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Abstract We present a novel architecture for sparse pattern 
processing, using flash storage with embedded accelerators. 
Sparse pattern processing on large data sets is the essence of 
applications such as document search, natural language 
processing, bioinformatics, subgraph matching, machine 
learning, and graph processing. One slice of our prototype 
accelerator is capable of handling up to 1TB of data, and 
experiments show that it can outperform C/C++ software 
solutions on a 16-core system at a fraction of the power and 
cost; an optimized version of the accelerator can match the 
performance of a 48-core server.  

I. INTRODUCTION 
Many data analysis algorithms of interest on large data 

sets composed of documents, images, audio and video can 
be formulated as operations on very large but very sparse 
vectors and matrices. There are two challenges: the size of 
data is generally too large to fit in the system memory 
(DRAM) of a single server [1], and current server 
architectures are far from ideal for processing sparse 
datasets, causing the CPU itself to become a bottleneck.  

The traditional way to overcome the size challenge is to 
use a cluster of machines so that data can be accommodated 
in the collective main memory (DRAM), and distribute the 
computation across the machines in the cluster [2]. A 1.5 TB 
192-core distributed system with a dozen nodes of 128 GB 
DRAM memory each would cost about $60k. This system 
would use a software layer for distributed data processing 
such as Hadoop. With circa 2016 new server technology, it 
is possible to configure memory capacity up to 1.5 TB on a 
quad-socket server, which would cost $27k to $49k, for 48 
cores and 72 cores, respectively. This single-box system 
would not need to access data over the network, thus, its 
software could be streamlined for performance. The 
industry’s trend of adding DRAM and cores per server helps 
consolidating the machines and improves performance. 
However, it is not a panacea. Large memory buffers cause 
large loading, and requires high power circuitries for fast 
access. Data and results also need to be stored on non-
volatile storage devices for disruption recovery. 

Flash-based secondary storage such as Solid-State 
Drives (SSDs) is a high performance and power efficient 
technology solution. A recent interface standard, the Non-
Volatile Memory Express (NVMe), makes this type of 
solution even more attractive. We propose to take this 
technology further: to use flash-based non-volatile memory 

(NVM) as main data store instead of DRAM. 
Comparatively, flash is at least 10x cheaper, takes 10x less 
space, and is 10x less power-consuming than DRAM. In 
such a system, all data will be on SSDs for processing rather 
than read in from hard drives. Of course, using flash 
memory in place of DRAM incurs longer latency in 
accessing information, and consequently the system has to 
be optimized for such accesses. Instead of approaching this 
as a storage problem, we will address it in conjunction with 
computing, and optimize across boundaries where possible 
to achieve a better overall solution. 

Computing with application-specific hardware 
accelerators can lead to one to three orders of magnitude 
better performance with less power consumption compared 
to CPU cores performing similar tasks [3]. Many accelerator 
devices are packaged as an independent system component, 
which can be plugged into a high-speed bus such as PCIe to 
interface with CPUs and system memory. 

In this paper, we demonstrate a system that integrates 
the storage and computing solutions together, as shown in 
Fig. 1, to reduce DRAM memory size and CPU workload 
[4]. In this architecture, the Field-Programmable Gate Array 
(FPGA) directly accesses flash storage, and processes data 
prior to presenting the results to the CPU, hence, “in-storage 
computing”. A dedicated high bandwidth/low-latency 
FPGA-based network is used to connect FPGAs together for 
scaling to problem size of 10s of TBs. 

 
 
 

Sparse pattern processing is very inefficient on general 
purpose computers, and is a good candidate for acceleration 
on our in-storage computing architecture. We will show that 
our baseline accelerator outperforms a 16-core server 
system while using only 2/3 power, and an optimized 
version could match a 48-core system at ¼ power and ¼ 
cost. (These comparisons are based on C/C++ server code; 
comparisons with Java-based implementation would 
correspond to 3x more cores, i.e., 48 cores and 144 cores.) 
Each accelerator slice can handle problem size of 1 TB. This work is partially supported by the Assistant Secretary of Defense for 

Research and Engineering under Air Force Contract number FA8721-05-C-
0002. Opinions, interpretations, conclusions and recommendations are 
those of the author and are not necessarily endorsed by the United States 
Government. 

