1811.00156v1 [cs.DC] 31 Oct 2018

arxXiv

OpenCL Performance Prediction using
Architecture-Independent Features

Beau Johnston
Research School of Computer Science
Australian National University
Canberra, Australia
beau.johnston@anu.edu.au

Abstract—OpenCL is an attractive programming
model for heterogeneous high-performance computing
systems, with wide support from hardware vendors
and significant performance portability. To support
efficient scheduling on HPC systems it is necessary to
perform accurate performance predictions for OpenCL
workloads on varied compute devices, which is challeng-
ing due to diverse computation, communication and
memory access characteristics which result in varying
performance between devices.

The Architecture Independent Workload Characteriza-
tion (AIWC) tool can be used to characterize OpenCL
kernels according to a set of architecture-independent
features. This work presents a methodology where
AIWC features are used to form a model capable of
predicting accelerator execution times. We used this
methodology to predict execution times for a set of 37
computational kernels running on 15 different devices
representing a broad range of CPU, GPU and MIC
architectures. The predictions are highly accurate, dif-
fering from the measured experimental run-times by
an average of only 1.2%, and correspond to actual exe-
cution time mispredictions of 9 us to 1 sec according to
problem size. A previously unencountered code can be
instrumented once and the AIWC metrics embedded
in the kernel, to allow performance prediction across
the full range of modelled devices. The results suggest
that this methodology supports correct selection of
the most appropriate device for a previously unen-
countered code, which is highly relevant to the HPC
scheduling setting.

Index Terms—workload characterization, accelerator,
modelling, prediction, HPC, supercomputing

I. INTRODUCTION

HPC architectures are becoming increasingly heteroge-
neous. This trend is increasingly apparent at the node level
in supercomputer systems. For instance, the Cori system
at Lawrence Berkeley National Laboratory comprises 2,388
Cray XC40 nodes with Intel Haswell CPUs, and 9,688 Intel
Xeon Phi nodes [1]. The Summit supercomputer at Oak
Ridge National Laboratory is based on the IBM Power9
CPU, which includes both NVLINK [2], a high bandwidth
interconnect between Nvidia GPUs; and CAPI, an in-
terconnect to support FPGAs and other accelerators [3].

Greg Falzon

School of Science and Technology Research School of Computer Science

University of New England
Armidale, Australia
gfalzon2@une.edu.au

Josh Milthorpe

Australian National University
Canberra, Australia
josh.milthorpe@anu.edu.au

Promising next-generation architectures include Fujitsu’s
Post-K [4], and Cray’s CS-400, which forms the platform
for the Isambard supercomputer [5]. Both architectures use
ARM cores alongside other conventional accelerators, with
several Intel Xeon Phi and Nvidia P100 GPUs per node.

The OpenCL programming framework is well-suited to
such heterogeneous computing environments, as a single
OpenCL code may be executed on multiple different device
types including most CPU, GPU and FPGA devices.
Predicting the performance of a particular application on
a given device is challenging due to complex interactions
between the computational requirements of the code and
the capabilities of the target device. Certain classes of
application are better suited to a certain type of accelerator
[6], and choosing the wrong device results in slower and
more energy-intensive computation [7]. Thus accurate per-
formance prediction is critical to making optimal scheduling
decisions in a heterogeneous supercomputing environment.

The Architecture-Independent Workload Characterization
(AIWC) tool [8] was previously introduced in order to
collect architecture-independent features of OpenCL ap-
plication workload. AIWC operates on OpenCL kernels
by simulating an OpenCL device and performing in-
strumentation to collect various features to characterize
parallelism, compute complexity, memory and control that
are independent of the target execution architecture. In
this paper, we propose a model that employs the ATWC
features to make accurate predictions over a range of
current accelerators. These features are used to build a
model which accurately predicts the execution times of a
previously unseen OpenCL code over the range of available
devices. The performance predictions from this model may
serve as input to scheduling decisions on heterogeneous
supercomputing systems.

A major benefit of this approach is that the developer
need only instrument a kernel once and the ATWC metrics
can be embedded as a comment in the kernel’s source
code or Standard Portable Intermediate Representation
(SPIR). A scheduler system could be augmented to use the
performance model with very low overhead, since querying

the model is computationally inexpensive. The model need
only be retrained when a new accelerator type is added.
The methodology to develop the model is outlined in the
following sections. All tools used are open source, and all
code is available in the respective repositories: [9] and [10].

