
HAL Id: inria-00606771
https://inria.hal.science/inria-00606771v1

Submitted on 7 Jul 2011

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An RMS Architecture for Efficiently Supporting
Complex-Moldable Applications

Cristian Klein, Christian Pérez

To cite this version:
Cristian Klein, Christian Pérez. An RMS Architecture for Efficiently Supporting Complex-Moldable
Applications. IEEE International Conference on High Performance Computing and Communications,
Sep 2011, Banff, Alberta, Canada. �inria-00606771�

https://inria.hal.science/inria-00606771v1
https://hal.archives-ouvertes.fr


An RMS Architecture for Efficiently Supporting
Complex-Moldable Applications

Cristian KLEIN and Christian PÉREZ
INRIA/LIP

ENS de Lyon, France
Email: {cristian.klein, christian.perez}@inria.fr

Abstract—High-performance scientific applications
are becoming increasingly complex, in particular be-
cause of the coupling of parallel codes. This results in
applications having a complex structure, characterized
by multiple deploy-time parameters, such as the num-
ber of processes of each code. In order to optimize the
performance of these applications, the parameters have
to be carefully chosen, a process which is highly re-
source dependent. However, the abstractions provided
by current Resource Management Systems (RMS) —
either submitting rigid jobs or enumerating a list of
moldable configurations — are insufficient to efficiently
select resources for such applications. This paper in-
troduces CooRM, an RMS architecture that delegates
resource selection to applications while still keeping
control over the resources. The proposed architecture
is evaluated using a simulator which is then validated
with a proof-of-concept implementation on Grid’5000.
Results show that such a system is feasible and per-
forms well with respect to scalability and fairness.

I. Introduction
Background
High-performance computing is characterized by in-

creasingly complex applications, as they attempt to more
accurately model physical phenomena. For example, the
Salome framework [22] allows applications to be de-
veloped by coupling several parallel codes for numerical
simulations. At deployment the individual codes are in-
stantiated and mapped onto target resources. Choosing
the parameters (e.g., the number of processes of each par-
allel code) to transform the application from an abstract
description to a concrete one, so as to optimize its per-
formance, is highly dependent on the available resources:
not only may codes have different speed-up functions, but
they may exhibit different behaviors from one machine to
another.
To run these applications on HPC resources, such as

clusters, supercomputers or grids, a resource allocation
has to be requested from a Resource Management System
(RMS). RMSs strive to offer simple interfaces to satisfy
the needs of all users. Generally, two types of resource
request are supported: (i) rigid jobs, for which the resource
requirements are fixed by the user; (ii) enumerating a
list of moldable configurations and let the RMS choose a
configuration depending on the state of the resources. The
latter is used for efficiently scheduling simple-moldable

applications, which are characterized by a single deploy-
time parameter, the number of processes. Since the num-
ber of distinct values the parameter can take is small, all
moldable configurations can be enumerated.

But code coupling applications are complex-
moldable, being characterized by a complex structure,
with multiple deploy-time parameters. Therefore, for
selecting the resources that enable an efficient execution,
application-specific resource selection algorithms are
required. However, employing such algorithms in practice
is difficult due to three main reasons. First, RMSs are
providing limited information about the availability of the
resources, which is required as input to resource selection
algorithms.

Second, updating a resource request to adapt to any
resource change can only be done by cancelling the request
and resubmitting a new one, which will be scheduled after
all other requests. On a loaded platform, this can greatly
increase the end-time of the application. Using a list of
moldable configurations does not solve the problem, as the
number of resource configurations that would have to be
enumerated is too large.

Third, in many computing centers, multiple HPC clus-
ters are used as each upgrade adds a new hardware gen-
eration. These resources are commonly managed through
separate queues making it difficult to launch applications
which span multiple clusters [20].

Contribution

To solve the problem of efficiently supporting complex-
moldable applications, we propose and evaluate a new
RMS architecture that delegates resource selection to
applications (more precisely their launchers). The RMS
treats applications as moldable [14], which means that they
can be launched on a variety of resource configurations.
However, the resources allocated to an application cannot
change after deployment. Therefore, an application cannot
negotiate resources during its execution.

The proposed RMS assumes centralized control, tar-
geting any system where such a control can be enforced
such as supercomputing centers, enterprise grids or HPC
clouds. Our approach is especially suited for computation
centers with multiple clusters. Large scale platforms with



multiple administrative domains such as grids are outside
the scope of this paper.
The contribution of this paper is threefold. First, it

presents CooRM, an RMS architecture that allows ap-
plications, in particular complex-moldable applications, to
efficiently employ their specialized resource selection algo-
rithm. An example of such an application is presented in
Section II. Second, it proposes an implementation using a
simple RMS policy. Third, it shows that CooRM behaves
well with respect to potential issues, such as scalability and
fairness (see definitions in Section II).
The remaining of the paper is organized as follows.

