
Distributed Triangle Counting
in the Graphulo Matrix Math Library

Dylan Hutchison
University of Washington

Abstract—Triangle counting is a key algorithm for large graph
analysis. The Graphulo library provides a framework for imple-
menting graph algorithms on the Apache Accumulo distributed
database. In this work we adapt two algorithms for counting
triangles, one that uses the adjacency matrix and another that
also uses the incidence matrix, to the Graphulo library for server-
side processing inside Accumulo. Cloud-based experiments show
a similar performance profile for these different approaches on
the family of power law Graph500 graphs, for which data skew
increasingly bottlenecks. These results motivate the design of
skew-aware hybrid algorithms that we propose for future work.

I. INTRODUCTION

Today’s data analytics continue to push the envelope in data
size and complexity. A class of NoSQL databases based on the
Google Bigtable design [1] offers one solution framework: pur-
chase as many commodity machines as needed, and stitch them
together into a database cluster that provides performance on
top of a bare-bones yet flexible data model that a user can
adapt to particular applications. Simple queries such as insert
and scan perform well in these frameworks; complex queries
such as graph algorithms are difficult to implement in a way
that realizes the performance capabilities of the database.

In this work we show a high performance implementation
of the Static Graph Challenge [2] on the Apache Accumulo
distributed database within the Bigtable family. Specifically
we build on the graph processing abstractions provided by
Graphulo, a matrix math library for Accumulo tables [3].
Past work on Graphulo has focused on scaling up [4] matrix
multiplication [5] as well as the other GraphBLAS matrix math
operations [6] and sample algorithms, including the k-Truss
algorithm that is part of the Static Graph Challenge [7]. We
therefore focus on the remaining algorithm: triangle counting.
Triangles are defined as length-3 paths from a node to itself;
their frequency has many applications ranging from social
network mining and cybersecurity to functional biology and
link recommendation [8].

Specifically, we focus on counting triangles in large graphs
that exceed main memory. Accumulo stores large graphs on
disk (in the Hadoop distributed file system); users expand
disk and parallel compute capacity by adding more machines.
Burkhardt and Waring demonstrated the performance potential
of large scale graph processing with the Accumulo database
via a 70 trillion edge (scale 42, 1.1 PB) graph breadth-first
search on a cluster of 1200 machines (57.6 TB collective
memory) [9]. Main-memory databases, on the other hand,
require supercomputer-sized investments in order to process

Input: Unweighted adjacency matrix A
Output: Number of triangles t

1 Split A into L+U // lower and upper triangle of A
2 B = LU // matrix multiply
3 C = B ∗A // element-wise multiply (mask) with A
4 t = sum(C)/2

Algorithm 1: Cohen’s triangle counting

large graphs. For example, the highest-scale Graph500 bench-
mark (based on [10]) submission as of June 2017 conducted
breadth-first search on a 32 trillion edge graph (scale 41) with
a national supercomputer consisting of 98k machines and over
1.5 PB collective memory.

We assume some familiarity with the Accumulo data model
and the Graphulo method for in-database computation. Ac-
cumulo’s primary computational primitive is the range scan
over sorted and partitioned ranges of key-value entries that
pass them through a series of server-side iterators. Graphulo
repurposes Accumulo’s server-side iterators to read from ad-
ditional tables and write to tables inside range scans.

The rest of the paper is organized as follows. Section II
presents the mathematics and implementation of two methods
for counting triangles with Graphulo. Both methods admit a
number of interesting optimizations, and so it is unclear which
one will scale better a priori. Section III’s experiments show
that the two methods have similar performance profiles when
run on power law data sets. We discuss a possible explanation
in that the two methods face a common bottleneck—data
skew—which motivates the design of a skew-aware hybrid al-
gorithm we propose for future research. Section IV concludes
and comments on the potential of code generation for scaling
out graph algorithm programmability to a wider audience.

II. ALGORITHMS

In this section we describe two algorithms for counting the
number of triangles in a graph. The first algorithm uses the
graph’s adjacency matrix as input; the second algorithm uses
both the graph’s adjacency and incidence matrices as input.
Both algorithms require undirected graphs without self-edges.

A. Adjacency-only Triangle Counting

Our first algorithm adapts Cohen’s algorithm [11] in order
to run in two passes. We briefly review Cohen’s algorithm
in Algorithm 1. Cohen’s algorithm first computes the set of
wedges (paths of length 2) by multiplying the lower and upper

ar
X

iv
:1

70
9.