II. RELATED WORK

Augonnet et al. [11] propose a task scheduling framework
for efficiently issuing work between multiple heterogeneous
accelerators on a per-node basis. They focus on the dynamic
scheduling of tasks while automating data transfers between
processing units to better utilise GPU-based HPC systems.
Much of this work is placed on evaluating the scaling of
two applications over multiple nodes — each of which are
comprised of many GPUs. Unfortunately, the presented
methodology requires code to be rewritten using their
MPI-like library. OpenCL, by comparison, has been in use
since 2008 and supports heterogeneous execution on most
accelerator devices. The algorithms presented to automate
data movement should be reused for scheduling of OpenCL
kernels to heterogeneous accelerator systems.

Existing works, [12], [13], [14] and [15], have addressed het-
erogeneous distributed system scheduling and in particular
the use of Directed Acyclic Graphs to track dependencies
of high priority tasks. Provided the parallelism of each
dependency is expressed as OpenCL kernels, the model
proposed here can be used to improve each of these
scheduler algorithms by providing accurate estimates of
execution time for each task for each potential accelerator
on which the computation could be performed.

Our work is most closely related to efforts to enable low-
cost performance estimates over a wide range of execution
platforms. One such approach uses partial execution, as
introduced by Yang et al. [16]. Here a short portion of
a parallel code is executed and, since parallel codes are
iterative behave predictably after the initial startup portion.
An important restriction for this approach is it requires
execution on each of the accelerators for a given code,
which may be complicated to achieve using common HPC
scheduling systems.

An alternative performance prediction approach is given by
Carrington et al. [17]. Their solution generates two separate
models each requiring two fundamental components: firstly,
a machine profile of each system generated by running
micro-benchmarks to probe simple performance attributes
of each machine; and secondly, application signatures
generated by instrumented runs which measure block
information such as floating-point utilization and load/store
unit usage of an application. This is akin to our proposed
solution using AIWC to generate each application signature
and the generation of a random forest model to learn each
machine profile. However, in their method, no training
takes place and the micro-benchmarks were developed

with CPU memory hierarchy in mind, thus it is unsuited
to a broader range of accelerator devices. There are
also many components and tools in use, for instance,
network traffic is interpreted separately and requires the
communication model to be developed from a different
set of network performance capabilities, which needs more
micro-benchmarks. In comparison, our proposed solution
uses a plugin to the Oclgrind tool, which is already widely
used by OpenCL developers.

III. METHODOLOGY

The ATWC tool [8] is a plugin to the Oclgrind [18] OpenCL
device simulator, debugging and instrumentation tool.
ATWC simulates the execution of OpenCL kernels to collect
architecture-independent features which characterize each
code. It operates on a restricted LLVM IR known as
Standard Portable Intermediate Representation (SPIR)
[19], thereby simulating OpenCL kernel code in a hardware
agnostic manner. The ATWC metrics are shown in Table
[l We collected these metrics for a suite of benchmarks
representative of scientific codes, which cover a wide
spectrum of computation, communication and memory
access patterns. For each benchmark, we also collected
detailed performance measurements on a varied set of
compute devices.

A. Ezperimental Setup

ATWC was used to characterize a variety of codes in the
OpenDwarfs Extended (ODE) Benchmark Suite [20], and
the corresponding ATWC metrics were used as predictor
variables in to fit a random forest regression model. The
metrics were generated over 4 problem sizes for each of the
11 applications — and 37 computationally regions known
as kernels in the OpenCL setting. Response variables were
collected following the same methodology outlined in [20]
— where the details for each of the applications is also
presented. Execution times were measured for at least
50 iterations and a total runtime of at least two seconds
for each combination of device and benchmark. Each
application was run over 15 different accelerator devices,
and are presented in Table[[l] The L1 cache size should be
read as having both an instruction cache and a data cache of
the stated size. For Nvidia GPUs, the L2 cache size reported
is the size L2 cache per SM multiplied by the number of
SMs. For the Intel CPUs, Hyper-threading was enabled
and the frequency governor was set to performance.

B. Constructing the Performance Model

The R programming language was used to analyse the data,
construct the model and analyse the results. In particular,
the ranger package by Wright and Ziegler [21] was used
for the development of the regression model. The ranger
package provides computationally efficient implementations

Table I:. AIWC tool metrics.

