
This material is based upon work supported by the Assistant Secretary of Defense for Research and Engineering under Air Force Contract No. FA8721-05-C-0002
and/or FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations expressed in this material are those of the author(s) and do not necessarily
reflect the views of the Assistant Secretary of Defense for Research and Engineering.

Best of Both Worlds:
High Performance Interactive and Batch Launching

Chansup Byun1, Jeremy Kepner1,2,3, William Arcand1, David Bestor1, Bill Bergeron1, Vijay Gadepally1,2,
Michael Houle1, Matthew Hubbell1, Michael Jones1, Andrew Kirby1, Anna Klein1, Peter Michaleas1, Lauren Milechin4,

Julie Mullen1, Andrew Prout1, Antonio Rosa1, Siddharth Samsi1, Charles Yee1, Albert Reuther1
1MIT LLSC, 2MIT CSAIL, 3MIT Math, 4MIT EAPS

Abstract—Rapid launch of thousands of jobs is essential for
effective interactive supercomputing, big data analysis, and AI
algorithm development. Achieving thousands of launches per
second has required hardware to be available to receive these jobs.
This paper presents a novel preemptive approach to implement
“spot” jobs on MIT SuperCloud systems allowing the resources to
be fully utilized for both long running batch jobs while still
providing fast launch for interactive jobs. The new approach
separates the job preemption and scheduling operations and can
achieve 100 times faster performance in the scheduling of a job
with preemption when compared to using the standard scheduler-
provided automatic preemption-based capability. The results
demonstrate that the new approach can schedule interactive jobs
preemptively at a performance comparable to when the required
computing resources are idle and available. The spot job
capability can be deployed without disrupting the interactive user
experience while increasing the overall system utilization.

Keywords—spot jobs, cluster utilization, preemption, cron job,
scheduling performance

I. INTRODUCTION
As we have observed from the TOP500 list [1], the

computing facilities around the world continue to grow their
capacity steadily and significantly over the years. With the
increased computing capacity, many institutions have
implemented mechanisms to achieve high utilization of their
computing resources. For example, leading cloud service
providers have offered spot instances (Amazon EC2 Spot
Instance [2], Microsoft Azure Spot Virtual Machines [3]) or
Google Preemptible Virtual Machines [4]). These vendors
provide such services to increase the utilization of unused
computing resources at a deeply discounted price, which is also
beneficial for their customers.

Since its beginnings, the MIT Lincoln Laboratory
Supercomputing Center (LLSC) has been focused on
developing a unique interactive, on-demand high-performance
computing (HPC) environment in order to support many in-
house scientists and engineers. This system architecture has
evolved into the MIT SuperCloud, a fusion of the four large
computing ecosystems – supercomputing, enterprise computing,
big data, and databases – into a coherent, unified platform that
enables rapid prototyping capabilities across all four computing
ecosystems. The MIT SuperCloud has spurred the development
of a number of cross-ecosystem innovations in high

performance databases [5, 6], database management [7], data
protection [8], database federation [9, 10], data analytics [11],
dynamic virtual machines [12, 13], and system monitoring [14].
This capability has grown in many dimensions. MIT
SuperCloud not only continues to support parallel MATLAB
and Octave jobs, but also jobs in Python [15], Julia [16], R [17],
TensorFlow [18], PyTorch [19], and Caffe [20] along with
parallel C, C++, Fortran, and Java applications with various
flavors of message passing interface (MPI) [21].

Furthermore, the TX-Green flagship system now has nearly
70,000 cores available for users’ parallel jobs. The most
significant jump in core count was the addition of 648 Intel Xeon
Phi 64-core nodes [22, 23], each of which has 64 compute cores
in a single processor socket laid out in a mesh configuration [24].
This equals 41,472 total cores across the 648 compute nodes, all
connected by a non-blocking 10-Gigabit Ethernet network and a
non-blocking Intel OmniPath low-latency network. Recently,
we have added additional 9,000 cores of Intel Xeon Gold
processor nodes, each of which has 40 compute cores with two
Nvidia Volta V100 GPUs [25], all connected by a non-blocking
25-Gigabit Ethernet network.

Rapid launch of thousands of jobs is essential for effective
interactive supercomputing, big data analysis, and AI algorithm
development and is core MIT SuperCloud capability. All MIT
SuperCloud jobs are interactive and launch immediately.
Achieving thousands of launches per second has required
hardware to be available to receive these jobs. As the system
capacity of the MIT SuperCloud has increased significantly, the
opportunity has presented itself to dual use these processors to
be both available to launch interactive launches and run
preemptable batch jobs in the background.