Fig. 1. In-Storage Computing Architecture 



We will discuss how sparse pattern processing 
operations can be applied to many applications such as 
document search, natural language processing, 
bioinformatics, subgraph matching, machine learning, and 
graph processing. [5][6][7]. A recent effort, the GraphBLAS 
[8], aims to standardize some of these computational kernels 
in order to support the development of hardware-
accelerators [9]. 

 
Paper organization: Section II describes sparse pattern 
matching using document search as an example and presents 
several important related applications. Section III introduces 
our architecture. Section IV describes implementation 
details of the prototype system and its performance 
measurements. Sections V and VI conclude with discussions 
and summary. 

II. SPARSE PATTERN MATCHING 
We begin by showing how document search problem 

can be formulated as sparse vector multiplications, and then 
discuss applications that can benefit from the sparse 
processing kernels developed for document processing. 

A. Document Matching 
The objective of document matching is to find document 

candidate(s) that match best to a query document 
[10][11][12]. The key idea is similar topics would use 
similar vocabulary at high level of occurrences and can be 
abstracted into mathematical models based on the words, 
their frequencies, and with more sophistication, the ordering 
and grouping of the word appearances. Topic modeling 
occurs in applications such as natural language 
understanding, relationship extraction, sentiment analysis, 
topic segmentation, information retrieval, predictive 
analysis, and bioinformatics. 

A simple example of a document search is shown in Fig. 
2, where documents A and B have been pre-processed to 
extract prominent words with occurrences above some 
threshold. In the UCI Machine Learning Repository [13], 
the collection of NY Times articles contains around 300,000 
documents with about 100,000 prominent words. The Enron 
email collection has almost 40,000 emails with about 28,000 
prominent words. 

 

 
Comparison metric - Cosine similarity: Each 

document can be represented as an N-dimensional vector, 
where N is the size of the bag-of-words. Each word in the 
vocabulary is assigned to one of the N dimensions, and the 
value of a dimension corresponds to the occurrence 

frequency of the assigned word. In the above example, the 
document-A vector would be stored as a sparse vector of 4 
non-zero elements, A = [A1, A3, A7, A9]. The indices 1, 3, 7, 
9, correspond to the word indices in the bag-of-words. 
Document-B vector also happens to have 4 non-zero 
elements, B = [B1, B2, B7, B10].  

One simple and effective method for comparing high-
dimensional vectors is the Cosine similarity metric, which is 
defined below (the top computes the correlation, and the 
bottom performs the normalization). Vectors that are closely 
aligned would result in large Cosine metric. 
 

 
Fig. 3 illustrates the computation for the correlation of 

sparse vectors A and B, where the vectors A and B 
correspond to documents A and B presented above. The 
element-wise multiplication of Ai and Bi creates partial 
products PPi for each term, but due to sparsity, only the 
terms PP1 and PP7 are nonzero and need to be created. The 
correlation score is the summation of these partial products. 

 
 
 

The match processing of a document-A against the 
whole dataset, i.e., document-B, document-C, etc., can be 
formulated as a matrix-vector multiplication as illustrated in 
Fig. 4. The sparse matrix is the collection of all sparse 
vector representations of the documents in the dataset.  
 

 
 

There are many opportunities for parallelizing the 
processing. One could partition the matrix into K subsets 
(separated by dividing lines in Fig. 4) and compute in 
parallel on K accelerator kernels.  

If a batch of L queries is issued, the problem can be 
formulated as sparse matrix - sparse matrix multiplication. 
The work can be performed in parallel on K*L kernels, with 
K and L parameters determined for optimal accelerator 
performance, based on the accelerator computing capability, 
data bandwidth, and local working storage. 

Fig. 2. Document Matching 

Fig. 4. Document Search and Classification 

Fig. 3. Pattern Matching as Sparse Vector Multiplication 

 



B. Other applications 
Subgraph Matching: Document matching could be 

extended into the graph processing domain by considering 
subgraphs to be documents, and conducting a search for 
subgraphs that contain similar edges. As illustrated in Fig. 5, 
each edge could be represented as a “word” containing the 
labels of its two vertices. Subgraphs can have different 
number of edges, just like documents can have different 
sizes. Traversing an edge in the graph corresponds to 
performing a word matching operation. The labeling and 
partitioning of edges into subgraphs depends on the 
application context. Our focus here is on the acceleration of 
subgraph matching [14], which is important in biological 
networks, event recognition, and community detection. 

