did not adversely impact the MIT SuperCloud’s 
unique on-demand, interactive HPC environment. In other 
words, when users submit their interactive jobs, this new feature 
should not add any additional latency when launching their 
interactive jobs. Thus, we have designed a number of test 
scenarios to measure and compare the scheduling performance 
of interactive jobs, with and without spot jobs. Table 1 
summarizes all the experiments we performed.  Each of these 
experiments is discussed in the following sections. 

TABLE I.  SUMMARY OF EXPERIMENTS 

Preemption 
Approaches 

Preemption 
Mode 

Partitions Job Types Job Sizes 

Automatic 
by scheduler 

REQUEUE Single, 
Dual 

Individual, 
Array, Triple-
mode 

Small, 
Medium, 
Large CANCEL 

Lua job 
submission 
script 

REQUEUE Dual N/A N/A 

Manual 
REQUEUE Dual Individual, 

Array, Triple-
mode 

Large 

Cron-job 
script 

REQUEUE Dual Individual, 
Array, Triple-
mode 

Large 

 

A. Cluster Systems 
The system we used for the development and testing of the 

spot job capacity is a small size cluster, called the TX-2500 
system. At the time of testing, the cluster had a total of 608 cores, 
32 cores per node with 19 nodes. We also used the production 
system, TX-Green, for evaluation of the development and final 
deployment. The TX-Green system is made with many different 
types of compute nodes. The majority of nodes are 648 Intel 
Xeon Phi compute nodes. Each node has a 64-core Intel Xeon 
Phi 7210 processor, for a total of 41,472 cores, along with 192 
GB RAM, 16 GB of on-package MCDRAM configured in ‘flat’ 
mode, local storage, 10-GigE network interface, and an 
OmniPath network interface. Each compute node also has two 
local storage drives: a 128 GB solid state drive (SSD) and a 4.0 
TB hard drive. The Lustre [30] central storage system is made 
up of two separate storage arrays: a 10 petabyte Seagate/Cray 
ClusterStor CS9000 storage array for sharing data in groups and 
a 14 petabyte DDN 14000 storage array for users’ home 
directory, which are both directly connected to the core switch. 
Recently, we added an additional 225 compute nodes with 9,000 
additional cores. Each of these nodes has two 20-core Xeon 
Gold 6248 [31] processors with 384 GB RAM, two Nvidia Volta 
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V100 [25] GPUs with 32 GB RAM each, and a 25-Gigabit 
Ethernet network interface. 

B. Preemption Performance Measurement 
We measured the baseline scheduling performance while the 

cluster system wass idle to use as a reference performance level. 
We measured the scheduling time for a job to fill the entire 
cluster (which has 608 tasks for the TX-2500 system) from the 
scheduler event log. The time was measured from the moment 
the scheduler recognized the job submission to the moment 
when its last job was dispatched to the cluster for execution. We 
designed three types of jobs: individual, array and triple-mode 
jobs. The triple-mode job [32] is a special array job using a node-
based scheduling together with consolidating all the compute 
tasks running on the same node in a single execution script via 
MIT SuperCloud developed tools including gridMatlab [33] and 
LLMapReduce [5, 34]. The triple-mode job launch reduces 
scheduling time significantly because the array job size can be 
reduced dramatically, for example, from 4096 to 64, if 64 array 
tasks are consolidated and managed by a single execution script 
on each node. As shown in Figure 2a, the triple-mode job with 
the same amount of compute tasks can be dispatched to the 
cluster at least 100 times faster than the individual and array job 
dispatches when comparing the baseline performance. The 
scheduling time (the vertical axis shown in the logarithmic 
scale) is shown as the average time in seconds per task (or job 
with individual jobs). 

The scheduling time for an interactive job with the 
preemption was measured by first filling up the cluster with a 
triple-mode spot job and then, submitting a regular priority 
interactive job of the same size (608 tasks for TX-2500, small 
size job) to fill up the cluster. We also tried to fill up the cluster 
with low-priority individual or array jobs. However, because 
their preemption took much longer than the triple-mode spot job, 
we focused on using the triple-mode job as a low-priority spot 
job. In this experiment, since the cluster was full with the spot 
job, the measured scheduling time included the preemption time 
by the scheduler when dispatching the interactive job. Then, we 
compared the scheduling times for three different types of 
interactive jobs: individual, array and triple-mode jobs without 
(baseline) and with the preemption as shown in Figure 2a. When 
we measured the scheduling times with preemption for three 
different types of jobs, we also tried to use single and dual 
partition configurations in order to see the effect of the 
preemption setup. 