In this paper, we present how we overcame the shortcomings
of the standard scheduler-provided automatic preemption
approach in order to meet the requirements of the MIT
SuperCloud environment. In the new approach, we have
separated the job scheduling and preemption operations. In
addition, we reserve a pre-defined number of compute nodes for
an incoming interactive job, which enables immediate fast job
launch. In order to keep the minimum computing resources
available, a cron-job script is used to requeue the low priority
spot job or jobs as needed in the “last-in, first-out” order. In the
paper, we have compared the scheduling performance of the
normal (high-priority) jobs between the scheduler preemption

and the MIT SuperCloud developed process. The new process
has improved the scheduling performance significantly as
compared to that of the scheduler-provided preemption
approach and can even provide comparable performance as
compared to the baseline scheduling performance of an
interactive job without preemption.

II. APPROACH
Initially, we looked at the preemption feature [26], available

with the current MIT SuperCloud resource management
software (i.e., scheduler). The preemption feature has been
available with modern resource management software [27, 28,
29] for a while. The preemption feature can preempt a low
priority job when a high priority job is submitted but there are
not enough compute resources to accommodate the high priority
job. The preemption can be done manually by a privileged user
or automatically if it is enabled by the resource management
software. For the MIT SuperCloud cluster systems which serves
numerous jobs from many users, it is desirable to configure
automatic preemption by the scheduler.

However, it turned out that scheduling high priority job with
preemption took a lot longer than the usual job scheduling time
without preemption. This significant performance degradation,
which is discussed in a later section, in the scheduling time
would cause adverse impact on user experience in submitting
interactive, on-demand jobs and therefore was not suitable for
the production MIT SuperCloud systems.

A. Preemption by Scheduler
When we investigated how to implement the spot jobs to

help some users who needed large number of simulations while
they were limited to their regular resource limits, we looked at
the preemption feature provided by the resource management
software such as Slurm [27], which has been used at MIT
SuperCloud for a few years now.

Slurm provides variety of choices with regard to enabling the
preemption capability [26] for a given cluster system. We are
not going to discuss about all the details here, but we will
describe what is relevant to our use cases. In order to automate
the preemption of low-priority spot jobs, we need to configure a
few parameters. With Slurm, we need to define a couple of
parameters, PreemptMode and PreemptType in the slurm.conf
configuration file. Also, it is desirable to preempt the youngest
spot job first before any older spot jobs in order to increase the
chance that older spot jobs will finish execution. This
preemption behavior can be achieved by activating the
“preempt_youngest_first” option in the SchedulerParameters
setting.

What we would like to setup is a mechanism that enables
users to submit spot jobs, and those spot jobs can be preempted
by any regular priority interactive jobs when there are not
enough resources available without preempting the spot jobs.
There are multiple ways to achieve this preemption setup with
Slurm but the QoS (Quality of Service) based preemption is the
most suitable for the MIT SuperCloud requirement. Then, the
next thing to decide is what type of preemption modes are
suitable for our users. Slurm provides the following preemption
modes: CANCEL, GANG, REQUEUE, SUSPEND. In the MIT
SuperCloud, we do not want to share the resources between the

preempted job, so the GANG option is not suitable for us. Also,
since we want to provide the full memory for the interactive job,
the SUSPEND mode is not suitable either. Then, there remain
only two viable options: CANCEL and REQUEUE. However,
the CANCEL mode actually cancels the spot job if a spot job
needs to be preempted. This is inconvenient for the spot job
owner because the owner needs to become aware that the spot
job had been cancelled and resubmit it. Therefore, we decided
to use the QoS based preemption with the REQUEUE mode
when preempting the spot job.

The QoS based preemption can be implemented by setting a
dependency relationship between the low-priority QoS
designated for spot jobs and the normal QoS for regular priority
interactive jobs. When an interactive job is submitted, if needed,
it can trigger the preemption of a spot job or jobs with the
preconfigured “preemption mode” with the QoS dependency
relation. For our purpose, the preemption mode is set as
“REQUEUE” so that the cancelled spot job is resubmitted and
executed when the requested resources for the spot jobs become
available.

With the QoS based preemption setup for the MIT
SuperCloud systems, users can submit low-priority spot jobs
without being restricted by their normal resource limits. Those
spot jobs can be preempted by any interactive job if the
interactive job needs resources used by the spot jobs. In addition,
it should be noted that Slurm can be easily configured to use a
single partition to serve both the normal and spot jobs or to use
two separate partitions, one for interactive jobs and the other for
spot jobs. Unfortunately, we observed that the scheduling
performance for the interactive jobs with scheduler-driven
automatic preemption was degraded significantly as compared
to the scheduling time without preemption as discussed in the
next section, regardless of a single or dual partition
configurations.