 

 
 

Feature Matching in Machine Learning:  Machine 
learning algorithms train their classifiers by churning 
through massive amount of data to evaluate and optimize a 
set of coefficients, so that the classifications aligns to 
desired outcomes. A facial recognition application, for 
example, would operate on feature descriptors extracted 
from facial images, or prominent words in a document 
search analogy. The training process involves many rounds 
of matching faces against classifier candidates, not too 
different from the scenario depicted in Fig. 4. 

For applications that use neural networks, sparse 
representation and evaluation enables efficient 
implementation. A low-power, portable form factor 
accelerator could allow the training of neural networks to 
take place in the field rather than back at the office. 

Bioinformatics: High dimensional search using a bag-
of-words representation is also useful in the field of 
bioinformatics. For example, researchers use protein search 
tools such as BLAST[15] to guess the genealogy and 
function of proteins by matching against previously 
annotated proteins. Since performing an optimal search 
algorithm such as Smith-Waterman on the entire annotated 
protein database is expensive, each protein sequence in the 
database is pre-processed into a more easily searchable 
format, such as bag-of-words. This pre-processing step is 
not to find the most similar sequence, but rather, to 
determine a smaller set of reference sequences statistically 
likely to be similar to the query, so that the search space of 
the optimal algorithm is significantly reduced. 

We have experimented with this approach, by first pre-
process each protein sequence to generate a bag-of-words 
representation of all 3-mers, as shown in Fig. 6. Once all 
reference protein sequences in the dataset are processed and 
encoded in such a sparse format, the previously described 

document search kernel can be used to quickly find the set 
of relevant reference proteins. This reduces the search on the 
35 GB UniProt TrEMBL dataset [16] to an approximately 4 
GB bag-of-words, which requires only 2 seconds for our 
flash-based prototype to traverse. 

 
 

III. ACCELERATOR DESIGN 
As part of the design process, we performed analysis and 

experiments to gain insights into the application. By 
decomposing the application into key functions and 
performing benchmarking, we can tell if performance is 
bounded by data bandwidth or computing capability. 

For document matching, computing the Cosine 
similarity metric is the key function. Specialized accelerator 
can significant improve the performance. Fast data access is 
required to keep its computing kernels busy. It is, therefore, 
critical to use data structures that are as bandwidth-efficient. 

A. Data Representation 
Rather than storing the words, we store the index into 

the bag-of-words (see Fig. 7). This requires an indexing step, 
but allows for much flexibility in abstraction, for example, 
“words” can be phrases, strings, or even other features 
(images) of the document, etc.  

 
 

To make effective use of storage bandwidth and 
computation, we encoded the vectors, or pattern datasets, 
into binary format as shown in Fig. 8. Each data item is 32 
bits wide, and is either a pattern identifier, i.e., “Document 
A,” or a key/value pair for each word in the document. Each 
document in a large dataset can be encoded with a single 
pattern identifier followed by a list of key/value pairs. 
Comparing to the original data format from UCI repository 
[13], which replicates the documentID with each wordID 
and stores one word per line, this format saves almost 50% 
storage bandwidth.  

 
 

Fig. 7. Document Encoding Schema 

Fig. 8. Data Format 

Fig. 5. Subgraph Matching 

Fig. 6. Organizing a Protein Sequence into Bag-of-Words 



B. Architecture 
An architectural view of the sparse pattern matching 

kernel is shown in Fig. 9. It consists of a query memory, 
accessed through the sideband datapath, and a chain of 
computation modules for calculating the Cosine similarity 
between the query and data from flash storage. Multiple 
kernels are implemented in the system in order to make full 
use of the flash storage bandwidth. Each kernel receives its 
own data routed from flash storage as controlled by the host 
software. Data pages from flash do not necessarily arrive in 
order, which necessitates re-ordering and low-level 
coordination activities that takes place in the flash storage 
interface logic block [4]. 