Type Metric Description
Compute opcode # of unique opcodes required to cover 90% of dynamic instructions
Compute Total Instruction Count Total # of instructions executed
Parallelism Work-items # of work-items or threads executed
Parallelism Total Barriers Hit maximum # of instructions executed until a barrier
Parallelism Min ITB minimum # of instructions executed until a barrier
Parallelism Max ITB maximum # of instructions executed until a barrier
Parallelism Median ITB median # of instructions executed until a barrier
Parallelism Max SIMD Width maximum number of data items operated on during an instruction
Parallelism Mean SIMD Width mean number of data items operated on during an instruction
Parallelism SD SIMD Width standard deviation across the number of data items affected
Memory Total Memory Footprint # of unique memory addresses accessed
Memory 90% Memory Footprint # of unique memory addresses that cover 90% of memory accesses
Memory Global Memory Address Entropy measure of the randomness of memory addresses
Memory Local Memory Address Entropy measure of the spatial locality of memory addresses
Control Total Unique Branch Instructions # unique branch instructions
Control 90% Branch Instructions # unique branch instructions that cover 90% of branch instructions
Control Yokota Branch Entropy branch history entropy using Shannon’s information entropy
Control Average Linear Branch Entropy branch history entropy score using the average linear branch entropy
Table II: Experimental hardware for generating runtime response data
Name Vendor | Type Series Core CIOCk(l\lj[ﬁ;l;lency Cache (KiB) TDP Launch
Count (min/max /turbo) (L1/L2/L3) (W) Date
Xeon E5-2697 v2 Intel CPU | Ivy Bridge 24 1200,/2700/3500 32/256/30720 130 | Q3 2013
i7-6700K Intel CPU Skylake 8x 800/4000/4300 32/256/8192 91 | Q3 2015
i5-3550 Intel CPU | lvy Bridge 4% 1600/3380/3700 32/256/6144 77 | Q22012
Titan X Nvidia | GPU Pascal 3584t 1417/1531 /- 48/2048 /- 250 | Q3 2016
GTX 1080 Nvidia | GPU Pascal 25607 1607/1733/— 48/2048 /- 180 | Q2 2016
GTX 1080 Ti Nvidia | GPU Pascal 3584t 1480/1582/— 48/2048 /- 250 | Q1 2017
K20m Nvidia | GPU Kepler 24967 706/—/— 64/1536/— 225 | Q4 2012
K40m Nvidia | GPU Kepler 28807 745/875/— 64/1536/— 235 | Q4 2013
FirePro S9150 AMD GPU Hawaii 2816|| 900/—/— 16/1024 /- 235 | Q32014
HD 7970 AMD GPU Tahiti 2048 925/1010/— 16/768/— 250 | Q4 2011
R9 290X AMD GPU Hawaii 2816| 1000/—/- 16/1024 /- 250 | Q3 2014
R9 295x2 AMD GPU Hawaii 5632|| 1018/—/— 16/1024 /- 500 | Q22014
R9 Fury X AMD GPU Fuji 4096|| 1050/—/— 16/2048/— 273 | Q22015
RX 480 AMD GPU Polaris 4096 || 1120/1266/— 16/2048 /- 150 | Q2 2016
Xeon Phi 7210 Intel MIC KNL 2561 1300/1500/— 32/1024/— 215 | Q2 2016

* HyperThreaded cores
T CUDA cores
I Stream processors

 Each physical core has 4 hardware threads per core, thus 64 cores

of the Random Forest model [22] which performs recursive
partitioning of high dimensional data.

The ranger function accepts three main parameters, each
of which influences the fit of the model to the data. In
optimizing the model, we searched over a range of values
for each parameter including:

o num.trees, the number of trees grown in the random
forest: over the range of 10 — 10,000 by 500

o mtry, the number of features tried to possibly split
within each node: ranges from 1 — 34, where 34 is
the maximum number of input features available from
AIWC,

o min.node.size, the minimal node size per tree: ranges
from 1 — 50, where 50 is the number of observations
per sample.