01
05

4v
2

 [
cs

.D
C

]
 5

 S
ep

 2
01

7

Input: Upper triangle of unweighted adjacency matrix A
Output: Number of triangles t

1 T = A // clone A to T
2 T = T+triu(ATA) // upper triangle of matrix multiply

// custom multiply: a⊗ b = 2 if a = b = 1, otherwise 0
3 T(T%2 == 0) = 0 // filter to odd entries
4 t = sum((T− 1)/2)

Algorithm 2: Graphulo Adjacency-only triangle counting

triangles of the adjacency matrix A. It then restricts these
wedges to the set of wedges that are closed by masking the
result with A, which is an element-wise operation. Closed
wedges are triangles. The number of triangles is given by
counting the number of closed wedges and dividing by two,
since each wedge is formed twice in the matrix multiply.

The Graphulo adaptation of Cohen’s algorithm is given
in Algorithm 2. We made the following changes to Cohen’s
algorithm in order to reduce the number of intermediate entries
produced as well as the number of times each entry is read:

1) Only use the upper triangle of the adjacency matrix
by rewriting the matrix multiply LU as UTU. This
form admits the one-pass outer product matrix multiply
algorithm [5] and also cuts the input in half. It also cuts
the output of C in half, which is what we would do in
line 4 of Cohen’s algorithm anyway.

2) Filter the output of the matrix multiply to the upper
triangle. Because the lower triangle output of the matrix
multiply will be zeroed during the element-wise multiply
anyway, the lower triangle can be pruned early, before
writing to T.

3) Add the result of the matrix multiply into A via an
Accumulo table clone and a “parity trick” to determine
when matrix multiply entries overlap with A. Double
each partial product from the matrix multiply, making
them all even, which allows entries that overlap with A
to be detected by checking for odd parity. The parity
trick eliminates the need to do a further element-wise
operation with A.

The parity trick is one way of performing a masked matrix
multiply in the Accumulo database. In-memory databases can
implement masks more directly by holding A in memory and
restricting the output of the matrix multiply to those overlap
with A right away. Because Accumulo is an out-of-core,
distributed database, it cannot prune entries outside of A right
away because it cannot hold A in memory, which is always
true for large enough graphs. It could even be the case that
partial products are written to separate files, which means that
we cannot eagerly check for the presence of the 1 from A.
Instead we use the parity trick in a delayed fashion, filtering
entries during a scan of T after all partial products are written.

Given the mathematics in Algorithm 2, we now describe
its Graphulo implementation. The row and column of matrix
entries are stored in their string encoding in the row and
column qualifier of Accumulo entries. With this schema,

Input: Lower triangle of unweighted adjacency matrix A
Input: Unweighted incidence matrix E
Output: Number of triangles t

1 T = triu(ATE) // upper triangle of matrix multiply
2 t = sum(T == 2) // count the entries of T equal to 2

Algorithm 3: Graphulo Adj.+Incidence triangle counting

Accumulo partitions A into a set of tablets, each of which
contain a sorted, consecutive block of A at the granularity
of rows; every row resides within a single tablet. We choose
the particular splits that partition the rows of A into tablets
such that each tablet contains an approximately equal share of
A’s entries. Accumulo assigns these tablets evenly among all
available tablet servers.1 Compacting A ensures these splits
take effect.

The table clone of A to T is a “copy-on-write” metadata
operation that only results in new data files when data is
written to T. The cloned table T has the same splits as A.

The T = T + triu(ATA) is implemented as a fused
Graphulo TableMult operation on A with itself. The TableMult
operation uses a custom “row multiply” function that applies
the custom multiply function and filters the generated partial
products to the upper triangle. These operations run within a
scan of each of A’s tablet servers and write their entries to T.

Specifically, the TableMult acts on entries from A of the
form (r, c, 1) and (r, c′, 1) where r is a row of A, c and c′

are columns of A, and ‘1’ is the value of the entries (since A
is unweighted). The result of the TableMult are entries of the
form (c, c′, 2) where c < c′, and these are written to T. At T,
partial products are summed together by standard server-side
iterators during flushes (when Accumulo spills entries from
memory to disk) and compactions (when Accumulo merges
files on disk together).