 

 
 

 
The Key Comparator module performs matching of 

words from the query document against words of all 
documents in the target dataset. A match is declared when 
the wordID in a document is the same as the wordID from 
the query. This step identifies the index i of the nonzero 
partial product PPi in the sparse multiplication described in 
Fig. 3. The generation of PPi and computation of Cosine 
similarity score are performed in the subsequent Distance 
Accumulator module. The score is accumulated for each 
document. At the end, documentIDs with high scores are 
reported to the computer. Throughout the processing, 
subsets of wordIDs are matched in parallel by many kernels. 
Due to sparsity, many comparisons must be performed until 
a successful match. Thus, the performance of the Key 
Comparator has significant impact to the overall operation. 

The Query Memory uses a prefetch predictor and 
advanced logic to keep the processing pipeline full. A 
pointer is used to access the query key (in query memory). 
A second pointer tracks the (sorted) candidate key after 
loading from flash. For each comparison, one of the two 
pointers is incremented, depending on which is bigger. The 
candidate key pointer only increases, but the query memory 
pointer occasionally needs to be “rewound” upon the end of 
the candidate document is reached. Without the prefetch 
predictor, the loading of a new query key from query 
memory would occur only after it can be determined that no 
rewinding is required. Since loading involves latency, this 
would waste valuable cycles and reduce performance. 
Adding the prefetch predictor logic, as shown in Fig. 10, 

allows the query memory to queue prefetched keys into the 
comparison unit. 

 

 
 

The prefetcher assumes rewind is not to happen. It keeps 
requesting reads from block RAM, and enqueues an epoch 
value for each read request. The epoch value provides a 
frame of reference to distinguish one document processing 
interval from another. When a rewind happens, the 
prefetcher increments the epoch value. Previously enqueued 
prefetches are considered mispredicted reads and discarded. 
They are identified by comparing the enqueued epoch 
values with the current epoch value. 

Fig. 11 shows the interaction of host software 
accelerator and flash storage. Each FPGA accelerator kernel 
implements the same interface and can be accessed through 
4 ports: dataIn, commandIn, resultToMemory, and 
dataToStorage. Data read from flash storage is streamed 
through dataIn. Commands from the host are sent via the 
sideband port commandIn. As the kernel performs 
computation, it can send data to be stored to flash via 
dataToStorage, or to host software via resultsToMemory. 
The host software is responsible for managing the ports, for 
example, maintaining a list of free pages that dataToStorage 
uses. 

 
 
 

Software: A reference C/C++ software implementation 
was developed to provide benchmark functionality and a 
framework for later integration of the accelerator. The 
implementation is parameterized so the user can choose the 
number of worker threads to spawn. Each worker is given 
its own copy of the query pattern and a contiguous partition 
of the dataset. After finishing execution, each thread reports 
its top pattern with the largest Cosine metric. The main 
thread then selects the global nearest pattern from the small 
list of local patterns. 

Fig. 10. Prefetching of Query 

Fig. 9. Sparse Matching Accelerator Architecture 

Fig. 11. Accelerator Interface 



IV. IMPLEMENTATION & RESULTS 

A. System description 
Our application was implemented on a single-node setup 

of MIT’s BlueDBM system [4]. A node consists of a 24-
core, 50 GB DRAM Xeon server and a BlueDBM storage 
device, which includes a Xilinx VC707 FPGA development 
board and a custom-built 1 TB flash module capable of 2 
GB/sec throughput. The BlueDBM device and host server 
are connected via a Gen2 x8 PCIe link. Fig. 12 highlights 
one “accelerator slice” on a server computer and the 
software infrastructure for integrating the accelerator.  

Eight accelerator kernels were used to fully take 
advantage of the 2 GB/s flash bandwidth. Each kernel was 
given 8 KBs of query memory on the FPGA block RAM to 
store a sparse query vector of up to 2K nonzero elements. 
The size of the query memory could be made larger and 
more accelerator kernels could be used, but this was more 
than adequate for our example application. 

 
 

 
We used UCI’s bag-of-words dataset [13] and created 

bag-of-words databases for multiple document collections, 
including Pubmed. Each database consists of a vocabulary 
file that maps words to wordIDs, and a doc file that contains 
{documentID, wordID, wordCount} tuples. We also created 
large datasets of 100 GBs or more for experiments by 
developing a synthesizer that generates permutations of the 
smaller sets through adding and removing random words, 
and assigning random count values to some words. 

