
In-Storage Embedded Accelerator for Sparse Pattern Processing

Sang-Woo Jun*, Huy T. Nguyen#, Vijay Gadepally#*, and Arvind*
#MIT Lincoln Laboratory, *MIT Computer Science & Artificial Intelligence Laboratory

Email: wjun@csail.mit.edu, hnguyen@ll.mit.edu, vijayg@ll.mit.edu, arvind@csail.mit.edu

Abstract We present a novel architecture for sparse pattern
processing, using flash storage with embedded accelerators.
Sparse pattern processing on large data sets is the essence of
applications such as document search, natural language
processing, bioinformatics, subgraph matching, machine
learning, and graph processing. One slice of our prototype
accelerator is capable of handling up to 1TB of data, and
experiments show that it can outperform C/C++ software
solutions on a 16-core system at a fraction of the power and
cost; an optimized version of the accelerator can match the
performance of a 48-core server.

I. INTRODUCTION
Many data analysis algorithms of interest on large data

sets composed of documents, images, audio and video can
be formulated as operations on very large but very sparse
vectors and matrices. There are two challenges: the size of
data is generally too large to fit in the system memory
(DRAM) of a single server [1], and current server
architectures are far from ideal for processing sparse
datasets, causing the CPU itself to become a bottleneck.

The traditional way to overcome the size challenge is to
use a cluster of machines so that data can be accommodated
in the collective main memory (DRAM), and distribute the
computation across the machines in the cluster [2]. A 1.5 TB
192-core distributed system with a dozen nodes of 128 GB
DRAM memory each would cost about $60k. This system
would use a software layer for distributed data processing
such as Hadoop. With circa 2016 new server technology, it
is possible to configure memory capacity up to 1.5 TB on a
quad-socket server, which would cost $27k to $49k, for 48
cores and 72 cores, respectively. This single-box system
would not need to access data over the network, thus, its
software could be streamlined for performance. The
industry’s trend of adding DRAM and cores per server helps
consolidating the machines and improves performance.
However, it is not a panacea. Large memory buffers cause
large loading, and requires high power circuitries for fast
access. Data and results also need to be stored on non-
volatile storage devices for disruption recovery.

Flash-based secondary storage such as Solid-State
Drives (SSDs) is a high performance and power efficient
technology solution. A recent interface standard, the Non-
Volatile Memory Express (NVMe), makes this type of
solution even more attractive. We propose to take this
technology further: to use flash-based non-volatile memory

(NVM) as main data store instead of DRAM.
Comparatively, flash is at least 10x cheaper, takes 10x less
space, and is 10x less power-consuming than DRAM. In
such a system, all data will be on SSDs for processing rather
than read in from hard drives. Of course, using flash
memory in place of DRAM incurs longer latency in
accessing information, and consequently the system has to
be optimized for such accesses. Instead of approaching this
as a storage problem, we will address it in conjunction with
computing, and optimize across boundaries where possible
to achieve a better overall solution.

Computing with application-specific hardware
accelerators can lead to one to three orders of magnitude
better performance with less power consumption compared
to CPU cores performing similar tasks [3]. Many accelerator
devices are packaged as an independent system component,
which can be plugged into a high-speed bus such as PCIe to
interface with CPUs and system memory.

In this paper, we demonstrate a system that integrates
the storage and computing solutions together, as shown in
Fig. 1, to reduce DRAM memory size and CPU workload
[4]. In this architecture, the Field-Programmable Gate Array
(FPGA) directly accesses flash storage, and processes data
prior to presenting the results to the CPU, hence, “in-storage
computing”. A dedicated high bandwidth/low-latency
FPGA-based network is used to connect FPGAs together for
scaling to problem size of 10s of TBs.

Sparse pattern processing is very inefficient on general
purpose computers, and is a good candidate for acceleration
on our in-storage computing architecture. We will show that
our baseline accelerator outperforms a 16-core server
system while using only 2/3 power, and an optimized
version could match a 48-core system at ¼ power and ¼
cost. (These comparisons are based on C/C++ server code;
comparisons with Java-based implementation would
correspond to 3x more cores, i.e., 48 cores and 144 cores.)
Each accelerator slice can handle problem size of 1 TB. This work is partially supported by the Assistant Secretary of Defense for

Research and Engineering under Air Force Contract number FA8721-05-C-
0002. Opinions, interpretations, conclusions and recommendations are
those of the author and are not necessarily endorsed by the United States
Government.