When the matrix multiplication completes (after all partial
products are written to T), a Reduce operation is initiated on
T. For each value from the matrix multiply (fully summed
together from the partial products), we (1) filter the entries
to only accept odd values, (2) transform the value by v =
(v − 1)/2, and (3) sum together all values. This sum runs
independently on each tablet of T, resulting in partial sums
which are collected at a client and summed together into a
final count of the number of triangles, as per a standard user-
defined aggregation pattern [12].

B. Adjacency+Incidence Triangle Counting

Our second algorithm uses both the adjacency and incidence
matrix of a graph as input. In contrast to the first algorithm, the
second only uses the lower triangle of the adjacency matrix.
We define the incidence matrix as the matrix whose rows
are vertices, whose columns are edges, and whose values, for
vertex v and edge e, are defined as E(v, e) = 1 if e is incident
on v and 0 otherwise. This definition requires every column
of E to have exactly 2 nonzero entries.

1Tablet servers are the worker machines of an Accumulo database.

Our algorithm takes inspiration from Wolf’s triangle enu-
meration algorithm [13]. Algorithm 3 specializes Wolf’s algo-
rithm to triangle counting and a Graphulo implementation.

The algorithm identifies triangles by combining two pieces
of information: that the presence of a 2 in the AE indicates
that one vertex has a connection to two other vertices, and
that these two other vertices because they are connected in
the incidence matrix. Our adaptation restricts A to its lower
triangle and the output of the ATE to its upper triangle in
order to eliminate redundant computation.2

Because the incidence matrix is not square, the notion of
“upper triangle of ATE” requires further explanation. Each
vertex is encoded into the rows and columns of A and the
rows of E as normal. Each edge is encoded into the columns
of E as the concatenation of the vertex labels that the edge
is incident on in ascending order. Thus, each edge is stored
as the pair of vertices [v1, v2], where v1 < v2.3 We define
the upper triangle of E as the restriction of E onto only the
entries (v, [v1, v2]) where v < v1.

We now describe Algorithm 3’s Graphulo implementation.
Like the parity trick in Algorithm 2, we use data format
tricks in order to compare vertices to edges and to distinguish
counted triangles from lone partial products.

We switched from a string encoding to a fixed 4-byte encod-
ing of the vertex labels4 in order to facilitate the concatenation
and un-concatenation of vertices. Thus, the columns of E are
stored as 8-byte labels composed of two 4-byte vertex labels.

We split A and E on their rows into approximately equal
sized tablets and compact them. We set the splits of interme-
diary T to the same splits as E.

We implemented the matrix multiply triu(ATE) as another
fused Graphulo TableMult. This TableMult eagerly filters its
output to the upper triangle. Its output value is an empty (0-
byte) value, which serves as a marker for one partial product
of the matrix multiply. Because the incidence matrix only has
two nonzero values per column, only two partial products
per entry are possible. In total, on input (v, v1, 1) from A
and (v, [v2, v3], 1) from E, the TableMult writes the entry
(v1, [v2, v3],‘’) to T when v1 < v2.

We run two special aggregation iterators during T’s flushes
and compactions in order to pre-sum the result of sum(T ==
2) while entries are being written to T in the middle of the
matrix multiply. Pre-summing during the matrix multiply is
important because it reduces the number of entries written
to disk, reducing Accumulo’s write bottleneck and speeding
up the full sum reduction that takes place once the matrix
multiply finishes.

The first aggregation iterator watches for two consecutive
empty values that have the same key (in our case, the same
row and column). When this condition occurs, it means that

2In Wolf’s algorithm, every triangle is enumerated three times and counting
triangles requires division by 3 after summing entries, just as Cohen’s
algorithm requires division by 2 after summing entries.

3v1 6= v2 because there are no self-edges.
4Four bytes per vertex is sufficient for this work. The number of bytes per

label is not significant in general because Accumulo uses run-length encoding.

we have found an entry in T whose partial products sum to
2, which indicates a triangle. The first iterator replaces these
two entries with empty values with an entry with value 1, to
indicate the triangle. This computes T == 2.

The second aggregation iterator sums together values that
are numbers (i.e., values that are not empty) irrespective
of their keys. Entries with empty values pass through. This
iterator effectively performs early aggregation of discovered
triangles, which can be done even before the triu(ATE)
matrix multiply finishes.