Given the size of the data set, it was not computationally
viable to perform an exhaustive search of the entire 3-

dimensional range of parameters. Auto-tuning to determine
the suitability of these parameters has been performed by
Liefl et al. [23] to determine the optimal value of mtry
given a fixed num.trees. Instead, to enable an efficient
search of all variables at once, we used Flexible Global
Optimization with Simulated-Annealing, in particular, the
variant found in the R package optimization by Husmann,
Lange and Spiegel [24]. The simulated-annealing method
both reduces the risk of getting trapped in a local minimum
and is able to deal with irregular and complex parameter
spaces as well as with non-continuous and sophisticated
loss functions. In this setting, it is desirable to minimise the
out-of-bag prediction error of the resultant fitted model,
by simultaneously changing the parameters (num.trees,
mtry and min.node.size). The optim__sa function allows
defining the search space of interest, a starting position, the
magnitude of the steps according to the relative change in
temperature and the wrapper around the ranger function
(which parses the 3 parameters and returns a cost function

10

prediction error (%)

0 10 20 30 40 50
min.node.size

Figure 1: Full coverage of min.node.size with fixed tuning
parameters: num.trees = 300 and mtry = 30.

10000
7500
prediction
2 error (%)
g
= 5000 160
E II 120
c 80
40
2500

1

1 5 10 15 20 25 30 34
mtry

Figure 2: Full coverage of num.trees and mtry tuning
parameters with min.node.size fixed at 9.

— the predicted error). It allows for an approximate global
minimum to be detected with significantly fewer iterations
than an exhaustive grid search.

Figure [I] shows the relationship between out-of-bag predic-
tion error and min.node.size, with the num.trees = 300 and
mtry = 30 parameters fixed. In general, the min.node.size
has the smallest prediction error for values less than 15 and
variation in prediction error is similar throughout this range.
As such, the selection to fix min.node.size = 9 was made to

reduce the search-space in the remainder of the tuning work.
We assume conditional (relative) independence between
min.node.size and the other variables.

Figure [2] shows how the prediction error of the random-
forest ranger model changes over a wide range of values for
the two remaining tuning parameters, mtry and num.trees.
Full coverage was achieved by selecting starting locations in
each of the 4 outer-most points of the search space, along
with 8 random internal points — to avoid missing out
on some critical internal structure. For each combination
of parameter values, the optim__sa function was allowed
to execute until a global minimum was found. At each
step of optimization a full trace was collected, where all
parameters and the corresponding out-of-bag prediction
error value were logged to a file. This file was finally loaded,
the points interpolated using the R package akima, without
extrapolation between points, using the mean values for
duplication between points. The generated heatmap is
shown in Figure [2|

A lower out-of-bag prediction error is better. For values
of mtry above 25, there is good model fit irrespective of
the number of trees. For lower values of mtry, fit varies
significantly with different values of num.trees. The worst
fit was for a model with a value of 1 num.trees, and 1 for
mtry, which had the highest out-of-bag prediction error
at 194%. In general, the average prediction error across
all choices of parameters is very low at 16%. Given these
results, the final ranger model should use a small value
for num.trees and a large value for mtry, with the added
benefit that such a model can be computed faster given a
smaller number of trees.

C. Choosing Model Parameters

The selected model should be able to accurately predict
execution times for a previously unseen kernel over the
full range of accelerators. To show this, the model must
not be over-fitted, that is to say, the random forest model
parameters should not be tuned to the particular set of
kernels in the training data, but should generate equally
good fits if trained on any other reasonable selection of
kernels.

We evaluated how robust the selection of model parameters
is to the choice of kernel by repeatedly retraining the model
on a set of kernels, each time removing a different kernel.
The procedure used is presented in Algorithm [T} For each
selection of kernels, optima_sa was run from the same
starting location — num.trees=500, mtry=32 — and the
final optimal values were recorded. min.node.size was fixed
at 9.

The optimal — and final — parameters for each omitted
kernel are presented in Table[[TI] Regardless of which kernel
is omitted, the R-squared values — or explained variance
— is very high at 0.99, indicating a good model fit. The

Algorithm 1: Find the suitability of the optimal parame-
ters for random forest models for future kernels

Algorithm 2: Compute average fit of random forest
models trained on different numbers of kernels.

for each unique kernel do
construct a full data frame with all but the current

kernel;

run optimization optim__sa with the full data frame at
selected starting location;

record the final optimal parameters

Table III: Optimal tuning parameters from the same
starting location for all models omitting each individual
kernel.