Fig. 1. In-Storage Computing Architecture

We will discuss how sparse pattern processing
operations can be applied to many applications such as
document search, natural language processing,
bioinformatics, subgraph matching, machine learning, and
graph processing. [5][6][7]. A recent effort, the GraphBLAS
[8], aims to standardize some of these computational kernels
in order to support the development of hardware-
accelerators [9].

Paper organization: Section II describes sparse pattern
matching using document search as an example and presents
several important related applications. Section III introduces
our architecture. Section IV describes implementation
details of the prototype system and its performance
measurements. Sections V and VI conclude with discussions
and summary.

II. SPARSE PATTERN MATCHING
We begin by showing how document search problem

can be formulated as sparse vector multiplications, and then
discuss applications that can benefit from the sparse
processing kernels developed for document processing.

A. Document Matching
The objective of document matching is to find document

candidate(s) that match best to a query document
[10][11][12]. The key idea is similar topics would use
similar vocabulary at high level of occurrences and can be
abstracted into mathematical models based on the words,
their frequencies, and with more sophistication, the ordering
and grouping of the word appearances. Topic modeling
occurs in applications such as natural language
understanding, relationship extraction, sentiment analysis,
topic segmentation, information retrieval, predictive
analysis, and bioinformatics.

A simple example of a document search is shown in Fig.
2, where documents A and B have been pre-processed to
extract prominent words with occurrences above some
threshold. In the UCI Machine Learning Repository [13],
the collection of NY Times articles contains around 300,000
documents with about 100,000 prominent words. The Enron
email collection has almost 40,000 emails with about 28,000
prominent words.

Comparison metric - Cosine similarity: Each

document can be represented as an N-dimensional vector,
where N is the size of the bag-of-words. Each word in the
vocabulary is assigned to one of the N dimensions, and the
value of a dimension corresponds to the occurrence

frequency of the assigned word. In the above example, the
document-A vector would be stored as a sparse vector of 4
non-zero elements, A = [A1, A3, A7, A9]. The indices 1, 3, 7,
9, correspond to the word indices in the bag-of-words.
Document-B vector also happens to have 4 non-zero
elements, B = [B1, B2, B7, B10].

One simple and effective method for comparing high-
dimensional vectors is the Cosine similarity metric, which is
defined below (the top computes the correlation, and the
bottom performs the normalization). Vectors that are closely
aligned would result in large Cosine metric.

Fig. 3 illustrates the computation for the correlation of

sparse vectors A and B, where the vectors A and B
correspond to documents A and B presented above. The
element-wise multiplication of Ai and Bi creates partial
products PPi for each term, but due to sparsity, only the
terms PP1 and PP7 are nonzero and need to be created. The
correlation score is the summation of these partial products.

The match processing of a document-A against the
whole dataset, i.e., document-B, document-C, etc., can be
formulated as a matrix-vector multiplication as illustrated in
Fig. 4. The sparse matrix is the collection of all sparse
vector representations of the documents in the dataset.

There are many opportunities for parallelizing the
processing. One could partition the matrix into K subsets
(separated by dividing lines in Fig. 4) and compute in
parallel on K accelerator kernels.

If a batch of L queries is issued, the problem can be
formulated as sparse matrix - sparse matrix multiplication.
The work can be performed in parallel on K*L kernels, with
K and L parameters determined for optimal accelerator
performance, based on the accelerator computing capability,
data bandwidth, and local working storage.

Fig. 2. Document Matching

Fig. 4. Document Search and Classification

Fig. 3. Pattern Matching as Sparse Vector Multiplication

B. Other applications
Subgraph Matching: Document matching could be

extended into the graph processing domain by considering
subgraphs to be documents, and conducting a search for
subgraphs that contain similar edges. As illustrated in Fig. 5,
each edge could be represented as a “word” containing the
labels of its two vertices. Subgraphs can have different
number of edges, just like documents can have different
sizes. Traversing an edge in the graph corresponds to
performing a word matching operation. The labeling and
partitioning of edges into subgraphs depends on the
application context. Our focus here is on the acceleration of
subgraph matching [14], which is important in biological
networks, event recognition, and community detection.

