
HAL Id: hal-00749055
https://inria.hal.science/hal-00749055v1

Submitted on 6 Nov 2012

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Energy-aware Multi-start Local Search Heuristic for
Scheduling VMs on the OpenNebula Cloud Distribution

Yacine Kessaci, Melab Nouredine, El-Ghazali Talbi

To cite this version:
Yacine Kessaci, Melab Nouredine, El-Ghazali Talbi. An Energy-aware Multi-start Local Search Heuris-
tic for Scheduling VMs on the OpenNebula Cloud Distribution. HPCS 2012, Jul 2012, Madrid, Spain.
�hal-00749055�

https://inria.hal.science/hal-00749055v1
https://hal.archives-ouvertes.fr

An Energy-aware Multi-start Local Search Heuristic
for Scheduling VMs on the OpenNebula Cloud

Distribution
Yacine Kessaci, Nouredine Melab

and El-Ghazali Talbi
INRIA Lille, CNRS/LIFL, Université Lille 1.

Parc Scientifique de la Haute Borne,
40 avenue Halley Bât.A, Park Plaza,
59650 Villeneuve d’Ascq, France.

Email: {yacine.kessaci, nouredine.melab, talbi}@lifl.fr

Abstract—Reducing energy consumption is an increasingly
important issue in cloud computing, more specifically when
dealing with a cloud distribution dispatched over a huge number
of machines. Minimizing energy consumption can significantly
reduce the amount of energy bills, and the greenhouse gas
emissions. Therefore, many researches are carried out to develop
new methods in order to consume less energy. In this paper, we
present an Energy-aware Multi-start Local Search algorithm for
an OpenNebula based Cloud (EMLS-ONC) that optimizes the
energy consumption of an OpenNebula managed geographically
distributed cloud computing infrastructure. The results of our
EMLS-ONC scheduler are compared to the results obtained by
the default scheduler of OpenNebula. The two approaches have
been experimented using different (VMs) arrival scenariosand
different hardware infrastructures. The results show that EMLS-
ONC outperforms the previous OpenNebula’s scheduler by a
significant margin in terms of energy consumption. In addition,
EMLS-ONC is also proved to schedule more applications.

Index Terms—energy-aware scheduling, cloud distribution,
cloud computing, resource allocation, OpenNebula, multi-start,
local search.

I. I NTRODUCTION

The field of cloud computing uses different management
techniques for data center virtualization such as OpenNeb-
ula [1]. However, computers use a significant and growing
portion of energy in the world specifically when dealing
with distributed cloud computing infrastructure. Therefore,
energy-aware computing is crucial for large-scale systemsthat
consume considerable amount of energy.

A recent study [2] shows that, the power used by servers
represents about 0.6% of total U.S. electricity consumption.
That proportion grows to 1.2% when cooling and auxiliary
infrastructures are included. In the same year, the aggregate
electricity bill for operating those servers and associated
infrastructure was about $2.7 billions and $7.2 billions for
the U.S. and the world, respectively. The total electricity
consumed by servers doubled over the period 2000 to 2005 in
worldwide and this increase was further confirmed in the last
5 years (2005-2010) [3].

In addition, according to an Amazone’s estimate [4], the
energy-related costs amount represents42% of the total data
center budget, and includes both direct power consumption
19% and cooling infrastructure23%, these values are normal-
ized with a 15 years amortization. It clearly appears that all
the issues cited before are important to tackle and represent a
huge challenge.

In this paper, we present a new work that aims to deal with
the energy consumption within a realistic cloud infrastructure
using OpenNebula as a software management solution. Indeed,
we propose a scheduler instead of the one that is currently
used by OpenNebula. Our scheduler is based on a multi-start
local search heuristic that helps to find the best schedulingby
dispatching the arriving of virtual machines (VM) according
to the minimum energy consumption. A virtual machine is
a software based machine emulation technique to provide a
desirable, on demand computing environments for users. This
approach uses information provided by the hypervisor on each
host to find the best scheduling since the energy consumption
is straightly related to the general host features and to its
current hardware usage information. Our approach aims also
to give the best Quality of Service (QoS) which consists
in satisfying the maximum number of client by meeting
their VMs requirements. The multi-start makes it possible by
exploring a wide range of potential solutions to the problem.

The remainder of the paper is organized as follows. In
Section II we present the related work to our approach. Section
III presents the application, system and energy models usedin
our problem modeling. Our approach is presented in Section
IV. The results of our experimental study are discussed in
Section V. The conclusion is drawn in Section VI.