prediction

Kernel omitted num.trees mtry error
(%)

invert__mapping 521 31 4.3
kmeansPoint 511 30 4.1
lud__diagonal 527 29 4.4
lud__internal 488 31 4.5
lud__perimeter 480 31 4.4
csr 507 30 4.4
fitRadix16Kernel 484 29 4.4
fitRadix8Kernel 529 34 4.3
fitRadix4Kernel 463 30 4.2
fitRadix2Kernel 443 28 4.4
calc_ potential_single step 502 24 4.8
c__ CopySrcToComponents 529 31 4.1
cl fdwtb3Kernel 499 26 4.7
srad cuda 1 504 32 4.7
srad__cuda_ 2 500 29 4.6
kernell 536 30 4.5
kernel2 469 31 4.6
acc_b_ dev 576 28 4.4
calc_alpha_ dev 469 30 4.3
calc_ beta_ dev 498 30 4.3
calc__gamma_ dev 517 28 4.4
calc_xi_ dev 439 33 4.3
est_a_dev 524 30 4.2
est_b_dev 533 28 4.3
est_ pi_dev 450 31 4.3
init_alpha_ dev 558 32 2.6
init beta_dev 467 30 4.1
init _ones dev 566 32 4.1
mvm_ non__kernel_naive 514 30 4.3
mvm_ trans kernel naive 449 32 4.4
scale_a_ dev 508 31 4.3
scale__alpha_ dev 530 30 3.8
scale b dev 565 31 4.2
s_ dot__kernel_ naive 509 30 4.5
needle_ opencl_shared_ 1 499 30 4.4
needle_ opencl_shared_ 2 504 29 4.5
crc32_slice8 511 29 4.3

optimal parameters are very similar regardless of which
kernel was omitted. As such, the median value of each of
the parameters was selected for the final model: num.trees
= 505, mtry = 30 and min.node.size = 9. These parameters
were used for all further model training.

D. Performance Improvement with Increased Training Data

For a model to be useful in predicting execution times
for previously unseen kernels, it needs to be trained on a

5+ 500

k <+—unique(kernel)

for i « 1to length(k) do

vp]

U H

for j + 1 to s do

x +shuffle(k)

y < x[l..1]

training data < subset(¢, kernel == y)

test data < subset(¢, kernel | = y)

discard variables unavailable during real-world
training from training data e.g. size,
application, kernel name and measured total
application time

build ranger model r using training data

generate prediction responses p from r using test
data

append predicted execution times p to v,

append measured execution times from test data

to v
compute"t%he mean absolute error e from vector of p

relative to vector m
store(e)

representative sample of kernels i.e. a sample that provides
good coverage of the AIWC feature space of all possible
application kernels.

We measured how model fit improves with the number of
kernels used in training, following the method presented
in Algorithm [2l The set of unique kernels available during
model development is denoted by k (37 kernels in this
study), s is the maximum number of sample models
(including different combinations of kernels) to evaluate
for each number of kernels 1..|k|, ¢ is a data frame of
the combined AIWC feature-space with measured runtime
results. The parameters to the random forest model were
fixed at num.trees = 505, mtry = 30 and min.node.size =
9, according to the methodology in Section [[II-C|

The results presented in Figure [3| show the mean absolute
error of models trained on varying numbers of kernels. As
expected, the model fit improves with increasing number
of kernels. In particular, larger improvements occur with
each new kernel early in the series and tapers off as a
new kernel is added to an already large number of kernels.
The gradient is still significant until the largest number
of samples examined (k = 37) suggesting that the model
could benefit from additional training data. However, the
model proposed is a proof of concept and suggests that a
general purpose model is attainable and may not require
many more kernels.

15

=
o

mean absolute error
o
o

0.0

0 10 20 30
number of kernels

Figure 3: Prediction error across all benchmarks for models
trained with varying numbers of kernels.

u..‘“!
.10 by
)
3
- .
o Size
- .
S tiny
S - small
o -+ medium
2 large
<)
o

log(measured ps)

Figure 4: Predicted vs. measured execution time for all
kernels

IV. EVALUATION

Figure [presents the measured kernel execution times
against the predicted execution times from the trained
model. Each point represents a single combination of kernel
and problem size. The plot shows a strong linear correlation
indicating a good model fit. Under-predictions typically
occur on four kernels over the medium and large problem
sizes, while over-predictions occur on the tiny and small
problem sizes. However, these outliers are visually over-

represented in this figure as the final mean absolute error
is low, at ~0.11.

V. MAKING PREDICTIONS

In this section, we examine differences in accuracy of
predicted execution times between different kernels, which
is of importance if the predictions are to be used in a
scheduling setting.