Feature Matching in Machine Learning: Machine
learning algorithms train their classifiers by churning
through massive amount of data to evaluate and optimize a
set of coefficients, so that the classifications aligns to
desired outcomes. A facial recognition application, for
example, would operate on feature descriptors extracted
from facial images, or prominent words in a document
search analogy. The training process involves many rounds
of matching faces against classifier candidates, not too
different from the scenario depicted in Fig. 4.

For applications that use neural networks, sparse
representation and evaluation enables efficient
implementation. A low-power, portable form factor
accelerator could allow the training of neural networks to
take place in the field rather than back at the office.

Bioinformatics: High dimensional search using a bag-
of-words representation is also useful in the field of
bioinformatics. For example, researchers use protein search
tools such as BLAST[15] to guess the genealogy and
function of proteins by matching against previously
annotated proteins. Since performing an optimal search
algorithm such as Smith-Waterman on the entire annotated
protein database is expensive, each protein sequence in the
database is pre-processed into a more easily searchable
format, such as bag-of-words. This pre-processing step is
not to find the most similar sequence, but rather, to
determine a smaller set of reference sequences statistically
likely to be similar to the query, so that the search space of
the optimal algorithm is significantly reduced.

We have experimented with this approach, by first pre-
process each protein sequence to generate a bag-of-words
representation of all 3-mers, as shown in Fig. 6. Once all
reference protein sequences in the dataset are processed and
encoded in such a sparse format, the previously described

document search kernel can be used to quickly find the set
of relevant reference proteins. This reduces the search on the
35 GB UniProt TrEMBL dataset [16] to an approximately 4
GB bag-of-words, which requires only 2 seconds for our
flash-based prototype to traverse.

III. ACCELERATOR DESIGN
As part of the design process, we performed analysis and

experiments to gain insights into the application. By
decomposing the application into key functions and
performing benchmarking, we can tell if performance is
bounded by data bandwidth or computing capability.

For document matching, computing the Cosine
similarity metric is the key function. Specialized accelerator
can significant improve the performance. Fast data access is
required to keep its computing kernels busy. It is, therefore,
critical to use data structures that are as bandwidth-efficient.

A. Data Representation
Rather than storing the words, we store the index into

the bag-of-words (see Fig. 7). This requires an indexing step,
but allows for much flexibility in abstraction, for example,
“words” can be phrases, strings, or even other features
(images) of the document, etc.

To make effective use of storage bandwidth and
computation, we encoded the vectors, or pattern datasets,
into binary format as shown in Fig. 8. Each data item is 32
bits wide, and is either a pattern identifier, i.e., “Document
A,” or a key/value pair for each word in the document. Each
document in a large dataset can be encoded with a single
pattern identifier followed by a list of key/value pairs.
Comparing to the original data format from UCI repository
[13], which replicates the documentID with each wordID
and stores one word per line, this format saves almost 50%
storage bandwidth.

Fig. 7. Document Encoding Schema

Fig. 8. Data Format

Fig. 5. Subgraph Matching

Fig. 6. Organizing a Protein Sequence into Bag-of-Words

B. Architecture
An architectural view of the sparse pattern matching

kernel is shown in Fig. 9. It consists of a query memory,
accessed through the sideband datapath, and a chain of
computation modules for calculating the Cosine similarity
between the query and data from flash storage. Multiple
kernels are implemented in the system in order to make full
use of the flash storage bandwidth. Each kernel receives its
own data routed from flash storage as controlled by the host
software. Data pages from flash do not necessarily arrive in
order, which necessitates re-ordering and low-level
coordination activities that takes place in the flash storage
interface logic block [4].

The Key Comparator module performs matching of

words from the query document against words of all
documents in the target dataset. A match is declared when
the wordID in a document is the same as the wordID from
the query. This step identifies the index i of the nonzero
partial product PPi in the sparse multiplication described in
Fig. 3. The generation of PPi and computation of Cosine
similarity score are performed in the subsequent Distance
Accumulator module. The score is accumulated for each
document. At the end, documentIDs with high scores are
reported to the computer. Throughout the processing,
subsets of wordIDs are matched in parallel by many kernels.
Due to sparsity, many comparisons must be performed until
a successful match. Thus, the performance of the Key
Comparator has significant impact to the overall operation.