B. Preemption by a Cron-job script
The poor scheduling performance with preemption has been

a major stumbling block to implementation for the MIT
SuperCloud production environment because we are interested
in providing similar low latency scheduling performance of
interactive jobs with or without preemption for the MIT
SuperCloud users. Thus, we tried another approach, based on the
fact that Slurm can preempt any jobs very quickly as a separate
operation. The new approach is to separate the job preemption
and scheduling operations (resource allocation [32]) with the
scheduler by preempting a spot job in advance before submitting
an interactive job. In this approach, we first used the Lua job
submission script feature available with Slurm to detect a job
submission and to preempt a spot job if needed. But this attempt
did not work because, although it could detect the job
submission, it failed to execute any Slurm commands under the
Lua job submission script environment. So, as an alternative
experiment, we modified the Slurm batch job submission
command, sbatch, to insert a manual requeue operation before
actually submitting an interactive job itself on a dedicated
environment. In this experiment, we measured the scheduling
time starting from the moment when the preemption operation
was started.

As demonstrated in the next section, we found that this
approach could reduce the scheduling time of interactive jobs
with preemption significantly. So, we decided to use a cron-job
script to do the preemption operation instead of the automatic
preemption by the scheduler. However, since the preemption
operation is done outside of the scheduler, it is difficult to
preempt any spot jobs in advance when a newly submitted
interactive job requires the preemption of compute resources
being used by spot jobs. In order to overcome this limitation, the
cluster system maintains a pre-defined number of compute
nodes available. It is reasonable to set the amount to be
equivalent to the resource limits per user. With this cluster setup,
when an interactive job is submitted, it gets scheduled quickly.
Then, as an independent and separate process, a cron-job script
running at a one-minute interval with a privileged mode, makes
sure that it preempts any running spot jobs if there are not
enough idle nodes available for another interactive job
submission.

When preempting spot jobs, the cron-job script is designed
to preempt spot jobs in the “last-in, first-out” order until it frees
up the amount of resources needed. Then, the cron-job script
updates the spot QoS parameter, MaxTRESPerUser,
accordingly. This parameter prevents spot jobs from filling up
the pre-defined number of compute nodes. This cron-job script
prepares the cluster system to be ready for another incoming
interactive job. If there are no running interactive jobs in the
cluster system, spot jobs can fill up the system except the pre-
defined idle nodes being kept free for an incoming interactive
job, since the cron-job script monitors the cluster system usage
and updates the MaxTRESPerUser parameter regularly.
However, since the preemption is done outside of the scheduler
by a cron-job script, there may be a situation that, if another job
gets submitted within a minute right after one job is submitted,
the second job may have to wait until the cron-job script can
preempt any running spot jobs. It should be noted that this
approach does not require priority dependency setup between
the interactive job and the spot job. Instead, spot jobs are
attached with a spot-job specific QoS when they are submitted
so that the cron-job script can distinguish between the normal
and spot jobs.

Fig. 1. Summary of various approaches to implement the spot job feature.

Figure 1 summarizes the various approaches we tried to
implement the spot job feature in the MIT SuperCloud systems.
The figure was adapted from reference 32 in order to show
where each approach is applied in the general scheduler

architecture. The Slurm automatic preemption is categorized as
“Resource Allocation Policies” in Figure 1. The Lua job
submission script approach is categorized as “Queue
Management Policies” in Figure 1. Finally, the cron-job script
based preemption is represented as a separate independent
process. In the scheduling process, the preemption step has to
be performed before the resource allocation step. Depending on
the preemption mode, the preempted job can be either
resubmitted or cancelled.

III. PERFORMANCE BENCHMARKS
When implementing the spot job capability on the MIT

SuperCloud systems, we wanted to make sure that this new
capability did not adversely impact the MIT SuperCloud’s
unique on-demand, interactive HPC environment. In other
words, when users submit their interactive jobs, this new feature
should not add any additional latency when launching their
interactive jobs. Thus, we have designed a number of test
scenarios to measure and compare the scheduling performance
of interactive jobs, with and without spot jobs. Table 1
summarizes all the experiments we performed. Each of these
experiments is discussed in the following sections.