B. Results 
The document matching performance was averaged over 

an interval of 10 seconds for four system configurations:  
(1)   Hard Disk: Data on hard disk 
(2) RAM-Disk: Data in RAM - avoids the 

mechanical operation of the disk but still requires the 
operating system to perform file operations. Approximates 
the upper-bound performance of SSDs. 

(3) Memory: Represents the new trend of in-
memory database processing enabled by the availability of 
large computer memories and CPU cores. 

(4) BlueDBM: Data in flash and most operation 
off-loaded to the FPGA accelerator. Minimizes load on CPU 
and memory.  
 

Fig. 13 shows the performance for various 
configurations as the number of CPU threads is scaled from 
1 to 24. Configuration (1) with hard disk is clearly limited 
by the disk bandwidth. Configuration (2) using RAM disk 
scales to 6 million docs/sec, but eventually runs into the 
limitation of file processing by the OS. Configuration (3) 
with all data in memory achieves the highest rate of 13 
million docs/sec for 24 threads. In real-life, the computer 
would need to read data from secondary storage into 
memory at least once, so performance would be somewhere 
in between configurations (2) and (3).  

Configuration (4) using BlueDBM reaches its peak at 10 
million docs/sec, limited by the bandwidth of the BlueDBM 
flash modules. It is slightly lower than in-memory 
processing but almost twice the performance of RAM disk. 
Since this configuration offloads most of processing onto 
the FPGA, the host software consists of only two threads for 
managing the file system and the computation. The CPU 
threads >2 in Fig. 13 only apply to non-BlueDBM systems, 
as BlueDBM requires two threads and no more.  

 
Fig. 13. Document Processed vs CPU Threads 

 
Note that BlueDBM efficiency comes from our in-store 

processing paradigm that uses the FPGA for both computing 
acceleration and storage control. Had the FPGA been used 
for acceleration alone, the host server would still have 
required many threads for 2 GB/s data transfer between 
storage and accelerator. With BlueDBM achieving 10 
million docs/sec using only 2 CPU threads, a possibility 
opens up for extending the application into low-power 
portable use cases. A much smaller CPU, such as those 
embedded in the FPGA could be used, which prompts an 
interesting concept of shrinking and folding the host into the 
accelerator itself! 

The power measurements are given in Table 1, ranging 
from 90 Watts idle to 205 Watts by configuration (3) for in-
memory processing. Configuration (4) with BlueDBM 
draws only 120 W, nearly 40% less power, while delivering 
a slight reduction in processing rate compared to in-memory 
processing. It is also 40% more power efficient and has 40% 
better performance than configuration (2) using RAM disk 
(upper-bound for SSDs), as shown in Fig. 13.  

Fig. 12. BlueDBM System 



Table 1: Power Dissipation 
Number of 

CPU threads 
CPU – C++ (4) BlueDBM 

with 8 
comparators 

(1) Data in 
hard drive 

(3) Data in 
memory 

1  120   114 NA 
2  110  134 

120 W 
(idle 90W) 

4  100  145 
8  123  160 

16  112  164 
24  126  205 

 
V. DISCUSSION 

A. Scalability & Cost 
The performance of BlueDBM accelerator is limited by 

the bandwidth between the accelerator kernels and the flash 
storage, which based on the measured figure of 10 million 
docs/sec is about 2 GB/s. For the same storage bandwidth, it 
is possible to increase computation by processing several 
queries together in a batch. Recall the sparse matrix – sparse 
matrix discussion near Fig. 4. Up to 20 kernels could be 
implemented in the FPGA to process 3 queries in parallel, 
yielding an estimated rate of 27 million docs/sec as shown 
in Table 2. This performance could alternatively be 
achieved for single query issue if the storage bandwidth is 
increased to 6 GB/sec, by either accessing neighboring 
BlueDBM flash modules via the FPGA network (see Fig. 1), 
or upgrading the architecture to use multiple PCIe-based 
modules.  

Table 2: Accelerator Scalability 
Kernels in FPGA Million Docs / sec Flash IO (GB/s) 

8 10.35  ~2 
20 27 est. 5.4 est. 

The CPU in-memory processing, in contrast, is not 
bandwidth but rather processing limited. The only way to 
get more processing is adding more cores. Extending Fig. 13 
to 27 million docs/sec reveals that a 48-core server system 
is needed. With 2016 technology, a quad-socket platform 
could meet this requirement with 12-core CPUs.  