The Query Memory uses a prefetch predictor and
advanced logic to keep the processing pipeline full. A
pointer is used to access the query key (in query memory).
A second pointer tracks the (sorted) candidate key after
loading from flash. For each comparison, one of the two
pointers is incremented, depending on which is bigger. The
candidate key pointer only increases, but the query memory
pointer occasionally needs to be “rewound” upon the end of
the candidate document is reached. Without the prefetch
predictor, the loading of a new query key from query
memory would occur only after it can be determined that no
rewinding is required. Since loading involves latency, this
would waste valuable cycles and reduce performance.
Adding the prefetch predictor logic, as shown in Fig. 10,

allows the query memory to queue prefetched keys into the
comparison unit.

The prefetcher assumes rewind is not to happen. It keeps
requesting reads from block RAM, and enqueues an epoch
value for each read request. The epoch value provides a
frame of reference to distinguish one document processing
interval from another. When a rewind happens, the
prefetcher increments the epoch value. Previously enqueued
prefetches are considered mispredicted reads and discarded.
They are identified by comparing the enqueued epoch
values with the current epoch value.

Fig. 11 shows the interaction of host software
accelerator and flash storage. Each FPGA accelerator kernel
implements the same interface and can be accessed through
4 ports: dataIn, commandIn, resultToMemory, and
dataToStorage. Data read from flash storage is streamed
through dataIn. Commands from the host are sent via the
sideband port commandIn. As the kernel performs
computation, it can send data to be stored to flash via
dataToStorage, or to host software via resultsToMemory.
The host software is responsible for managing the ports, for
example, maintaining a list of free pages that dataToStorage
uses.

Software: A reference C/C++ software implementation
was developed to provide benchmark functionality and a
framework for later integration of the accelerator. The
implementation is parameterized so the user can choose the
number of worker threads to spawn. Each worker is given
its own copy of the query pattern and a contiguous partition
of the dataset. After finishing execution, each thread reports
its top pattern with the largest Cosine metric. The main
thread then selects the global nearest pattern from the small
list of local patterns.

Fig. 10. Prefetching of Query

Fig. 9. Sparse Matching Accelerator Architecture

Fig. 11. Accelerator Interface

IV. IMPLEMENTATION & RESULTS

A. System description
Our application was implemented on a single-node setup

of MIT’s BlueDBM system [4]. A node consists of a 24-
core, 50 GB DRAM Xeon server and a BlueDBM storage
device, which includes a Xilinx VC707 FPGA development
board and a custom-built 1 TB flash module capable of 2
GB/sec throughput. The BlueDBM device and host server
are connected via a Gen2 x8 PCIe link. Fig. 12 highlights
one “accelerator slice” on a server computer and the
software infrastructure for integrating the accelerator.

Eight accelerator kernels were used to fully take
advantage of the 2 GB/s flash bandwidth. Each kernel was
given 8 KBs of query memory on the FPGA block RAM to
store a sparse query vector of up to 2K nonzero elements.
The size of the query memory could be made larger and
more accelerator kernels could be used, but this was more
than adequate for our example application.

We used UCI’s bag-of-words dataset [13] and created

bag-of-words databases for multiple document collections,
including Pubmed. Each database consists of a vocabulary
file that maps words to wordIDs, and a doc file that contains
{documentID, wordID, wordCount} tuples. We also created
large datasets of 100 GBs or more for experiments by
developing a synthesizer that generates permutations of the
smaller sets through adding and removing random words,
and assigning random count values to some words.

B. Results
The document matching performance was averaged over

an interval of 10 seconds for four system configurations:
(1) Hard Disk: Data on hard disk
(2) RAM-Disk: Data in RAM - avoids the

mechanical operation of the disk but still requires the
operating system to perform file operations. Approximates
the upper-bound performance of SSDs.

(3) Memory: Represents the new trend of in-
memory database processing enabled by the availability of
large computer memories and CPU cores.

(4) BlueDBM: Data in flash and most operation
off-loaded to the FPGA accelerator. Minimizes load on CPU
and memory.

Fig. 13 shows the performance for various
configurations as the number of CPU threads is scaled from
1 to 24. Configuration (1) with hard disk is clearly limited
by the disk bandwidth. Configuration (2) using RAM disk
scales to 6 million docs/sec, but eventually runs into the
limitation of file processing by the OS. Configuration (3)
with all data in memory achieves the highest rate of 13
million docs/sec for 24 threads. In real-life, the computer
would need to read data from secondary storage into
memory at least once, so performance would be somewhere
in between configurations (2) and (3).