TABLE I. SUMMARY OF EXPERIMENTS

Preemption
Approaches

Preemption
Mode

Partitions Job Types Job Sizes

Automatic
by scheduler

REQUEUE Single,
Dual

Individual,
Array, Triple-
mode

Small,
Medium,
Large CANCEL

Lua job
submission
script

REQUEUE Dual N/A N/A

Manual
REQUEUE Dual Individual,

Array, Triple-
mode

Large

Cron-job
script

REQUEUE Dual Individual,
Array, Triple-
mode

Large

A. Cluster Systems
The system we used for the development and testing of the

spot job capacity is a small size cluster, called the TX-2500
system. At the time of testing, the cluster had a total of 608 cores,
32 cores per node with 19 nodes. We also used the production
system, TX-Green, for evaluation of the development and final
deployment. The TX-Green system is made with many different
types of compute nodes. The majority of nodes are 648 Intel
Xeon Phi compute nodes. Each node has a 64-core Intel Xeon
Phi 7210 processor, for a total of 41,472 cores, along with 192
GB RAM, 16 GB of on-package MCDRAM configured in ‘flat’
mode, local storage, 10-GigE network interface, and an
OmniPath network interface. Each compute node also has two
local storage drives: a 128 GB solid state drive (SSD) and a 4.0
TB hard drive. The Lustre [30] central storage system is made
up of two separate storage arrays: a 10 petabyte Seagate/Cray
ClusterStor CS9000 storage array for sharing data in groups and
a 14 petabyte DDN 14000 storage array for users’ home
directory, which are both directly connected to the core switch.
Recently, we added an additional 225 compute nodes with 9,000
additional cores. Each of these nodes has two 20-core Xeon
Gold 6248 [31] processors with 384 GB RAM, two Nvidia Volta

Job Lifecycle
Management

Scheduling

Job QueuesJob QueuesJob Queues

Preemption

Job
Assignment

Resource
Allocation
PoliciesQueue

Management
Policies

Job Execution

Pending
Job Reqs

Current
Resource

States

Resource
Allocations

REQUEUE

CANCEL
Cron-job
Script

V100 [25] GPUs with 32 GB RAM each, and a 25-Gigabit
Ethernet network interface.

B. Preemption Performance Measurement
We measured the baseline scheduling performance while the

cluster system wass idle to use as a reference performance level.
We measured the scheduling time for a job to fill the entire
cluster (which has 608 tasks for the TX-2500 system) from the
scheduler event log. The time was measured from the moment
the scheduler recognized the job submission to the moment
when its last job was dispatched to the cluster for execution. We
designed three types of jobs: individual, array and triple-mode
jobs. The triple-mode job [32] is a special array job using a node-
based scheduling together with consolidating all the compute
tasks running on the same node in a single execution script via
MIT SuperCloud developed tools including gridMatlab [33] and
LLMapReduce [5, 34]. The triple-mode job launch reduces
scheduling time significantly because the array job size can be
reduced dramatically, for example, from 4096 to 64, if 64 array
tasks are consolidated and managed by a single execution script
on each node. As shown in Figure 2a, the triple-mode job with
the same amount of compute tasks can be dispatched to the
cluster at least 100 times faster than the individual and array job
dispatches when comparing the baseline performance. The
scheduling time (the vertical axis shown in the logarithmic
scale) is shown as the average time in seconds per task (or job
with individual jobs).

The scheduling time for an interactive job with the
preemption was measured by first filling up the cluster with a
triple-mode spot job and then, submitting a regular priority
interactive job of the same size (608 tasks for TX-2500, small
size job) to fill up the cluster. We also tried to fill up the cluster
with low-priority individual or array jobs. However, because
their preemption took much longer than the triple-mode spot job,
we focused on using the triple-mode job as a low-priority spot
job. In this experiment, since the cluster was full with the spot
job, the measured scheduling time included the preemption time
by the scheduler when dispatching the interactive job. Then, we
compared the scheduling times for three different types of
interactive jobs: individual, array and triple-mode jobs without
(baseline) and with the preemption as shown in Figure 2a. When
we measured the scheduling times with preemption for three
different types of jobs, we also tried to use single and dual
partition configurations in order to see the effect of the
preemption setup.

C. Automatic Preemption by Scheduler
We observed that the preemption caused significant

scheduling performance degradation to dispatch the interactive
jobs with preemption as shown in Figure 2a. The scheduling of
three job types with preemption using a single partition
configuration takes longer than using the dual partition
configuration, one partition for interactive jobs and the other for
spot jobs, respectively. The effect of scheduling performance
with preemption is significant, especially with the triple-mode
jobs for both single and dual partition configurations. This big
difference with the triple-mode jobs is mainly attributed to the
fact that the baseline triple mode job can be dispatched very
quickly without preemption as compared to the other two job
types. Overall, the scheduling performance involving

preemption is worse than the baseline performance except that
of the array job with the dual partition configuration as shown in
Figure 2a. It turns out that the Slurm scheduling algorithms, the
main and backfilling cycles, also affect the scheduling time
significantly as observed in the scheduling of the array job with
preemption when using the dual partition configuration. In this
particular example, the job has been scheduled with only the
main scheduling cycle.

We have also performed a similar experiment on our
production cluster system as well. Since the experiment was
performed under a production environment, we have executed
the experiment by reserving 64 Intel Xeon Phi compute nodes
for a total of 4096 cores on a partition where its per-user resource
limits are 4096 cores. The results of the scheduling times for
2048-core (medium size) and 4096-core (large size) interactive
jobs with preemption are shown in Figures 2b and 2c,
respectively. In this experiment, we also compared three
different types of jobs: individual, array and triple-mode jobs.
These three different jobs were submitted with a total of 2048
and 4096 cores after the reserved resources were completely
filled with a triple-mode spot job.