The four heat maps presented in Figure [5| show the
difference between mean predicted and measured kernel
execution times as a percentage of the measured time.
Thus, they depict the relative error in prediction — lighter
indicates a smaller error. Four different problem sizes
are presented: tiny in the top-left, small in the top-right,
medium bottom-left, large bottom-right.

In general, we see highly accurate predictions which
on average differ from the measured experimental run-
times by 1.1%, which correspond to actual execution time
mispredictions of 8 us to 1 secs according to problem size.

The init_alpha_dev kernel is the worst predicted kernel
over both the tiny and small problem sizes, with mean
misprediction at 7.3%. However, this kernel is only run
once per application run — it is used in the initialization of
the Hidden Markov Model — and as such there are fewer
response variables available for model training.

VI. THE BENEFITS OF THIS APPROACH

To demonstrate the utility of the trained model to guide
scheduling choices, we focus on the accuracy of performance
time prediction of individual kernels over all devices. The
model performance in terms of real execution times is
presented for four randomly selected kernels in Figure
[(l The shape denotes the type of execution time data
point, a square indicates the mean measured time, and
the diamond indicates the mean predicted time. Thus, a
perfect prediction occurs where the measured time — square
— fits perfectly within the predicted — diamond — as seen in
the legend.

The purpose of showing these results is to highlight the set-
ting in which they could be used — on the supercomputing
node. In this instance, it is expected a node to be composed
of any combination of the 15 devices presented in the Figure
[(l Thus, to be able to advise a scheduler which device to
use to execute a kernel, the model must be able to correctly
predict on which of a given pair of devices the kernel will
run fastest. For any selected pair of devices, if the relative
ordering of the measured and predicted execution times
is different, the scheduler would choose the wrong device.
In almost all cases, the relative order is preserved using
our model. In other words, our model will correctly predict
the fastest device in all cases — with one exception, the
kmeansPoint kernel. For this kernel, the predicted time of

0 10 20 30 40

kernel kernel
)
AN
% S SN2\ $
nv\/ON \WQA\%QA\ @6/ \Q@«\ \OQ \OQ Q@m\
%@W@m\ PN % %, %, %, %,
T, & ST A, p: «,\\6\/@ 0. %\/ %\/ YOS \@A\ %, 0.
DN 0,8 «A\Q % 2, .25, % 223595, &y AN % % B %y (S
Y IR) T, RO 4 858 AU Ko 4 &, 8 %0 B, %y, 0, % %, %, Ry, %o <2
o 0%, @@@xw@‘mwo M\@o@w\/\\wwm\oowo\e«\% \/&«\m,e«\@@&n&vo&.@o@o@o/ Y0 v@O@%M«@QAM\Wo/ oo 0 S, s, L, 3 %, % S, 25 O3 ﬂwo \/+wo ECON %2, e,
o & .99, S, oYK &% RIS, £, 0PN SO0, o\ o 0% T, Ry N s DN Ry N, N, Tl R R S, %
D005 4, 4 2 OSSN w0 OIS <ol g 0, 5, 9, 02 %, R, O O o, o, 0, % % % & 4o o, N O
Q«Q,e/ G DT Y AN «@‘A«\\%«\\.\\«\\.\\«\\a@@ B85 52 RTRIRTIRTES S B % % % Y Y Y Y Y, a\&\ a\&\ R R)
Q%Q.AOO.\OW FIN TN TN TR TR TN T Y Y N TN TN TN T T T T T T TN TN TN TN NN TN NN NN NN Y TN SO S S SN | 1 1 1 L 1 1 L 1 L L L L L L L L L
S v&».\\\w\\ | [%%
&
Aw,o, ,Mv«mv@ 4 i Qﬂ% o
432070 L 0550, %
ZRIG %A,
ﬂV/Q,M\\%/@\ - o 0@ \/,m.,\\wxmv
A, Y, | nv%%/ 2254
t@&w\ 1 RORURN
2 &, - r \..‘Qa,o,nv/.
% s 6
8 %1 M6 %
B % NN
. F 20N, % &
3 % & ANS
© Y ov T B GQ @wx
2 23
2. 3
0%0\/@ : [N
%Q\&Q 1 i .QQ%%
< 57 2,
7 + 6 F O 2
— Am,b %, -) %0\/\06,
] x0T - o o %
S)
(SAGS —_ 7,
& < - %%
A © @
(o) Q
09} mwb\w, % 4 — L A.MﬂAo/ﬂ
o, @M
Q%VAQ“\ %, RSN
W7 L o 3,
=Y, 20 o
S %, S
FONRACE L 0 % %
& %, 4 208
+Q.q« 2.7, a9,
0670 @ F QoS0 %
o «/\\M, R Qﬁr«ﬁ\\\ 4
6 S I 0N %
76 - g
+r % & %
NG RS
£94 Qa,nv %,
R - £
w \M\ B ..W\,\\v/o,\ /.4\\mv
3 %] B
S &‘ i - | o ¥ e,
2.9 Ox (4
%Q\n« i Lo, %y
%, 4 L >
S N,\V m Q%
% 4,6 L 059
%0, %, 2 o5
> /ee«./o/.« w) M\@&Q
c & .
(o) (@
£ S, 2
% = S
T T 1 1 17 7T —@ V —e —e T —\ —\ u\ T T —Q/ LI —\ —\ L —\ L Hmz T T T T T T T T T T T T T T T “ T T T Q«%@/«\
BA 4 N
B G A g I N Y N N I T T TR T T T B N T N N
WX, 20,%9/%, S % %), 4 2, O, B S ’ SR 7N 2)
B R s S A o R A N A N N R T N I Y
% o 2 oN 1,
R A I 2 BR G090, U, e e G 97 Y Yy G, Ry B, 0 Sy B
EMON A m\»o\ 9N v % H o % v«%o o&&@ % zcmv /\ A7 a\&\ o ¥y, eow .
* %oy %, % % % . %
S % O\ Sy, s, 952,
4 Q../u o ¢ (2 o ¢
2.
>
[BUID EVIEN