Such a system with ~1.5 TB of memory costs about 
$27k, with approximately $10k for memory, $7k for 
platform and storage, and $10k for the four 12-core CPUs 
(or $32k for four 18-core CPUs). An FPGA-based 
accelerator slice including flash modules can be built from 
commercial components for less than $6k, or ¼ the cost. 

B. Power Optimization 
Fig. 14 captures performance and power dissipation for 

configurations (3) and (4), where the solid red curve depicts 
in-memory CPU processing, and the solid green curve for 
BlueDBM in-storage processing. The dotted curves project 
the capability of a slightly modified BlueDBM system as 
discussed in Table 2.  

The blue dotted curve shows an interesting variant of 
BlueDBM where the host CPU is downsized and absorbed 
into the accelerator itself, i.e., the host-side 2-thread 
software now runs on an embedded CPU within the FPGA. 
This presents a solution for extreme Size, Weight, and 
Power (SWaP) applications. 

The idle SWaP solution would draw only 10 Watts 
rather than 90 Watts. The blue curve is obtained by shifting 
the green curve down by 80 Watts. At the 10 million 
doc/sec, power dissipation is expected to be < 50 Watts, and 
at 27 million docs/sec about 90 Watts. Our embedded in-
storage processing accelerator would be about 3.8 times 
more power efficient than in-memory CPU processing. 

 
Fig. 14. Projection to Technology Generations 

C. Sparse Multiplications Performance 
The formulation in Fig. 3 of Section II allows us to 

project the performance of our document matching kernel to 
a generalized performance metric of (nonzero) partial 
products per second. This metric is useful for estimating 
how applications such as topic modeling [17], centrality 
[18], and graph traversal that are amenable to sparse 
processing [5] could benefit from our accelerator.  

In our experiment, processing of 8.2 million documents 
with 483 million words generates 11 million partial products 
and takes about 0.8 seconds. This yields 13 million partial 
products/sec for sparse vector multiplication. The sparsity 
of the data is characterized by the number of prominent 
words out of a vocabulary set containing 141,000 words. A 
document, on average, contains about 60 such words, hence, 
a sparsity of 60/141,000 = 0.04%. 

We could notionally attempt to compare our partial 
product processing rate to Graphulo server-side sparse 
matrix multiplication [19], keeping in mind 1) our results 
are immediately consumed – no need for saving back to 
database, and 2) the sparsity level should be similar to be 
relevant, although strictly speaking two datasets with similar 
sparsity may still have different number of partial products 
due to the actual distribution of nonzero terms. The data in 
the report had 16 nonzeros per vector. For vector size 217 = 
131,072 ~141,000, the sparsity comes out to be 0.01%, not 
too far from our document search parameter. 

Graphulo server-side multiplication peaks at about 
300,000 partial products/sec per pair of CPU cores, 
attributed to architecture of the Tablet server. Assuming 
optimistic linear scaling with CPU cores, it would take a 
system with 86 CPU cores to match the 13 million partial 
products/sec rate on one baseline BlueDBM accelerator 
slice, or 232 CPU cores to match the optimized version.  



VI. SUMMARY 
We have presented a prototyped document search 

accelerator using a novel in-storage processing architecture. 
We showed that the sparse pattern processing techniques 
can be extended to important applications including text 
analysis, bioinformatics, machine learning, graphs, etc. In 
our prototyping experiment, one baseline accelerator slice 
can process 10 million docs/sec, outperforming a 16-core 
system running C/C++ in-memory application, while 
incurring a fraction of the power and cost. An optimized 
accelerator could match a 48-core server system. Problem 
size up to 1 TB can be handled per accelerator slice. 

There are many directions for future work. We would 
like to explore the application of in-storage analytics 
accelerator in a cloud [20][21] or supercomputing setting. 
We are also currently developing GraphBLAS compliant 
operations in our system for common graph and sparse 
linear algebra problems such as one proposed in [22]. We 
would also like to investigate how to integrate our system 
into more general data management solutions such as the 
BigDAWG polystore system [23]. Lastly, we are pursuing 
low SWaP computing solutions to enable selected subsets of 
the above to be processed in the field. 
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