Contrary to the behavior we observed on a small dedicated
development cluster, under the production cluster environment,
the preemption effect was much more significant in the
scheduling performance with both single and dual partition
configurations. It should be noted that the performance
degradation with the triple mode jobs with preemption is almost
three orders of magnitude larger as compared to the baseline
performance. This is partly attributed to the fact that, because
the triple mode scheduling is done significantly faster than the
other two types of jobs, individual and array jobs, any small
degradation in the scheduling time is significantly manifested in
the overall scheduling performance. We also observed a similar
trend that the dual partition configuration was showing slightly
better performance than the single partition configuration for all
three job types. However, the scheduling performance with
preemption looks significantly poor and unsuitable for the
production environment.

Therefore, we looked at a different preemption mode,
CANCEL, to see if this could improve the preemption
performance on the production system. The results for a single
partition and dual partition configuration are shown in Figures
2d and 2e, respectively. In this comparison, we used the 4096
core interactive jobs of three different job types. Considering the
fluctuations in the scheduling performance under the production
environment, there is no meaningful difference in the scheduling
performance between the two preemption modes, REQUEUE
and CANCEL.

Since we have developed a unique HPC environment to
schedule a large size job in a very short time using the triple-
mode request via MIT SuperCloud developed tools, the job
scheduling time is an important element to maintain without
being affected by the preemption. Thus, we have concluded that
the scheduler-driven preemption-based spot jobs are unsuitable
for the production environment. In order to provide an on-
demand, interactive HPC computing environment for our users,
while supporting spot jobs, we needed to find another way to

maintain comparable scheduling performance with preemption
as compared to the baseline performance.

Fig. 2. Comparison of various scheduling performance with three different
types of jobs: individual, array, and triple-mode jobs without preemption
(baseline) and with preemption.

Therefore, we looked at some other alternatives to achieve
this goal. One idea is to preempt the spot jobs manually first
when an interactive job is submitted. In this approach, we used
the Lua job submission script via Slum job submit plugin API
[35]. However, this did not work because, although it could
detect the job submission, it failed to execute any Slurm
commands under the Lua job submission script environment.
Thus, as an experiment, we modified the Slurm batch job
submission command, sbatch, to insert a manual requeue
operation before actually submitting the job itself on a dedicated
environment. For this experiment, we submitted 4096 core
interactive jobs of three different job types to the reserved
resources with the dual partition configuration on the production
system. In this case, the scheduling time for interactive jobs with
manual preemption was measured from the time when the
preemption had started.

Preempting the spot job manually before submitting an
interactive job has improved the scheduling time for the
interactive job significantly for all three different job types when
compared to those obtained by the scheduler-driven automatic
preemption as shown in Figure 2f. For individual and array jobs,
they are even on par with the baseline scheduling performance.
For the triple-mode jobs, the manual preemption has improved

the scheduling performance more than 100 times as compared
to that obtained by the scheduler-driven automatic preemption.
But it is still almost 10x slower than the baseline performance.

However, considering the baseline scheduling time for the 4096-
task triple-mode job is about half a second, the scheduling time
for triple mode interactive job with preemption is about five
seconds and is considered to be acceptable performance. Also,
it should be noted that the scheduling time of the triple mode job
with manual preemption is about 11x to 7x smaller than those of
individual and array jobs with preemption as shown in Figure
2f.

Based on this result, we have come up with another way to
preempt spot jobs. A cron-job script that monitors and adjusts
the spot jobs is used for this purpose, and runs at one-minute
intervals. This cron-job script automates the manual preemption
we demonstrated in the previous experiment. However, because
it is difficult to detect the new job submission outside of the
scheduler framework, we have also decided to keep a pre-
defined number of compute resources available at all times.
Since we are enforcing the resource limits for each user, it is
reasonable to set the number of the compute nodes being kept
available is equivalent to the default resource limits enforced to
the MIT SuperCloud users.