device

device

prediction error (%)

Figure 5: Error in predicted execution time for each kernel invocation over four problem sizes

10 ms A 8
© o
= & ¢ © & @ =
S 1msq 5 o @ kernel
c
2 © srad_cuda_2
3 & © kmeansPoint
® @ s & & 4 & © lud_diagonal
9 \% © needle_opencl_shared_1
o 100 ps |
i
© ©
& ©
S
&
O S N S A R
A S S P S S & R S A O NN
O A E P QAP 9 T A o
© 0 7 > X NV SO S
/q’ ./\/ [$) 'd- N 8’ y @ g 4
g N S S0 & &L
g & X ¥ & K
S AR A
© <&
device

Figure 6: Mean measured kernel execution times compared against mean predicted kernel execution times to perform a
selection of kernels on large problem sizes across 15 accelerator devices.

the fiji-furyx is lower than the hawaii-r9-290x, however
the measured times between the two shows the furyx
completing the task in a shorter time. For all other device
pairs, the relative order for the kmeansPoint kernel is
correct. Additionally, the 1ud_diagonal kernel suffers from
systematic under-prediction of execution times on AMD
GPU devices, however the relative ordering is still correct.
As such, the proposed model provides sufficiently accurate
execution time predictions to be useful for scheduling to
heterogeneous compute devices on supercomputers.

VII. CONCLUSIONS AND FUTURE WORK

A highly accurate model has been presented that is
capable of predicting execution times of OpenCL kernels on
specific devices based on the computational characteristics
captured by the ATIWC tool. A real-world scheduler could
be developed based on the accuracy of the presented model.

We do not suppose that we have used a fully representative
suite of kernels, however, we have shown that this approach
can be used in the supercomputer accelerator scheduling
setting, and the model can be extended/augmented with
additional training kernels using the methodology presented
in this paper.

We expect that a similar model could be constructed to
predict energy or power consumption, where the response

variable can be directly swapped for an energy consumption
metric — such as joules — instead of execution time. However,
we have not yet collected the energy measurements required
to construct such a model. Finally, we show the predictions
made are accurate enough to inform scheduling decisions.

REFERENCES

[1] T. Declerck et al., “Cori - a system to support data-intensive

computing,” Proceedings of the Cray User Group, p. 8, 2016.
[2] T. Morgan, “NVLink takes GPU acceleration to the next level,”
The Next Platform, May 2016.

T. Morgan, “The Power9 rollout begins with Summit and Sierra
supercomputers,” The Next Platform, Sep. 2017.

T. Morgan, “Inside Japan’s future exascale ARM supercomputer,”
The Next Platform. Stackhouse Publishing Inc., Jun-2016.

[5] M. Feldman, “Cray to deliver ARM-powered supercomputer to
UK consortium,” TOP500 Supercomputer Sites, Jan. 2017.