When the matrix multiply does finish, we initiate a full sum
reduction by scanning T. This last scan sums together non-
empty values, which may already be partially summed as a
result of the second aggregation iterator. A client gathers the
local sums from each tablet server and sums those into a final
triangle count.

III. EXPERIMENTS

A. Setup and Results

We ran experiments testing the scalability of the two algo-
rithms on a cloud deployment of Accumulo. We present the
experiment details first, followed by results and discussion.

We tested Graphulo’s triangle counting algorithms on data
from the synthetic Graph500 RMAT unpermuted power law
graph generator [14]. We chose to run on power law data
because it well models many real world applications [15] while
also being experimentally convenient, since the structure of the
graph remains the same as graph size increases. The generator
creates matrices that range from 210 rows (scale 10) to 220

rows (scale 20), with roughly 16 times that many nonzero
entries. In order to create undirected adjacency matrices, we
added the resulting matrix to its transpose, eliminated the
diagonal, and set all nonzero values to 1.5

We deployed Accumulo onto an Amazon EC2 cluster of
12 m3.xlarge machines, consisting of 8 tablet servers, 3
coordinators (for Zookeeper, the Hadoop NameNode, and the
Accumulo Master), and a monitor machine that tracks the
health of the others. Each machine has two 40 GB SSDs
and 4 vCPUs on a 2.5 GHz Intel Xeon E5-2670v2. The
cost of this cluster is $3.192/hour, though only the 8 tablet
server machines make up a variable cost component in terms
of cluster scalability (the 3 coordinators and monitor are
essentially fixed costs). For each tablet server, we allocated
8 GB to tablet server Java heap memory, 2 GB to data cache,
1 GB to index cache, and 2 GB to Accumulo’s native in-
memory maps. Amazon rates the network performance of
these machines as “high” but does not guarantee a particular
level of throughput or latency. Our experiments are I/O-bound
and therefore vulnerable to cloud-based network and disk
performance variance [17], but it is unclear how much variance
actually affected our experiments.

5To reproduce our power law graphs, download Octave 4.2.1 and D4M
[16], set the random seed in Octave as rand(’seed’,20160331), run
the D4M file KronGraph500NoPerm.m, eliminate the diagonal, and add
the result to its transpose.

We split each table into at most 24 tablets. This number
of tablets appeared to provide the best performance during an
initial experiment.

Our performance metrics are as follows:
• runtime is the best recorded time to count the number of

triangles across 2 or 3 runs.
• nedges is the number of edges, which is the number of

nonzero entries in the upper (or lower) triangle of the
adjacency matrix A. The structure of the incidence matrix
gives nnz(E) = 2∗nedges.

• nppf is the number of partial products formed as a result
of the matrix multiply in each algorithm after applying
the upper triangle filter.6 It holds that nppf >> nedges
due to the nature of matrix multiply. The real workload
of this task is therefore due to nppf.

Because each partial product is processed at least twice—
once by a matrix multiply and once by a reduce—we calculate
the processing rate as 2 ∗ nppf/runtime. This rate more
accurately captures the work required to count triangles with
these algorithms than nedges / runtime, because the work
required is quadratic in each vertex’s degree and the input
edge count hides this fact. We do not count filtered-out partial
products because the computation is I/O-bound and the result
of the matrix multiply is far larger than the input, and so
filtered-out partial products are not as significant a factor.

Figure 1 plots the runtime of the two triangle counting
algorithms on a log-log scale. The two algorithms show very
similar performance profiles within an order of magnitude.
Table I tabulates the results for closer inspection. Figure 2
plots the processing rate defined above.

B. Comparison to Graph Challenge Baseline

The Graph Challenge baseline implementations are de-
signed for a very different execution environment and prob-
lem size than that of Graphulo. When the input graph (and
intermediary results) fit into the memory of a single node,
we expect that the baseline implementations, all of which are
in-memory, will count triangles faster than Graphulo, even
without optimizing them with algorithmic tricks or multi-
threading. However, the baseline implementations cannot scale
to large graph sizes that Graphulo can handle.

We ran the MATLAB baseline implementation7 on one
machine from the Amazon cluster, without any other processes
running, and found that the implementation exceeded the
machine’s 15GB of memory at graphs larger than scale 15
(524k edges).