By keeping these resources available all the time, even if
there are spot jobs running and occupying compute resources,
whenever a new job is submitted, it can be scheduled as quickly
as the baseline case can. Then, the cron-job script can adjust the
spot jobs to make compute resources available for the next
incoming job. In this approach, we do not need to set the job

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

Individual Array Triple-mode

Baseline
Single partition
Dual partitions

Normal Job Types
(a)

A
ve

ra
ge

 T
im

e
(m

se
c/

ta
sk

)

103

102

101

100

10-1 1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

Individual Array Triple-mode

Baseline
Single partition
Dual partitions

Normal Job Types
(b)

A
ve

ra
ge

 T
im

e
(m

se
c/

ta
sk

)

103

102

101

100

10-1

10-2 1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

Individual Array Triple-mode

Baseline
Single partition
Dual partitions

Normal Job Types
(c)

A
ve

ra
ge

 T
im

e
(m

se
c/

ta
sk

)

103

102

101

100

10-1

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

Individual Array Triple-mode

Baseline
REQUEUE
CANCEL

Normal Job Types
(d)

A
ve

ra
ge

 T
im

e
(m

se
c/

ta
sk

)

103

102

101

100

10-1
1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

Individual Array Triple-mode

Baseline
REQUEUE
CANCEL

Normal Job Types
(e)

A
ve

ra
ge

 T
im

e
(m

se
c/

ta
sk

)

103

102

101

100

10-1 1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

Individual Array Triple-mode

Baseline
Slurm
Manual

Normal Job Types
(f)

A
ve

ra
ge

 T
im

e
(m

se
c/

ta
sk

)

103

102

101

100

10-1

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

Individual Array Triple-mode

Baseline
Run1
Run2

Normal Job Types
(g)

A
ve

ra
ge

 T
im

e
(m

se
c/

ta
sk

)

103

102

101

100

10-1

(a) Preemption with small size jobs on TX-2500
(b) Preemption with medium size jobs on TX-Green
(c) Preemption with large size jobs on TX-Green
(d) REQUEUE versus CANCEL mode with medium size jobs on TX-Green
(e) REQUEUE versus CANCEL mode with large size jobs on TX-Green
(f) Automatic versus manual preemption with large size jobs on TX-Green
(g) Preemption using a cron-job script with large size jobs on TX-Green

priority between the normal and spot jobs since the cron-job
script will take care of the preemption operation. The spot jobs
only need to be accompanied by a spot QoS in order to be
identified as spot jobs. However, an issue with the current
approach is that if another job is submitted before the cron-job
script can adjust the spot job usage, this new job has to wait until
spot jobs are cleared by the cron-job script.

We have compared the scheduling performance among the
baseline and those of using the new approach in Figure 2g.
Although the baseline performance was measured under a
production environment, the scheduling performance of the
three different jobs with preemption using the cron-job script
was measured under a dedicated environment when the system
was undergoing a monthly maintenance. The compute resources
were filled up with several triple mode spot jobs. Then, one type
of job was submitted a couple of times, more than a minute apart
so that the cron-job script could preempt the spot jobs before the
second job submission. The same process was performed for the
other two types of job after making sure that the previous
experiment was completely cleared from the system.

As shown in the Figure 2g, the scheduling times for most of
the runs are similar to the baseline performance except in a
couple of cases. We learned that those two outlying cases were
caused by the different paths in the scheduling algorithm being
applied at the time of the job dispatch. For example, the first run
case of the array job was scheduled with the main scheduling
algorithm whereas the baseline and the second run for the array
job involves both the main and backfill scheduling algorithms.
The first run of the triple-mode job case was observed the other
way around that it involved both the main and backfill
scheduling algorithms whereas the baseline and second run was
scheduled within the main scheduling algorithm. Another point
to be noted is that, although the scheduling time of the first run
of the triple mode job takes 10 times more than the baseline
scheduling time, it is actually faster than that of the first run of
the array job. Overall, combining the cron-job script for
managing spot jobs and maintaining the pre-defined number of
idle nodes with spot job specific QoS configurations enables us
to provide the interactive job scheduling with very little change
in performance with or without spot jobs. This also allows MIT
SuperCloud to use its compute resources more efficiently by
providing additional resources for the MIT SuperCloud users
who need additional computing resources for their projects.

IV. CONCLUDING REMARKS
Spot jobs are a way to improve system utilization while

providing users additional capacity to meet their computing
needs for a short period of time beyond their normal resource
limits in the high-performance computing centers. Modern
resource management software provides the preemption feature
in order to allow the low priority spot jobs to be executed while
ensuring that the regular-priority jobs can be dispatched and, if
needed, preempt the spot jobs. However, we observed that the
current resource management software being used at MIT
SuperCloud caused significant scheduling performance
degradation of the regular priority interactive jobs when they
needed to preempt spot jobs in order to be scheduled.

However, by separating the preemption of spot jobs and the
job scheduling process, we have achieved significant

improvement in the scheduling performance when the
interactive jobs need to preempt spot jobs in order to be
scheduled. This is due to the fact that the scheduler can preempt
a job and schedule a job very quickly as an independent
operation if there are enough compute resources available to
accommodate a newly submitted job. Based on this behavior, we
have developed a cron-job script to monitor and control spot
jobs independent of the scheduler job dispatch. This approach
could achieve interactive job scheduling with preemption as fast
as scheduling interactive jobs without preemption. The
limitation of this approach is that we need to keep a pre-defined
number of compute nodes always available in order to make this
setup working. Since MIT SuperCloud enforces per-user
resource limits, MIT SuperCloud has set the number of available
compute nodes be equivalent to the resource limits per user.
Overall, we believe this spot job setup using a cron-job script
can provide additional compute resources to the users while
increasing the overall system utilization without affecting the
interactive job scheduling behavior.