II. RELATED WORK

After a race to performance, utility and cloud computing
paradigm are facing an energy problem. Hence, several works
have been proposed in the field of the energy aware computing.
However, most of those approaches tackle this topic by refer-
ring and focusing on scheduling dedicated applications. In[5],

[6] for example a hardware technique (DVFS) is proposed. It
consists of varying the CPU frequency in order to minimize the
energy consumption. The drawback of this type of methods is
the assumption that they make about a tight coupling between
the tasks and the resources. Another way of reducing cloud
computing energy footprints is proposed in [7]. This work
uses the potential offered by the virtualization in order to
apply a task consolidation through two heuristics in order to
maximize the resource utilization. In [8] the author presents a
reinforcement learning approach to deal with the optimization
of two main aspects, performance and power consumption.
All the previous presented works aim to reduce the energy
consumption on single data centers or on multiple servers
geographically concentrated. Except the work proposed in [9]
which deals with energy consumption reduction in large-scale
computational grids like Grid5000, by switching off idle nodes
in a clever way. Besides, the work presented byKessaci et
al in [10] deals with the energy consumption, gas emissions
and pricing objectives of a geographically distributed cloud
infrastructure using a Pareto multi-objective genetic algorithm.
The work in [11] proposes a VM scheduling algorithm based
on DVFS technique to reduce the energy consumption of a
single OpenNebula virtualized cluster. The idea behind this
work is to reduce the clock frequency of the cluster as low as
possible to fit exactly the VMs requests.

The major difference of our work with the approach [11]
is that our work deals with not only one cluster but a large
number of geographically distributed machines. Indeed, our
approach tends to provide a scheduler on an HPC virtualized
environment.

In addition, all of the last presented approaches tackle the
energy minimization issue by experimenting their approaches
via simulation. The only work that uses a real infrastructure
for validation, is the one proposed in [9] by using Grid5000.
The problem with this work is that it has been conduced on a
grid and not on a cloud using virtual machines.

To deal with all the misses mentioned before, we pro-
pose a scheduler using a multi-start local search to optimize
the energy on a distributed cloud infrastructure managed by
OpenNebula. Therefore, in our approach we integrated our
scheduler instead of the default one of OpenNebula. This was
possible, given that the software is open source. Hence, our
approach can be deployed at the same time with OpenNebula
on a real distributed infrastructure to schedule VMs.

III. D ISTRIBUTED CLOUD SCHEDULING MODEL

A. System Model

Our model is based on an Infrastructure As A Service
(IAAS) cloud model working under an OpenNebula cloud
manager. Indeed, we are dealing with a two-tier architecture
with in each side respectively a distributed cloud providerand
clients. These latter have access to the cloud by requesting
resources to the provider. The service proposed by the cloud
provider in our approach is offering VMs to the clients in order
to compute their HPC applications. The role of this work is to
help the provider to optimize two criteria while proposing its

service. The model of our cloud is geographically distributed
over the world. The originality of this approach is to propose
a scheduling algorithm that uses a multi-start local searchin
order to find the best scheduling to the VMs on the hosts which
composes the cloud. The location of the default OpenNebula’s
scheduler and its replacement by our EMLS-ONC scheduler is
shown in Figure 1. The objectives considered in our algorithm
are the energy and the number of satisfied clients (QoS). The
scheduler algorithm aims to give the best Quality of Service
(QoS) by allocating the maximum number of VMs, while
helping the provider to minimize his energy consumption. The
optimization of the objectives is due to the heterogeneity of
the hosts that compose the distributed cloud. The heterogeneity
means different cpu, memory and storage capacities. It means
also different cpu speeds and different loads on each host. This
disparity has the same property as the DVFS technique, sinceit
provides different frequencies without needing well-equipped
machines.

B. Energy Model

The energy consumption of a data center results from IT
equipments and auxiliary equipments. In our work we consider
cooling energy consumption among the auxiliary equipment
and computing energy consumption in IT equipments. Indeed,
since our approach treats about HPC usages on a virtualized
environment, the most of the energy consumption is resulted
from the intensive computation.

Our processors energy model is derived from the power
consumption model in Complementary Metal-Oxide Semi-
conductor (CMOS) logic circuits given byP = αf3 + β.

In addition, another source of energy consumption needs
to be taken into account. In fact, the energy used for cooling
the data centers is consequent and has to be integrated in our
energy model. Energy dedicated to cooling is tightly related
to the load of each host. Indeed, the more a host is loaded
the higher its processor frequency is and the more the cooling
system is utilized. The scheduler is informed by the hypervisor
of each host about the current frequency of its processors.