Configuration (4) using BlueDBM reaches its peak at 10
million docs/sec, limited by the bandwidth of the BlueDBM
flash modules. It is slightly lower than in-memory
processing but almost twice the performance of RAM disk.
Since this configuration offloads most of processing onto
the FPGA, the host software consists of only two threads for
managing the file system and the computation. The CPU
threads >2 in Fig. 13 only apply to non-BlueDBM systems,
as BlueDBM requires two threads and no more.

Fig. 13. Document Processed vs CPU Threads

Note that BlueDBM efficiency comes from our in-store

processing paradigm that uses the FPGA for both computing
acceleration and storage control. Had the FPGA been used
for acceleration alone, the host server would still have
required many threads for 2 GB/s data transfer between
storage and accelerator. With BlueDBM achieving 10
million docs/sec using only 2 CPU threads, a possibility
opens up for extending the application into low-power
portable use cases. A much smaller CPU, such as those
embedded in the FPGA could be used, which prompts an
interesting concept of shrinking and folding the host into the
accelerator itself!

The power measurements are given in Table 1, ranging
from 90 Watts idle to 205 Watts by configuration (3) for in-
memory processing. Configuration (4) with BlueDBM
draws only 120 W, nearly 40% less power, while delivering
a slight reduction in processing rate compared to in-memory
processing. It is also 40% more power efficient and has 40%
better performance than configuration (2) using RAM disk
(upper-bound for SSDs), as shown in Fig. 13.

Fig. 12. BlueDBM System

Table 1: Power Dissipation
Number of

CPU threads
CPU – C++ (4) BlueDBM

with 8
comparators

(1) Data in
hard drive

(3) Data in
memory

1 120 114 NA
2 110 134

120 W
(idle 90W)

4 100 145
8 123 160

16 112 164
24 126 205

V. DISCUSSION

A. Scalability & Cost
The performance of BlueDBM accelerator is limited by

the bandwidth between the accelerator kernels and the flash
storage, which based on the measured figure of 10 million
docs/sec is about 2 GB/s. For the same storage bandwidth, it
is possible to increase computation by processing several
queries together in a batch. Recall the sparse matrix – sparse
matrix discussion near Fig. 4. Up to 20 kernels could be
implemented in the FPGA to process 3 queries in parallel,
yielding an estimated rate of 27 million docs/sec as shown
in Table 2. This performance could alternatively be
achieved for single query issue if the storage bandwidth is
increased to 6 GB/sec, by either accessing neighboring
BlueDBM flash modules via the FPGA network (see Fig. 1),
or upgrading the architecture to use multiple PCIe-based
modules.

Table 2: Accelerator Scalability
Kernels in FPGA Million Docs / sec Flash IO (GB/s)

8 10.35 ~2
20 27 est. 5.4 est.

The CPU in-memory processing, in contrast, is not
bandwidth but rather processing limited. The only way to
get more processing is adding more cores. Extending Fig. 13
to 27 million docs/sec reveals that a 48-core server system
is needed. With 2016 technology, a quad-socket platform
could meet this requirement with 12-core CPUs.

Such a system with ~1.5 TB of memory costs about
$27k, with approximately $10k for memory, $7k for
platform and storage, and $10k for the four 12-core CPUs
(or $32k for four 18-core CPUs). An FPGA-based
accelerator slice including flash modules can be built from
commercial components for less than $6k, or ¼ the cost.

B. Power Optimization
Fig. 14 captures performance and power dissipation for

configurations (3) and (4), where the solid red curve depicts
in-memory CPU processing, and the solid green curve for
BlueDBM in-storage processing. The dotted curves project
the capability of a slightly modified BlueDBM system as
discussed in Table 2.

The blue dotted curve shows an interesting variant of
BlueDBM where the host CPU is downsized and absorbed
into the accelerator itself, i.e., the host-side 2-thread
software now runs on an embedded CPU within the FPGA.
This presents a solution for extreme Size, Weight, and
Power (SWaP) applications.