REFERENCES
[1] TOP500 Lists. URL: https://www.top500.org/lists/
[2] Amazon Spot Instances. URL: https://aws.amazon.com/ec2/spot/
[3] Microsoft Azure Spot Virtual Machines. URL:

https://azure.microsoft.com/en-us/pricing/spot/#overview
[4] Google Preemptible Virtual Machine Instances. URL:

https://cloud.google.com/compute/docs/instances/preemptible
[5] C. Byun, W. Arcand, D. Bestor, B. Bergeron, M. Hubbell, J. Kepner, A.

McCabe, P. Michaleas, J. Mullen, D. O’Gwynn, A. Prout, A. Reuther, A.
Rosa, and C.Yee, “Driving Big Data with Big Compute.” IEEE
HighPerformance Extreme Computing Conference (HPEC), Waltham,
MA, September 10-12, 2012.

[6] J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, V. Gadepally,
M. Hubbell, P. Michaleas, J. Mullen, A. Prout, A. Reuther, A. Rosa, and
C. Yee, “Achieving 100,000,000 Database Inserts per Second Using
Accumulo and D4M,” IEEE High Performance Extreme Computing
Conference (HPEC), Waltham, MA, September 9-11, 2014.

[7] A. Prout, J. Kepner, P. Michaleas, W. Arcand, D. Bestor, B. Bergeron, C.
Byun, L. Edwards, V. Gadepally, M. Hubbell, J. Mullen, A. Rosa, C. Yee,
A. Reuther, “Enabling On-Demand Database Computing with MIT
SuperCloud Database Management System,” IEEE High Performance
Extreme Computing Conference (HPEC), Waltham, MA,September 15-
17, 2015.

[8] J. Kepner, V. Gadepally, P. Michaleas, N. Schear, M.Varia,
A.Yerukhimovich, and R. K. Cunningham,“Computing on Masked Data:
A High Performance Method for Improving Big Data Veracity,” IEEE
High Performance Extreme Computing Conference (HPEC), Waltham,
MA, September 9-11, 2014.

[9] J. Kepner, C. Anderson, W. Arcand, D. Bestor, B. Bergeron, C. Byun, M.
Hubbell, P. Michaleas, J. Mullen, D. O’Gwynn, A. Prout, A. Reuther, A.
Rosa, and C. Yee, “D4M 2.0 Schema: A General Purpose High
Performance Schema for the Accumulo Database, ”IEEE High
Performance Extreme Computing (HPEC) Conference, Waltham, MA,
Sep 10-12, 2013.

[10] V. Gadepally, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, C. Byun, L.
Edwards, M. Hubbell, P. Michaleas, J. Mullen, A. Prout, A. Rosa, C. Yee,
A. Reuther, “D4M: Bringing Associative Arrays to Database Engines,”
IEEEHigh Performance Extreme Computing Conference (HPEC),
Waltham, MA September 15-17, 2015.

[11] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun, G.
Condon, K. Gregson, M. Hubbell, J. Kurz, A. McCabe, P. Michaleas, A.
Prout, A. Reuther, A. Rosa and C. Yee, “Dynamic Distributed
Dimensional Data Model (D4M) Database and Computation System,”
IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5349–5352, 2012.

[12] A. Reuther, P. Michaleas, A. Prout, and J. Kepner, “HPC-VMs: Virtual
Machines in High Performance Computing Systems,” IEEE High
Performance Extreme Computing (HPEC) Conference, Waltham, MA,
Sep 10-12, 2012.

[13] M. Jones, B. Arcand, B. Bergeron, D. Bestor, C. Byun, L. Milechin, V.
Gadepally, M. Hubbell, J. Kepner, P. Michaleas, J. Mullen, A. Prout, T.
Rosa, S. Samsi, C. Yee, and A. Reuther, “Scalability of VM Provisioning
Systems,” IEEE High Performance Extreme Computing (HPEC)
Conference, Waltham, MA,September 13-15,2016.

[14] M. Hubbell, A. Moran, W.Arcand, D.Bestor, B.Bergeron, C.Byun,
V.Gadepally, P.Michaleas, J. Mullen, A. Prout, A. Reuther, A. Rosa, C.
Yee, J. Kepner, “Big Data Strategies for Data Center Infras-tructure
Management Using a 3D Gaming Platform,” IEEE High Performance
Extreme Computing Conference (HPEC), Waltham, MA, September 15-
17, 2015.