C. Problem Description

Our problem is composed of two-tier architecture. The
first tier is a cloud provider which hasN hosts (data centers)
geographically distributed. The second tier is clients with J

VMs requests for running HPC applications. The problem
consists of schedulingJ applications onN data centers. We
know that the task scheduling problem in general is NP-hard
[12]. Therefore our VMs scheduling problem is NP-hard as
well. Thus, a metaheuristic algorithm (Local search) appears
to be the most appropriate approach to adopt.

In the normal OpenNebula virtual machine features, the
client submits virtual machine requests with QoS require-
ments. Those requirements are the number of cpu and their
speeds, memory size, storage capacity, the type of the operat-
ing system, etc. In our problem, we added a time requirement
in the definition of the VM to know the duration of the request.

Fig. 1. How to Replace the Scheduler of OpenNebula with the EMLS-ONC Scheduler in a Distributed IAAS Cloud

Therefore, during the scheduling process, the user submits
a request for a VMj. A VM in our model is defined by a
triplet (ej , nj ,mj), all the triplet information are given by
the user during the submission, except the starting time of
the VM (tj) which is deduced from the submission time. The
elements of the triplet represent the duration runtime of the
VM (ej), the number of processors needed by the user for
his VM (nj) and finally the memory size (mj). Our triplet
is inspired from Amazon EC2 [13] which asks the user to
give the duration time of his reservation. Thus, the user has
sometimes to pay for a longer VM reservation to ensure the
completion of the applications that he/she runs on it even if
this latter finishes before the end of the reservation time.

The objective functions of our approach aim to minimize the
energy consumption of the entire infrastructure and to provide
the best QoS. It is formulated as follows:

Minimizing the energy consumption =

N∑

i

J∑

j

(E)ij

(1)
Where (E)ij is the power consumption of the hosti while
be used by the VMj. This is done always by respecting the
following constraints:

• Each VM j has to find at least one host with the correct
requirements to be assigned on it otherwise the VM is
rejected.

• Each VM j can be assigned to one and only one hosti.

IV. M ULTI -START LOCAL SEARCH ALGORITHM FOR VM S

SCHEDULING

A. Problem Encoding

In order to formulate our problem without overriding the
previous constraints (i.e. The VM has to find a host with
its requirements and each VM can be scheduled only on one

host), we propose an encoding for the EMLS-ONC solutions
(see Figure 2).

Fig. 2. Problem Encoding

Figure 2 represents one possible scheduling among plenty
that proposes the multi-start local search algorithm. In the
proposed example we identify three major specifications. The
values of the first row of the table (map keys) depict the VMs
that are scheduled, the number which is contained by each cell
of the second row of the table identifies the host to which the
VM is allocated. In other words, if we look at Figure 2, the first
column represents the first VM of the pool that is currently
treated by the EMLS-ONC, it is identified with the id 1. This
VM is allocated to the host 5. The second VM with the id
3 is allocated to the host 0 and so on. This encoding tells us
about the number of VMs contained in the pool, our example
contains 10 VMs. This encoding helps also us to deal with the
characteristics of our problem. Indeed, it allows scheduling all
the VMs of the pool, each VM will be assigned to one and
only one host (no duplication of map keys). A host can handle
more than one VM and not all the hosts are necessarily used
in each solution.

B. Population Initialization

The generation of the initial solution in a local search
algorithm is an important phase. In fact, this step affects
the future results quality. In our approach, since we deal
with a multi-start method, each local search execution has

its own initialization and then its proper initial solution. This
process follows a random and greedy method. Indeed, after the
common phase of the hosts filtering (removing the hosts with
not the correct requirements), each VM obtains a set of hosts
on which it can be assigned. The first phase of the initialization
consists in picking a host from the host set of each VM
randomly. For each host selection, a checking mechanism is
done to verify the respect of the constrains and the availability
of the host in case where previous VMs in the solution already
used the resources. If the host is not available any more, the
greedy phase gets involved and assigns the VM to the next
host in the host set. If no hosts are available for the VM, this
latter is removed from the current scheduled pool and will be
scheduled during the next VM arrival wave.