C. Automatic Preemption by Scheduler 
We observed that the preemption caused significant 

scheduling performance degradation to dispatch the interactive 
jobs with preemption as shown in Figure 2a. The scheduling of 
three job types with preemption using a single partition 
configuration takes longer than using the dual partition 
configuration, one partition for interactive jobs and the other for 
spot jobs, respectively. The effect of scheduling performance 
with preemption is significant, especially with the triple-mode 
jobs for both single and dual partition configurations. This big 
difference with the triple-mode jobs is mainly attributed to the 
fact that the baseline triple mode job can be dispatched very 
quickly without preemption as compared to the other two job 
types. Overall, the scheduling performance involving 

preemption is worse than the baseline performance except that 
of the array job with the dual partition configuration as shown in 
Figure 2a.  It turns out that the Slurm scheduling algorithms, the 
main and backfilling cycles, also affect the scheduling time 
significantly as observed in the scheduling of the array job with 
preemption when using the dual partition configuration. In this 
particular example, the job has been scheduled with only the 
main scheduling cycle. 

We have also performed a similar experiment on our 
production cluster system as well. Since the experiment was 
performed under a production environment, we have executed 
the experiment by reserving 64 Intel Xeon Phi compute nodes 
for a total of 4096 cores on a partition where its per-user resource 
limits are 4096 cores. The results of the scheduling times for 
2048-core  (medium size) and 4096-core (large size) interactive 
jobs with preemption are shown in Figures 2b and 2c, 
respectively. In this experiment, we also compared three 
different types of jobs: individual, array and triple-mode jobs. 
These three different jobs were submitted with a total of 2048 
and 4096 cores after the reserved resources were completely 
filled with a triple-mode spot job. 

Contrary to the behavior we observed on a small dedicated 
development cluster, under the production cluster environment, 
the preemption effect was much more significant in the 
scheduling performance with both single and dual partition 
configurations. It should be noted that the performance 
degradation with the triple mode jobs with preemption is almost 
three orders of magnitude larger as compared to the baseline 
performance. This is partly attributed to the fact that, because 
the triple mode scheduling is done significantly faster than the 
other two types of jobs, individual and array jobs, any small 
degradation in the scheduling time is significantly manifested in 
the overall scheduling performance. We also observed a similar 
trend that the dual partition configuration was showing slightly 
better performance than the single partition configuration for all 
three job types. However, the scheduling performance with 
preemption looks significantly poor and unsuitable for the 
production environment.  

Therefore, we looked at a different preemption mode, 
CANCEL, to see if this could improve the preemption 
performance on the production system. The results for a single 
partition and dual partition configuration are shown in Figures 
2d and 2e, respectively. In this comparison, we used the 4096 
core interactive jobs of three different job types. Considering the 
fluctuations in the scheduling performance under the production 
environment, there is no meaningful difference in the scheduling 
performance between the two preemption modes, REQUEUE 
and CANCEL. 

Since we have developed a unique HPC environment to 
schedule a large size job in a very short time using the triple-
mode request via MIT SuperCloud developed tools, the job 
scheduling time is an important element to maintain without 
being affected by the preemption. Thus, we have concluded that 
the scheduler-driven preemption-based spot jobs are unsuitable 
for the production environment. In order to provide an on-
demand, interactive HPC computing environment for our users, 
while supporting spot jobs, we needed to find another way to 



maintain comparable scheduling performance with preemption 
as compared to the baseline performance.  

 

Fig. 2. Comparison of various scheduling performance with three different 
types of jobs: individual, array, and triple-mode jobs without preemption 
(baseline) and with preemption. 

Therefore, we looked at some other alternatives to achieve 
this goal. One idea is to preempt the spot jobs manually first 
when an interactive job is submitted. In this approach, we used 
the Lua job submission script via Slum job submit plugin API 
[35]. However, this did not work because, although it could 
detect the job submission, it failed to execute any Slurm 
commands under the Lua job submission script environment. 
Thus, as an experiment, we modified the Slurm batch job 
submission command, sbatch, to insert a manual requeue 
operation before actually submitting the job itself on a dedicated 
environment. For this experiment, we submitted 4096 core 
interactive jobs of three different job types to the reserved 
resources with the dual partition configuration on the production 
system. In this case, the scheduling time for interactive jobs with 
manual preemption was measured from the time when the 
preemption had started. 

Preempting the spot job manually before submitting an 
interactive job has improved the scheduling time for the 
interactive job significantly for all three different job types when 
compared to those obtained by the scheduler-driven automatic 
preemption as shown in Figure 2f. For individual and array jobs, 
they are even on par with the baseline scheduling performance. 
For the triple-mode jobs, the manual preemption has improved 

the scheduling performance more than 100 times as compared 
to that obtained by the scheduler-driven automatic preemption. 
But it is still almost 10x slower than the baseline performance. 