We plot the baseline runtime up to scale 15 alongside the
Graphulo runtime in Figure 1 and in Table I. The baseline
runtime include the time to load data from a file into an
adjacency and incidence matrix.

While the comparison of Graphulo with a baseline in-
memory implementation is a good indicator of triangle count-
ing performance, we caution users on making infrastructure

6The total number of partial products is a bit more than double nppf.
7The MATLAB baseline computes t = nnz(AE == 2)/3. The interme-

diary result AE is the memory bottleneck.

decisions solely on the basis of this comparison. Users usually
have additional requirements beyond triangle counting, such
as indexed access to graph subsets and the ability to apply
custom filters. These additional, holistic requirements often
favor storage in a database, such as Accumulo or other graph
systems, rather than storage in flat files as in the baseline
implementation.

C. Discussion: Skew & Hybrid Matrix Multiply

Several observations led us to diagnose skew in the graph’s
degree distributions (i.e., the presence of high-degree vertices)
as a major problem. First we noticed that the choice of row and
column encoding—whether to encode the rows as 4-byte fixed-
width integers vs. a UTF-8 string encoding—impacted runtime
significantly. The adjacency-only algorithm ran 2x faster under
the string encoding. We believe that the change of format led
to a permutation on the rows and columns that affects the
number of partial products computed at each row of A (due to
a permuted ordering) and therefore load balance. Past work on
sparse matrix multiplication has likewise noted that permuting
the input matrix can reduce runtime [18], and so we expect
better performance, to a certain extent, if we explicitly permute
the generated input matrices.

We also noticed that the computation’s bottleneck shifts
as graph size increases. The reduction operation bottlenecks
at lower graph sizes, whereas the matrix multiply operation
bottlenecks at larger graph sizes (and increasingly more so as
graph size increases). A phase transition occurs between scales
15 and 16 (between 520K and 1.05M edges), at which point
the time to compute the matrix multiply exceeds the time to
compute the reduction. Interestingly, this is also the graph size
range at which both algorithms achieve peak processing rate.

We attribute the shift of bottleneck to the power law nature
of the input graphs, and in particular a few high-degree
vertices. Because matrix multiply is quadratic in the degree
of the each vertex, the presence of high-degree vertices leads
to skew in the matrix multiply work load among the tablet
servers.

We similarly observed these load balancing problems during
the matrix multiply (and to a lesser extent during the reduc-
tion), in which one tablet server takes far longer to finish
than the others. This skew is unavoidable in the sense that,
no matter how the rows of A are partitioned among the tablet
servers, some tablet server must have the highest-degree vertex
and will take far longer to process that than the other tablet
servers. Thus, even though we could have chosen to split A
and T in a non-uniform manner that is application-specific
and possibly even data-dependent (which may preclude their
use on general tables), a side experiment showed that these
changes skirt the main problem of high-degree nodes.

Both the database literature [19] and the high performance
computing literature [20] have studied the problem of skew
in detail. We recommend adapting some of their techniques to
Graphulo by, for example, inserting the first bits of the column
qualifier into the column family and leveraging locality groups
in order to implement a 2-D partitioning strategy that spreads

Fig. 1: Baseline and Graphulo triangle counting runtime. Fig. 2: Graphulo processing rate during triangle counting.

SCALE Adjacency-only Algorithm Adjacency+Incidence Algorithm Baseline
of edges nppf (entries) Time (s) Rate (entries/s) nppf (entries) Time (s) Rate (entries/s) Time (s)

10 1.06× 104 4.50× 105 1.26 7.17× 105 4.50× 105 1.02 8.87× 105 0.60
11 2.28× 104 1.18× 106 1.59 1.48× 106 1.33× 106 2.13 1.26× 106 1.26
12 4.86× 104 3.80× 106 3.84 1.98× 106 3.92× 106 3.84 2.04× 106 2.95
13 1.02× 105 1.19× 107 1.04× 101 2.28× 106 1.12× 107 1.12× 101 2.01× 106 7.11
14 2.13× 105 3.04× 107 2.71× 101 2.24× 106 3.17× 107 2.45× 101 2.59× 106 1.74× 101

15 4.42× 105 8.42× 107 6.66× 101 2.53× 106 8.88× 107 5.65× 101 3.15× 106 4.43× 101