[15] G. Van Rossum, “Python Programming Language,” USENIX Annual
Technical Conference, 2007.

[16] J. Bezanson, A. Edelman, S. Karpinski and V.B. Shah, “Julia: A Fresh
Approach to Numerical Computing,” SIAM Review, vol. 59, pp. 65-98,
2017.

[17] R. Ihakaand R. Gentleman, R: a Language for Data Analysis and
Graphics,” Journal of Computational and Graphical Statistics, vol. 5, no.
3 , pp.299-314, 1996.

[18] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,M. Devin, S.
Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S.
Moore, D. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M.
Wicke, Y. Yu, and X. Zheng, “TensorFlow: A System for Large-Scale
Machine Learning,” 12th USENIX Symposium on Operating System
Design and Implementation (OSDI), Savannah, GA, 2016.

[19] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,
A. Desmaison, L. Antiga, A. Lerer, “Automatic Differentiation in
PyTorch,” NIPS-W, 2017.

[20] Y. Jia, E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S.
Guadarrama, and T. Darrell, “Caffe: Convolutional Architecture for Fast
Feature Embedding,” Proceedings of ACM Multimedia, pp. 675-678,
2014.

[21] MPI: A Message Passing Interface Standard, Message Passing Interface
Forum, May 1994. URL: https://www.mpi-forum.org/docs/mpi-1.0/mpi-
10.ps

[22] C. Byun, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, V. Gadepally,
M. Houle, M. Hubbell, M. Jones, A. Klein, P. Michaleas, L. Milechin, J.
Mullen, A. Prout, A. Rosa, S. Samsi, C. Yee, A. Reuther, “Benchmarking
Data Analysis and Machine Learning Applications on the Intel KNL

Many-Core Processor,” IEEE High Performance Extreme Computing
(HPEC) Conference, Waltham, MA, September 12-14, 2017.

[23] M. Cichon, “Lincoln Laboratory’s Supercomputing System Ranked Most
Powerful in New England,” MIT Lincoln Laboratory News, November
2016. URL: https://www.ll.mit.edu//news/LLSC-supercomputing-
system.html

[24] J. Jeffers, J. Reinders, and A. Sodani, Intel Xeon Phi Processor High
Performance Programming: Knights Landing Edition, Second Edition,
Elsevier, 2016.

[25] Nvidia Volta V100 Tensor Core GPU. URL: https://www.nvidia.com/en-
us/data-center/v100/

[26] Slurm Job Preemption. URL: https://slurm.schedmd.com/preempt.html
[27] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple Linux Utility

for Resource Management,” Job Scheduling Strategies for Parallel
Processing, pp. 44-60, Springer Berlin Heidelberg, June 2003.

[28] Univa Grid Engine User’s Guide, Version 8.5.4, October 18, 2017.
[29] IBM Spectrum LSF V10.1 Documentation, Preemptive scheduling. URL:

https://www.ibm.com/support/knowledgecenter/SSWRJV_10.1.0/lsf_ad
min/chap_preemptive_lsf_admin.html

[30] P. J. Braam, et.al., “The Lustre Storage Architecture, Cluster File
Systems, Inc., October 2003.

[31] Intel Xeon Gold 6248 processor. URL:
https://ark.intel.com/content/www/us/en/ark/products/192446/intel-
xeon-gold-6248-processor-27-5m-cache-2-50-ghz.html

[32] A. Reuther, J. Kepner, C. Byun, S. Samsi, W. Arcand, D. Bestor, B.
Bergeron, V. Gadepally, M. Houle, M. Hubbell, M. Jones, A. Klein, L.
Milechin, J. Mullen, A. Prout, A. Rosa, C. Yee, P. Michaleas, “Interactive
Supercomputing on 40,000 Cores for Machine Learning and Data
Analysis,” IEEE High Performance Extreme Computing (HPEC)
Conference, Waltham, MA, September 25-27, 2018.

[33] A. Reuther, T. Currie, J. Kepner, H. Kim, A. McCabe, M. Moore and N.
Travinin, “LLGrid: Enabling On-Demand Grid Computing with
gridMatlab and pMatlab,” High Performance Embedded Computing
(HPEC) workshop, Lexington, MA, 28-30 September 2004.

[34] C. Byun, J. Kepner, W. Arcand, D. Bestor, B. Bergeron, V. Gadepally,
M. Hubbell, P. Michaleas, J. MuHen, A. Prout, A. Rosa, C. Yee, A.
Reuther, “LLMapReduce: Multi-Level Map-Reduce for High
Performance Data Analysis,” IEEE High Performance Extreme
Computing (HPEC) Conference, Waltham, MA, September 13-15, 2016.

[35] Slurm Job Submit Plugin API. URL:
https://slurm.schedmd.com/job_submit_plugins.html