The idle SWaP solution would draw only 10 Watts
rather than 90 Watts. The blue curve is obtained by shifting
the green curve down by 80 Watts. At the 10 million
doc/sec, power dissipation is expected to be < 50 Watts, and
at 27 million docs/sec about 90 Watts. Our embedded in-
storage processing accelerator would be about 3.8 times
more power efficient than in-memory CPU processing.

Fig. 14. Projection to Technology Generations

C. Sparse Multiplications Performance
The formulation in Fig. 3 of Section II allows us to

project the performance of our document matching kernel to
a generalized performance metric of (nonzero) partial
products per second. This metric is useful for estimating
how applications such as topic modeling [17], centrality
[18], and graph traversal that are amenable to sparse
processing [5] could benefit from our accelerator.

In our experiment, processing of 8.2 million documents
with 483 million words generates 11 million partial products
and takes about 0.8 seconds. This yields 13 million partial
products/sec for sparse vector multiplication. The sparsity
of the data is characterized by the number of prominent
words out of a vocabulary set containing 141,000 words. A
document, on average, contains about 60 such words, hence,
a sparsity of 60/141,000 = 0.04%.

We could notionally attempt to compare our partial
product processing rate to Graphulo server-side sparse
matrix multiplication [19], keeping in mind 1) our results
are immediately consumed – no need for saving back to
database, and 2) the sparsity level should be similar to be
relevant, although strictly speaking two datasets with similar
sparsity may still have different number of partial products
due to the actual distribution of nonzero terms. The data in
the report had 16 nonzeros per vector. For vector size 217 =
131,072 ~141,000, the sparsity comes out to be 0.01%, not
too far from our document search parameter.

Graphulo server-side multiplication peaks at about
300,000 partial products/sec per pair of CPU cores,
attributed to architecture of the Tablet server. Assuming
optimistic linear scaling with CPU cores, it would take a
system with 86 CPU cores to match the 13 million partial
products/sec rate on one baseline BlueDBM accelerator
slice, or 232 CPU cores to match the optimized version.

VI. SUMMARY
We have presented a prototyped document search

accelerator using a novel in-storage processing architecture.
We showed that the sparse pattern processing techniques
can be extended to important applications including text
analysis, bioinformatics, machine learning, graphs, etc. In
our prototyping experiment, one baseline accelerator slice
can process 10 million docs/sec, outperforming a 16-core
system running C/C++ in-memory application, while
incurring a fraction of the power and cost. An optimized
accelerator could match a 48-core server system. Problem
size up to 1 TB can be handled per accelerator slice.

There are many directions for future work. We would
like to explore the application of in-storage analytics
accelerator in a cloud [20][21] or supercomputing setting.
We are also currently developing GraphBLAS compliant
operations in our system for common graph and sparse
linear algebra problems such as one proposed in [22]. We
would also like to investigate how to integrate our system
into more general data management solutions such as the
BigDAWG polystore system [23]. Lastly, we are pursuing
low SWaP computing solutions to enable selected subsets of
the above to be processed in the field.

 References
[1] Dean, Jeffrey, and Sanjay Ghemawat. "MapReduce: simplified data

processing on large clusters." Communications of the ACM 51, no. 1
(2008): 107-113.

[2] Zaharia, Matei, Mosharaf Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. "Spark: Cluster Computing with Working
Sets." HotCloud 10 (2010): 10-10.

[3] Huy Nguyen, James Haupt, Michael Eskowitz, Birol Bekirov,
Jonathan Scalera, Thomas Anderson, Michael Vai, and Kenneth
Teitelbaum, “High-Performance FPGA-Based QR Decomposition,”
High Performance Embedded Computing Workshop, 2005.

[4] Jun, Sang-Woo, Ming Liu, Sungjin Lee, Jamey Hicks, John Ankcorn,
Myron King, and Shuotao Xu. "Bluedbm: an appliance for big data
analytics." InComputer Architecture (ISCA), 2015 ACM/IEEE 42nd
Annual International Symposium on, pp. 1-13. IEEE, 2015.

[5] Gadepally, Vijay, Jake Bolewski, Dan Hook, Dylan Hutchison, Ben
Miller, and Jeremy Kepner. "Graphulo: Linear algebra graph kernels
for NoSQL databases." In Parallel and Distributed Processing
Symposium Workshop (IPDPSW), 2015 IEEE International, pp. 822-
830. IEEE, 2015.