16 9.10× 105 2.56× 108 2.42× 102 2.11× 106 2.46× 108 2.43× 102 2.03× 106

17 1.86× 106 7.03× 108 8.06× 102 1.74× 106 6.77× 108 6.90× 102 1.96× 106

18 3.81× 106 1.73× 109 2.34× 103 1.48× 106 1.84× 109 2.18× 103 1.69× 106

19 8.13× 106 5.04× 109 8.59× 103 1.17× 106 2.16× 109 7.51× 103 5.75× 105

20 1.61× 107 5.82× 109 2.77× 104 4.20× 105

TABLE I: Tricount algorithm experiment metrics. nppf = number of partial products after filtering to upper triangle.

high-degree vertices among the tablet servers. This strategy
could be applied to every vertex, as in Sparse SUMMA [21],
or just to the high-degree vertices in a degree-aware manner,
as in Hypercube Join [22].

One way we might solve the problem of high-degree
vertices is by reconsidering the 1-D inner product matrix
multiply algorithm. In general, inner product matrix multiply
is extremely inefficient on the Accumulo database because,
for C = AB, the matrix B must be read n times in full,
where n is the number of rows of A (or vice versa). This
is prohibitive for even moderately sized matrices, since these
entail disk reads.

However for this particular matrix multiply, T = ATA,
the inner product algorithm has several advantages. First, only
the upper (or lower) triangle is required, which eliminates
half the times that A must be read. More importantly, at the
time the entry T(r, c) would be computed, the corresponding
row AT(r, ∗) and column A(∗, c) are held in memory. The
computation can be avoided if A(r, c) = 0 because the
resulting entry would be masked by the future element-wise
multiply. Last, the inner product algorithm fully sums together
the partial products of each entry in the result T. These entries
do not need to be materialized because the reduce operation
applies immediately; the triangle count can be computed

during the matrix multiply.

The hybrid algorithm we propose is to run inner prod-
uct on high-degree vertices and outer product on all other
vertices. Whereas outer product is expensive on high-degree
vertices, inner product handles them efficiently by immediately
summing their partial products and avoiding the writing of
values that would be zeroed by the element-wise multiply
mask. Whereas inner product is too expensive to run on every
vertex, running inner product just on the high-degree vertices
is reasonable.

In general, our proposed hybrid algorithm exploits the
idea that the optimal choice of an operator’s implementation
depends on its context. In databases, a sort-merge join may
outperform an otherwise optimal hash join in databases when
followed by a range selection on that same sort order [23].
In high performance computing, the optimal choice of matrix
multiplication algorithm changes when the matrix multiply is
considered in the context of a loop, rather than in isolation
[24]. The same concept may apply here as well, in the
sense that an inner product matrix multiply may outperform
an otherwise optimal outer product matrix multiply when
followed by a mask and full aggregation, as in the triangle
counting problem.

IV. CONCLUSION

In this work we adapted two algorithms for triangle count-
ing, one that uses on the adjacency matrix and another that
uses the adjacency and incidence matrix, to the Graphulo
library for server-side processing on the Apache Accumulo
database. Experiments show a similar performance profile for
these different approaches on power law synthetic graphs.

In future work we recommend investigating hybrid algo-
rithms that better handle high-degree vertices, such as the one
proposed in Section III-C. We also recommend studying real-
world graphs that likely exhibit less skew than the Graph500
power law synthetic graphs whose high levels of skew are
unrealistic for many applications.

An alternative strategy is exporting data from Accumulo
to an external system and running a specialized algorithm
there, such as parallel shared-memory triangle counting [25].
Polystore systems such as Myria [26], BigDAWG [27], and
Rheem [28] facilitate using multiple systems together via data
movement techniques, as in PipeGen [29] and Portage [30].

User programmability is another important area in the
sense of “how easily can users write custom, application-
specific graph algorithms without sacrificing performance?”
Code generation is a modern technique often used (e.g.,
in SystemML [31]) to bridge the gap between higher-level
APIs that are easily programmable and lower-level code that
implement efficient data structures and runtime tricks, such
as those employed for counting triangles in this work. The
LaraDB system [32] prototypes this approach by compiling
programs in the high-level Lara algebra to Graphulo iterator
code, and we expect further future work to push this approach.