C. Scheduling Steps

Before each scheduling, the scheduler waits for a fixed
period of time calledscheduling cycle. This period helps to
gather a pool of VMs in order to have a larger choice and thus
to optimize the future scheduling. Once this phase done the
host pool is filtered out to keep only the hosts with the correct
requirements. The multi-start phase launches each local search
algorithm separately. The number of launched LS is equal to
the minimum value between the number of hosts composing
the distributed cloud and 20. The reason of this choice is due
to relationship between the complexity of the problem and
the number of hosts. Indeed, a small number of hosts makes
easier the scheduling since it reduces the opportunities ofVMs
assignments. Therefore, few local searches are enough to get a
good solution. However, the drawback of relating the number
of launched local searches to the number of hosts is the time
consumption. A tradeoff has been found by bounding their
number to 20. After the end of each local search process, all
the best solutions of each LS are compared. Only the best
solution among all the LSs solutions is kept and chosen to
be the scheduling. In the last step, OpenNebula dispatches the
VMs according to this solution, it updated the hosts states and
a new scheduling cycle is started. All the scheduling steps are
drawn in Figure 3.

D. EMLS-ONC Algorithm

The role of the local search algorithm is to make a number
of combinations from the initial solution using neighborhood
relation in order to find the best scheduling according to
the specified objective. Using the multi-start adds diversity,
while each local search plays the role of intensification. The
local search algorithm starts by generating the initial solution.
The initialization process is explained in Section IV-B. This
initial solution is used to generate a neighborhood based on
two neighborhood operators. Both operators are based on an
exchange process. The first operator is dedicated to generate
neighborhoods for small cloud configuration (less than 50
hosts), while the second is dedicated to big neighborhoods
with huge distributed infrastructure. The first operator switches
the value of the host of each VM in the initial solution with
each value of the VM’s set of hosts exhaustively. In the second

operator, the number of hosts is big. Therefore, the algorithm
can not afford to enumerate all the hosts in a reasonable time.
Thus, it switches the selected host with not all the VM’s
hosts set but only with a randomly selected range among this
set. In other words, one iteration of the LS, to generate one
neighborhood, represents the enumeration of all the hosts in
the set of each VM, or the enumeration of all the hosts of the
selected range case of a second operator usage. Each solution
of the generated neighborhood is checked for its feasibility. A
fitness value is also assigned to this solution. The best solution
of the neighborhood is kept to build another neighborhood
during the next iteration using the previous operators. The
algorithm stops when the number of iterations reaches the
number of VMs. Like the number of local searches in the
multi-start, the reason of choosing this value is related tothe
complexity of the problem. Indeed, the more VMs they are
the more iterations are needed to find a good solution.

V. EXPERIMENTS AND RESULTS

This section presents the results obtained from our compar-
ative experimental study. The experiments aim to demonstrate
and evaluate the contribution of the multi-start local search
approach compared to the default OpenNebula’s scheduler.

A. Experimental Settings

The experimental settings concern both sides of our model,
client side with its VMs and provider side with the hardware
configuration of the cloud.

• VMs’ settings: We generated VM in XML format to
let the OpenNebula parser read their features and be as
realistic as possible. The VM features in our experiments
vary according to three points as said before in Sec-
tion III-C with the triplet (e, n,m), in order to fit the
algorithm parameters. Therefore, we generated randomly
the execution timee from [1,10] hours, the processor
requirementn from [0.5,8] and finally the memory needs
m from [1,3] GBs.

• Distributed cloud settings: As for the VMs the hosts
features are provided in XML format to the OpenNebula
parser. Hence, we generated different types of hosts by
changing each time their features. Each host is specified
by its number of cores randomly generated between
[1,24] cores, its memory capacity from [2,24] GB, its
CPU speed from [1,3] Ghz and finally the number of VMs
already running on it [0,10]. In addition, the host features
are logical. Indeed, a host has also information about its
usage rate, which is randomly generated and never exceed
the initial capacity. The free resources are deduced from
the initial host capacity and its current usage rate.

B. Algorithm and Experiments Parameters

Our approach deals with VMs for HPC usage. Therefore,
we conducted our experiments on only one scheduling cycle.
Indeed, this experiment protocol helps to compare the ability
of both algorithms EMLS-ONC and the default OpenNebula
scheduler to handle a big number of VMs requests at the same

Fig. 3. The Flowchart of the EMLS-ONC Algorithm

time. In addition, comparing them on onescheduling cycle
helps to get their processing time. In fact, both algorithms
have as a constraint to provide their results before the end of
the scheduling cycle time, and so the arrival of a new pool
of VMs. Moreover, the experiments deal with the scheduling
process part of the algorithm not the physical dispatching of
the VMs.