(6] S. Che, J. Li, J. W. Sheaffer, K. Skadron, and J. Lach, “Acceler-
ating compute-intensive applications with gpus and fpgas,” in
Application specific processors, 2008. sasp 2008. symposium on,
2008, pp. 101-107.

[7] M. B. Yildirim and G. Mouzon, “Single-machine sustainable
production planning to minimize total energy consumption
and total completion time using a multiple objective genetic
algorithm,” IEEFE transactions on engineering management, vol.
59, no. 4, pp. 585-597, 2012.

(8]

[9]

[10]

(11]

(12]

(13]

(14]

(15]

[16]

(17]

18]

(19]

20]

(21]

[22]

(23]

[24]

B. Johnston and J. Milthorpe, “AIWC: OpenCL based Architec-
ture Independent Workload Characterisation,” ArXiv e-prints,
May 2018.

B. Johnston, “OpenDwarfs,” GitHub repository. https://github
com/BeauJoh/OpenDwarfs; GitHub, 2017.

B. Johnston et al., “BeauJoh/Oclgrind: Adding AIWC — An
Architecture Independent Workload Characterisation Plugin.”
Dec-2017.

C. Augonnet, J. Clet-Ortega, S. Thibault, and R. Namyst, “Data-
aware task scheduling on multi-accelerator based platforms,” in

IEEE international conference on parallel and distributed systems
(ICPADS), 2010, pp. 291-298.

H. Topcuoglu, S. Hariri, and M.-Y. Wu, “Task scheduling
algorithms for heterogeneous processors,” in Heterogeneous
computing workshop (HCW), 1999, pp. 3-14.

R. Bajaj and D. P. Agrawal, “Improving scheduling of tasks in
a heterogeneous environment,” IEEE Transactions on Parallel
and Distributed Systems, vol. 15, no. 2, pp. 107-118, 2004.

T. Xiaoyong, K. Li, Z. Zeng, and B. Veeravalli, “A novel security-
driven scheduling algorithm for precedence-constrained tasks
in heterogeneous distributed systems,” IEEE Transactions on
Computers, vol. 60, no. 7, pp. 1017-1029, 2011.

O. Sinnen and L. Sousa, “List scheduling: Extension for con-
tention awareness and evaluation of node priorities for heteroge-
neous cluster architectures,” Parallel Computing, vol. 30, no. 1,
pp. 81-101, 2004.

L. T. Yang, X. Ma, and F. Mueller, “Cross-platform performance
prediction of parallel applications using partial execution,” in
Proceedings of the 2005 ACM/IEEE conference on Supercom-
puting, 2005, p. 40.

L. Carrington, A. Snavely, and N. Wolter, “A performance pre-
diction framework for scientific applications,” Future Generation
Computer Systems, vol. 22, no. 3, pp. 336—346, 2006.

J. Price and S. McIntosh-Smith, “Oclgrind: An extensible
OpenCL device simulator,” in Proceedings of the 3rd interna-
tional workshop on OpenCL, 2015, p. 12.

J. Kessenich, “A Khronos-Defined Intermediate Language for
Native Representation of Graphical Shaders and Compute
Kernels.” 2015.

B. Johnston and J. Milthorpe, “Dwarfs on Accelerators: En-
hancing OpenCL Benchmarking for Heterogeneous Computing
Architectures,” ArXiv e-prints, May 2018.

M. Wright and A. Ziegler, “ranger: A Fast Implementation of
Random Forests for High Dimensional Data in C+4 and R,”
Journal of Statistical Software, Articles, vol. 77, no. 1, pp. 1-17,
2017.

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1,
pp. 5-32, 2001.

M. Lie8, M. Hitziger, and B. Huwe, “The sloping mire soil-
landscape of southern Ecuador: Influence of predictor resolution
and model tuning on random forest predictions,” Applied and
environmental soil science, vol. 2014, 2014.

K. Husmann, A. Lange, and E. Spiegel, “The R package opti-
mization: Flexible global optimization with simulated-annealing,”
2017.

https://github.com/BeauJoh/OpenDwarfs
https://github.com/BeauJoh/OpenDwarfs

	I Introduction
	II Related Work
	III Methodology
	III-A Experimental Setup
	III-B Constructing the Performance Model
	III-C Choosing Model Parameters
	III-D Performance Improvement with Increased Training Data

	IV Evaluation
	V Making Predictions
	VI The benefits of this approach
	VII Conclusions and Future Work
	References