[6] Eggert, Julian, and Edgar Körner. "Sparse coding and NMF."
In Neural Networks, 2004. Proceedings. 2004 IEEE International
Joint Conference on, vol. 4, pp. 2529-2533. IEEE, 2004.

[7] Smola, Alex J., and Bernhard Schölkopf. "Sparse greedy matrix
approximation for machine learning." (2000).

[8] http://graphblas.org/
[9] Bader, David, Aydın Buluç, John Gilbert, Joseph Gonzalez, Jeremy

Kepner, and Timothy Mattson. "The Graph BLAS effort and its
implications for Exascale." In SIAM Workshop on Exascale Applied
Mathematics Challenges and Opportunities (EX14). 2014

[10] Mimno, David, and Andrew McCallum. "Expertise modeling for
matching papers with reviewers." In Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data
mining, pp. 500-509. ACM, 2007.

[11] Gavin, Brendan, Vijay Gadepally, and Jeremy Kepner. "Large
Enforced Sparse Non-Negative Matrix Factorization." In Parallel and
Distributed Processing Symposium Workshop (IPDPSW), 2016 IEEE
International, IEEE, 2016.

[12] Steinbach, Michael, George Karypis, and Vipin Kumar. "A
comparison of document clustering techniques." In KDD workshop on
text mining, vol. 400, no. 1, pp. 525-526. 2000.

[13] Lichman, M. (2013). UCI Machine Learning Repository
[http://archive.ics.uci.edu/ml]. Irvine, CA: University of California,
School of Information and Computer Science

[14] Sun, Zhao, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong
Li. "Efficient subgraph matching on billion node
graphs." Proceedings of the VLDB Endowment 5, no. 9 (2012): 788-
799.

[15] Altschul, Stephen; Gish, Warren; Miller, Webb; Myers, Eugene;
Lipman, David (1990). "Basic local alignment search tool". Journal of
Molecular Biology 215 (3): 403–410.

[16] Bairoch A, and Apweiler R., The Swiss-Prot protein sequence data
bank and its supplement TrEMBL in 2000, Nucl. Acids Res. 28:45-
48(2000).

[17] Wallach, Hanna M. "Topic modeling: beyond bag-of-words."
In Proceedings of the 23rd international conference on Machine
learning, pp. 977-984. ACM, 2006.

[18] Page, Lawrence, Sergey Brin, Rajeev Motwani, and Terry Winograd.
"The PageRank citation ranking: bringing order to the web." (1999).

[19] Hutchison, Dylan, Jeremy Kepner, Vijay Gadepally, and Adam
Fuchs. "Graphulo implementation of server-side sparse matrix
multiply in the Accumulo database." In High Performance Extreme
Computing Conference (HPEC), 2015 IEEE, pp. 1-7. IEEE, 2015.

[20] Johann Hauswald, Michael A. Laurenzano, Yunqi Zhang, Cheng Li,
Austin Rovinski, Arjun Khurana, Ron Dreslinski, Trevor Mudge,
Vinicius Petrucci, Lingjia Tang, and Jason Mars. Sirius: An Open
End-to-End Voice and Vision Personal Assistant and Its Implications
for Future Warehouse Scale Computers. In Proceedings of the
Twentieth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
ASPLOS ’15, New York, NY, USA, 2015. ACM.

[21] Armbrust, Michael, Armando Fox, Rean Griffith, Anthony D. Joseph,
Randy Katz, Andy Konwinski, Gunho Lee et al. "A view of cloud
computing."Communications of the ACM 53, no. 4 (2010): 50-58.

[22] Dreher, Patrick, Chansup Byun, Chris Hill, Vijay Gadepally, Bradley
Kuszmaul, and Jeremy Kepner. "PageRank Pipeline Benchmark:
Proposal for a Holistic System Benchmark for Big-Data Platforms."
In Parallel and Distributed Processing Symposium Workshop
(IPDPSW), 2016 IEEE International, IEEE, 2016.

[23] Elmore, A., J. Duggan, M. Stonebraker, M. Balazinska, U.
Cetintemel, V. Gadepally, J. Heer et al. "A demonstration of the
BigDAWG polystore system."Proceedings of the VLDB
Endowment 8, no. 12 (2015): 1908-1911.