In our experiments we used some parameters (Scheduling
cycle, number of VM per host at each scheduling cycle, vary-
ing arrival rate of the VMs and number of hosts composing
the cloud). We performed experiments with 4 different cloud
configurations, from a small local cloud with 5 hosts to a
massive geographically distributed cloud with 1280 machines.
Concerning varying arrival rates we use 4 different VMs loads
from a single VM to a massive arrival of 100 VMs on one
scheduling cycle. We also limited the number of assigned VM
per host for each scheduling cycle to 3 VMs. A full description
of the experiments parameters is given in Table I.

TABLE I
EXPERIMENTAL PARAMETERS

Parameter Value
Max VM per host 3
Scheduling cycle 30s

Number of VM per arrival rate 1, 10, 40, 100
Number of hosts 5, 80, 320, 1280

C. Experimental Results

To the best of our knowledge no previous approach deals
with a multi-start local search scheduler for a realistic Open-
Nebula managed distributed cloud. Thus, we perform a set of

experiments with different parameters. In addition of optimiz-
ing the energy, the approach has first to satisfy the maximum
number of clients (VMs requests). A comparison between our
approach and the previous OpenNebula’s scheduler appears
to us to be the best choice to evaluate our work. Since
our method is a metaheuristic, it has a part of stochasticity.
Therefore, we run each experiment 20 times. The results are
the average value of all the executions. They are presented
in Table II. Experiments show that our approach improves
the results obtained by the OpenNebula scheduler in all the
configuration while scheduling averagely more VMs. There
is only two configurations where the results obtained by the
previous OpenNebula’s scheduler are better than the EMLS-
ONC ones. This phenomenon can be explained for the first
instance (10 VMs, 80 hosts) by the lack of intensification.
Indeed, as said before the number of LS iterations is related
to the number of VMs. In the other instance (40 VMs, 5 hosts),
the problem is due to the lack of diversification caused by the
small number of LS starts. Hence, the solution gets trapped in
a local optima despite the intensification.

In addition, EMLS-ONC returns results in a small time
duration, largely lower than the threshold represented by the
scheduling cycle. It respects therefore, the rapidity required
for schedulers.

To summarize, in our approach, the energy consumption
is reduced averagely by15,6% compared to the OpenNebula
default scheduler, while assigning averagely1,3% more VMs
than this latter.

TABLE II
COMPARISON BETWEEN THE RESULTS OBTAINED BY THEEMLS-ONCALGORITHM AND THE OPENNEBULA SCHEDULER

Number of VMs 1
Number of Consumed Energy Time

Number of hosts scheduled VMs (Energy Unit) (s)
EMLS-ONC OpenNebula schedulerEMLS-ONC OpenNebula schedulerEMLS-ONC OpenNebula scheduler

5 1 1 453035 453035 10e-04 10e-06
80 1 1 2505407.9 3973660 10-e03 10e-06
320 1 1 2841140.6 3973660 10-e03 10e-06
1280 1 1 181747.4 226517 10-e02 10e-06

Number of VMs 10
Number of Consumed Energy Time

Number of hosts scheduled VMs (Energy Unit) (s)
EMLS-ONC OpenNebula schedulerEMLS-ONC OpenNebula schedulerEMLS-ONC OpenNebula scheduler

5 6 7 3328294.6 3624280 10e-03 10e-06
80 10 10 22162200 19340900 10e-02 10e-05
320 10 10 22108773.3 34809800 10e-02 10e-02
1280 10 10 12144173.3 13509200 0.2 10e-04

Number of VMs 40
Number of Consumed Energy Time

Number of hosts scheduled VMs (Energy Unit) (s)
EMLS-ONC OpenNebula schedulerEMLS-ONC OpenNebula schedulerEMLS-ONC OpenNebula scheduler

5 11.6 12 25837606.7 18146400 10e-02 10e-04
80 40 40 56091493.3 73667200 0.1 10e-04
320 40 40 68386173.3 84563000 0.2 10e-04
1280 40 40 59823060 65303900 0.8 10e-04

Number of VMs 100
Number of Consumed Energy Time

Number of hosts scheduled VMs (Energy Unit) (s)
EMLS-ONC OpenNebula schedulerEMLS-ONC OpenNebula schedulerEMLS-ONC OpenNebula scheduler

5 13.9 14 3100997.3 41853300 10e-02 10e-04
80 91.7 84 175029600 181780000 0.7 10e-03
320 100 100 132239933 149678000 1 10e-03
1280 100 100 135882200 161002000 2.4 10e-03

VI. CONCLUSION

In this paper, we presented a new scheduler for the cloud
manager OpenNebula using a multi-start local search algo-
rithm to minimize the energy consumption, while satisfying
the clients QoS by assigning the maximum VMs. The energy
saving of our approach exploits the disparity and the difference
in the features of the hosts that compose the distributed cloud.