However, considering the baseline scheduling time for the 4096-
task triple-mode job is about half a second, the scheduling time 
for triple mode interactive job with preemption is about five 
seconds and is considered to be acceptable performance. Also, 
it should be noted that the scheduling time of the triple mode job 
with manual preemption is about 11x to 7x smaller than those of 
individual and array jobs with preemption as shown in Figure 
2f. 

Based on this result, we have come up with another way to 
preempt spot jobs. A cron-job script that monitors and adjusts 
the spot jobs is used for this purpose, and runs at one-minute 
intervals. This cron-job script automates the manual preemption 
we demonstrated in the previous experiment. However, because 
it is difficult to detect the new job submission outside of the 
scheduler framework, we have also decided to keep a pre-
defined number of compute resources available at all times. 
Since we are enforcing the resource limits for each user, it is 
reasonable to set the number of the compute nodes being kept 
available is equivalent to the default resource limits enforced to 
the MIT SuperCloud users.  

By keeping these resources available all the time, even if 
there are spot jobs running and occupying compute resources, 
whenever a new job is submitted, it can be scheduled as quickly 
as the baseline case can. Then, the cron-job script can adjust the 
spot jobs to make compute resources available for the next 
incoming job. In this approach, we do not need to set the job 
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priority between the normal and spot jobs since the cron-job 
script will take care of the preemption operation. The spot jobs 
only need to be accompanied by a spot QoS in order to be 
identified as spot jobs. However, an issue with the current 
approach is that if another job is submitted before the cron-job 
script can adjust the spot job usage, this new job has to wait until 
spot jobs are cleared by the cron-job script. 

We have compared the scheduling performance among the 
baseline and those of using the new approach in Figure 2g. 
Although the baseline performance was measured under a 
production environment, the scheduling performance of the 
three different jobs with preemption using the cron-job script 
was measured under a dedicated environment when the system 
was undergoing a monthly maintenance. The compute resources 
were filled up with several triple mode spot jobs. Then, one type 
of job was submitted a couple of times, more than a minute apart 
so that the cron-job script could preempt the spot jobs before the 
second job submission. The same process was performed for the 
other two types of job after making sure that the previous 
experiment was completely cleared from the system.  

As shown in the Figure 2g, the scheduling times for most of 
the runs are similar to the baseline performance except in a 
couple of cases. We learned that those two outlying cases were 
caused by the different paths in the scheduling algorithm being 
applied at the time of the job dispatch. For example, the first run 
case of the array job was scheduled with the main scheduling 
algorithm whereas the baseline and the second run for the array 
job involves both the main and backfill scheduling algorithms. 
The first run of the triple-mode job case was observed the other 
way around that it involved both the main and backfill 
scheduling algorithms whereas the baseline and second run was 
scheduled within the main scheduling algorithm. Another point 
to be noted is that, although the scheduling time of the first run 
of the triple mode job takes 10 times more than the baseline 
scheduling time, it is actually faster than that of the first run of 
the array job. Overall, combining the cron-job script for 
managing spot jobs and maintaining the pre-defined number of 
idle nodes with spot job specific QoS configurations enables us 
to provide the interactive job scheduling with very little change 
in performance with or without spot jobs. This also allows MIT 
SuperCloud to use its compute resources more efficiently by 
providing additional resources for the MIT SuperCloud users 
who need additional computing resources for their projects. 

IV. CONCLUDING REMARKS 
Spot jobs are a way to improve system utilization while 

providing users additional capacity to meet their computing 
needs for a short period of time beyond their normal resource 
limits in the high-performance computing centers. Modern 
resource management software provides the preemption feature 
in order to allow the low priority spot jobs to be executed while 
ensuring that the regular-priority jobs can be dispatched and, if 
needed, preempt the spot jobs. However, we observed that the 
current resource management software being used at MIT 
SuperCloud caused significant scheduling performance 
degradation of the regular priority interactive jobs when they 
needed to preempt spot jobs in order to be scheduled. 

However, by separating the preemption of spot jobs and the 
job scheduling process, we have achieved significant 

improvement in the scheduling performance when the 
interactive jobs need to preempt spot jobs in order to be 
scheduled. This is due to the fact that the scheduler can preempt 
a job and schedule a job very quickly as an independent 
operation if there are enough compute resources available to 
accommodate a newly submitted job. Based on this behavior, we 
have developed a cron-job script to monitor and control spot 
jobs independent of the scheduler job dispatch. This approach 
could achieve interactive job scheduling with preemption as fast 
as scheduling interactive jobs without preemption. The 
limitation of this approach is that we need to keep a pre-defined 
number of compute nodes always available in order to make this 
setup working. Since MIT SuperCloud enforces per-user 
resource limits, MIT SuperCloud has set the number of available 
compute nodes be equivalent to the resource limits per user. 
Overall, we believe this spot job setup using a cron-job script 
can provide additional compute resources to the users while 
increasing the overall system utilization without affecting the 
interactive job scheduling behavior.  
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