ACKNOWLEDGMENT

This material is supported in part by NSF Graduate Re-
search Fellowship DGE-1256082. Cloud computing was pro-
vided by the University of Washington Student Technology
Fee Grant 2017-96 and NSF Campus Cyberinfrastructure
Grant ACI-1440281.

REFERENCES

[1] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems (TOCS), vol. 26, no. 2, p. 4, 2008.

[2] V. Gadepally, M. Hurley, M. Jones, E. Kao, S. Mohindra, P. Monticciolo,
A. Reuther, S. Smith, W. Song, D. Staheli, and J. Kepner, “Static
graph challenge: Subgraph isomorphism,” in High Performance Extreme
Computing (HPEC). IEEE, 2017, pp. 1–6.

[3] V. Gadepally, J. Bolewski, D. Hook, D. Hutchison, B. Miller, and J. Kep-
ner, “Graphulo: Linear algebra graph kernels for NoSQL databases,” in
International Parallel & Distributed Processing Symposium Workshops
(IPDPSW). IEEE, 2015.

[4] T. Weale, V. Gadepally, D. Hutchison, and J. Kepner, “Benchmarking
the Graphulo processing framework,” in High Performance Extreme
Computing (HPEC). IEEE, 2016.

[5] D. Hutchison, J. Kepner, V. Gadepally, and A. Fuchs, “Graphulo im-
plementation of server-side sparse matrix multiply in the Accumulo
database,” in High Performance Extreme Computing (HPEC). IEEE,
2015.

[6] D. Bader, A. Buluç, J. Gilbert, J. Gonzalez, J. Kepner, and T. Mattson,
“The graph blas effort and its implications for exascale,” in SIAM Work-
shop on Exascale Applied Mathematics Challenges and Opportunities
(EX14), 2014.

[7] D. Hutchison, J. Kepner, V. Gadepally, and B. Howe, “From NoSQL
Accumulo to NewSQL Graphulo: Design and utility of graph algorithms
inside a BigTable database,” in High Performance Extreme Computing
(HPEC). IEEE, 2016.

[8] A. Pavan, K. Tangwongsan, S. Tirthapura, and K.-L. Wu, “Counting
and sampling triangles from a graph stream,” Proceedings of the VLDB
Endowment, vol. 6, no. 14, pp. 1870–1881, 2013.

[9] P. Burkhardt and C. A. Waring, “A cloud-based approach to big graphs,”
in High Performance Extreme Computing (HPEC). IEEE, 2015.

[10] D. Bader, K. Madduri, J. Gilbert, V. Shah, J. Kepner, T. Meuse, and
A. Krishnamurthy, “Designing scalable synthetic compact applications
for benchmarking high productivity computing systems,” Cyberinfras-
tructure Technology Watch, vol. 2, pp. 1–10, 2006.

[11] J. Cohen, “Graph twiddling in a mapreduce world,” Computing in
Science & Engineering, vol. 11, no. 4, pp. 29–41, 2009.

[12] S. Cohen, “User-defined aggregate functions: bridging theory and prac-
tice,” in International Conference on Management of Data (SIGMOD).
ACM, 2006, pp. 49–60.

[13] M. M. Wolf, J. W. Berry, and D. T. Stark, “A task-based linear
algebra building blocks approach for scalable graph analytics,” in High
Performance Extreme Computing (HPEC). IEEE, 2015.

[14] J. Leskovec, D. Chakrabarti, J. Kleinberg, and C. Faloutsos, “Realistic,
mathematically tractable graph generation and evolution, using kronecker
multiplication,” in PKDD, vol. 5. Springer, 2005, pp. 133–145.

[15] V. Gadepally and J. Kepner, “Using a power law distribution to describe
big data,” in High Performance Extreme Computing (HPEC). IEEE,
2015.

[16] J. Kepner, W. Arcand, W. Bergeron, N. Bliss, R. Bond, C. Byun,
G. Condon, K. Gregson, M. Hubbell, J. Kurz et al., “Dynamic distributed
dimensional data model (D4M) database and computation system,” in
International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 2012, pp. 5349–5352.

[17] Y. Zhai, M. Liu, J. Zhai, X. Ma, and W. Chen, “Cloud versus in-house
cluster: evaluating amazon cluster compute instances for running mpi
applications,” in State of the Practice Reports. ACM, 2011, p. 11.