Our new approach has been evaluated with XML generated
pools of VMs and hosts to fit the OpenNebula specifications
since EMLS-ONC is embedded in this latter. Experiments
show that our multi-start LS improves on average the results
obtained by the OpenNebula’s default scheduler by15,6%. In
addition, our approach schedules on average1,3% more VMs
than the OpenNebula’s previous scheduler.

Besides, the major perspectives of this work is to minimize
more the energy consumption by using a better energy model
including other energy consumption resources like memory
and hard drives. Moreover, the model will be improved by
adding other objectives like green house gas emission, profit,
etc. In addition, we can imagine a dynamic EMLS-ONC
scheduler which will reassign VMs during their running phase

on different hosts to optimize more the energy. However, this
will depend on the flexibility, the data transfer cost and the
CPU time complexity of the VMs since we deal with HPC
applications VMs.

Finally, we are planning to deploy our algorithm through
the OpenNebula cloud distribution, on top of the geographi-
cally distributed cloud offered by the EGI grid infrastructure.
Thus, we will give the opportunity to exploit the European
geographical dispersion offered by EGI for energetic and / or
environmental purposes.

REFERENCES

[1] J. Fontan, T. Vazquez, L. Gonzalez, R. S. Montero, and I. M. Llorente,
“Opennebula: The open source virtual machine manager for cluster
computing,” inSan Francisco, CA, USA, May 2008.

[2] J. G. Koomey, “Estimating total power consumption by servers in the
U.S. and the world.”

[3] (2011) Efficape energie. http://www.efficap-energie.com/.
[4] J. Hamilton, “Cooperative expendable micro-slice servers (CEMS): Low

cost, low power servers for internet-scale services,” inProceedings of
4th Biennial Conference on Innovative Date Systems Research (CIDR),
Asilomar, California, USA, January, 2009.

[5] Y. C. Lee and A. Y. Zomaya, “Minimizing energy consumption for
precedence-constrained applications using dynamic voltage scaling,” in

CCGRID’09: Proceedings of the 2009 9th IEEE/ACM International
Symposium on Cluster Computing and the Grid, 2009, pp. 92–99.

[6] N. B. Rizvandi, J. Taheri, A. Y. Zomaya, and Y. C. Lee, “Linear com-
binations of dvfs-enabled processor frequencies to modifythe energy-
aware scheduling algorithms,”Cluster Computing and the Grid, IEEE
International Symposium on, vol. 0, pp. 388–397, 2010.

[7] Y. Lee and A. Zomaya, “Energy efficient utilization of resources in cloud
computing systems,”The Journal of Supercomputing, pp. 1–13, 2010,
10.1007/s11227-010-0421-3.

[8] G. Tesauro, R. Das, H. Chan, J. O. Kephart, D. Levine, F. L.R. III,
and C. Lefurgy, “Managing power consumption and performance of
computing systems using reinforcement learning,” inNIPS, 2007.

[9] A.-C. Orgerie, L. Lefevre, and J.-P. Gelas, “Save watts in your grid:
Green strategies for energy-aware framework in large scaledistributed
systems,” inParallel and Distributed Systems, 2008. ICPADS ’08. 14th
IEEE International Conference on, 2008, pp. 171 –178.

[10] Y. Kessaci, N. Melab, and E.-G. Talbi, “A pareto-based GA for schedul-
ing HPC applications on distributed cloud infrastructures,” in High
Performance Computing and Simulation (HPCS), 2011 International
Conference on, july 2011, pp. 456 –462.

[11] Power-Aware Scheduling of Virtual Machines in DVFS-enabled Clusters.
New Orleans, LA: IEEE Computer Society, 08/2009 2009. [Online].
Available: http://cyberaide.googlecode.com/svn/trunk/papers/09-greenit-
cluster09/vonLaszewski-cluster09.pdf

[12] M. R. Garey and D. S. Johnson,Computers and Intractability: A Guide
to the Theory of NP-Completeness. New York, NY, USA: W. H.
Freeman & Co., 1979.

[13] Amazon elastic compute cloud (Amazon EC2).
http://aws.amazon.com/fr/ec2/.