[18] A. Azad, G. Ballard, A. Buluç, J. Demmel, L. Grigori, O. Schwartz,
S. Toledo, and S. Williams, “Exploiting multiple levels of parallelism
in sparse matrix-matrix multiplication,” SIAM Journal on Scientific
Computing, vol. 38, no. 6, pp. C624–C651, 2016.

[19] P. Beame, P. Koutris, and D. Suciu, “Skew in parallel query processing,”
in Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems. ACM, 2014, pp. 212–223.

[20] G. Ballard, A. Druinsky, N. Knight, and O. Schwartz, “Hypergraph
partitioning for sparse matrix-matrix multiplication,” ACM Transactions
on Parallel Computing (TOPC), vol. 3, no. 3, p. 18, 2016.

[21] A. Buluç and J. R. Gilbert, “Challenges and advances in parallel sparse
matrix-matrix multiplication,” in Parallel Processing, 2008. ICPP’08.
37th International Conference on. IEEE, 2008, pp. 503–510.

[22] S. Chu, M. Balazinska, and D. Suciu, “From theory to practice: Efficient
join query evaluation in a parallel database system,” in Proceedings of
the 2015 ACM SIGMOD International Conference on Management of
Data. ACM, 2015, pp. 63–78.

[23] P. G. Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price, “Access path selection in a relational database management
system,” in Proceedings of the 1979 ACM SIGMOD international
conference on Management of data. ACM, 1979, pp. 23–34.

[24] P. Koanantakool, A. Azad, A. Buluç, D. Morozov, S.-Y. Oh, L. Oliker,
and K. Yelick, “Communication-avoiding parallel sparse-dense matrix-
matrix multiplication,” in Parallel and Distributed Processing Sympo-
sium, 2016 IEEE International. IEEE, 2016, pp. 842–853.

[25] J. Shun and K. Tangwongsan, “Multicore triangle computations without
tuning,” in International Conference on Data Engineering (ICDE).
IEEE, 2015, pp. 149–160.

[26] J. Wang, T. Baker, M. Balazinska, D. Halperin, B. Haynes, B. Howe,
D. Hutchison, S. Jain, R. Maas, P. Mehta, D. Moritz, B. Myers,
J. Ortiz, D. Suciu, A. Whitaker, and S. Xu, “The Myria big data
management and analytics system and cloud service,” in Conference on
Innovative Data Systems Research (CIDR), 2017. [Online]. Available:
https://homes.cs.washington.edu/∼magda/papers/wang-cidr17.pdf

[27] V. Gadepally, P. Chen, J. Duggan, A. Elmore, B. Haynes, J. Kepner,
S. Madden, T. Mattson, and M. Stonebraker, “The bigdawg polystore
system and architecture,” in High Performance Extreme Computing
(HPEC). IEEE, 2016, pp. 1–6.

[28] D. Agrawal, L. Ba, L. Berti-Equille, S. Chawla, A. Elmagarmid, H. Ham-

https://homes.cs.washington.edu/~magda/papers/wang-cidr17.pdf

mady, Y. Idris, Z. Kaoudi, Z. Khayyat, S. Kruse et al., “Rheem: Enabling
multi-platform task execution,” in Proceedings of the 2016 International
Conference on Management of Data. ACM, 2016, pp. 2069–2072.

[29] B. Haynes, A. Cheung, and M. Balazinska, “Pipegen: Data pipe gener-
ator for hybrid analytics,” in Proceedings of the Seventh Symposium on
Cloud Computing. ACM, 2016.

[30] A. Dziedzic, A. J. Elmore, and M. Stonebraker, “Data transformation
and migration in polystores,” in High Performance Extreme Computing
(HPEC). IEEE, 2016, pp. 1–6.

[31] M. Boehm, D. R. Burdick, A. V. Evfimievski, B. Reinwald, F. R.
Reiss, P. Sen, S. Tatikonda, and Y. Tian, “SystemML’s optimizer: Plan
generation for large-scale machine learning programs.” IEEE Data Eng.
Bull., vol. 37, no. 3, pp. 52–62, 2014.

[32] D. Hutchison, B. Howe, and D. Suciu, “LaraDB: A minimalist kernel
for linear and relational algebra computation,” in SIGMOD Workshop
on Algorithms and Systems for MapReduce and Beyond (BeyondMR).
ACM, 2017.