Section II motivates the work by presenting a complex-
moldable application with a specialized resource selection
algorithm. Section III proposes CooRM, a novel RMS
architecture, which is evaluated in Section IV both us-
ing a simulator and a proof-of-concept implementation.
Section V analyzes some features of the proposition while
Section VI discusses related work. Finally, Section VII
concludes the paper and opens up perspectives.

II. Problem Statement through
a Motivating Example

Motivating Example
Computational ElectroMagnetics (CEM) is a Finite-

Element Method (FEM) which provides solutions to many
problems, such as antenna performance. FEM works on
a discretization of space (i.e., a mesh) over which it
applies an iterative algorithm. Increasing the precision of
the result is done by using a more refined mesh, which
in turn increases the computation-time and the required
amount of memory. Such applications are usually run on
a single cluster, in order to take advantage of the high-
speed interconnect. However, the increasing need for more
precision is pushing towards a multi-cluster execution.
As part of the French ANR DiscoGrid project1 a CEM

application was ported to allow multi-cluster execution.
The resulting application uses TCP to efficiently couple
MPI codes running on multiple clusters. Thus, the appli-
cation has a complex structure, the parameters being the
number of processes to launch on each cluster.
Experiments showed that multi-cluster execution of the

studied application can indeed lead to a smaller execution
time, provided the resources are carefully chosen. The
speed-up depends both on cluster metrics (node comput-
ing power, SAN latency and bandwidth), as well as the
inter-cluster WAN latency and bandwidth (see Figure 1).
The complexity of determining the exact number of clus-
ters and nodes per cluster that minimize execution-time
is exponential. However, it turns out that it was not so
difficult to design an efficient resource selection heuristic
based on the application’s performance model and the
resource metrics [10].

1ANR DiscoGrid, 2005–2009, http://www-sop.inria.fr/nachos/
team_members/Stephane.Lanteri/DiscoGrid/

 60

 70

 80

 90

 100

 110

 120

re li,re
li,ly,re

li,ly,na,re

li,ly,na,or,re (*)

gr,li,ly,na,or,re

gr,li,ly,na,or,re,so

bo,gr,li,ly,na,or,re,so

T
o

ta
l 

It
er

at
io

n
 T

im
e 

(m
s)

List of Clusters

measured
estimated

Bordeaux, Grenoble, Lille, Lyon, Nancy, Orsay, Rennes, Sophia
(*) Optimal solution found by our resource selection algorithm.

Fig. 1. Performance of a CEM application for various cluster sets
of Grid’5000.

Unfortunately, using such an algorithm in practice is
difficult, because current RMSs do not offer an adequate
interface. Even RMSs that have been specifically designed
to support moldable applications are not satisfactory, be-
cause the number of resource configurations to enumerate
is exponential (see Section VI).

Problem Statement

Seeing that application-specific resource selection algo-
rithms can improve performance, this paper focuses on the
following question: What is the interface that an RMS
should provide, to allow each application to employ
its specialized resource selection algorithm?

How such resource selection algorithms should be writ-
ten is application-specific and outside the scope of this
paper. However, if a clean and simple RMS interface ex-
ists, developers could provide application-specific launch-
ers (which implement a resource selection algorithm) with
their applications, so as to improve the response time
experienced by the end users. As an example, the above
CEM application gives an idea of the effort and benefits
of developing such a launcher.

Since these selection algorithms might take some time,
we are especially concerned with two issues:

a) Scalability: The selection algorithm should be
called only when necessary, e.g., exhaustively iterating
over the whole resource space is not practical. Since the re-
sult of the selection only depends on the available resources
and not on the application’s internal state (we treat
applications as moldable, see Section I), memoization2

can be used. Therefore, the system needs to reduce the
number of unique inputs for which the selection algorithm
is invoked, a metric that we shall call the number of
computed configurations.

2Def.: save (memoize) a computed answer for later reuse, rather
than recomputing it.



Fig. 2. Example of a view sent to an application.

b) Fairness: For applications with intelligent re-
source selection, a new fairness issue arises. An application
A with a lengthy selection (e.g., ten seconds) should not be
delayed (i.e., its end-time is increased) by an application
B with a quicker selection (e.g., less than a second)
submitted just after A. Since A has been submitted before,
A should have a higher priority, therefore its resource se-
lection should not be impacted by applications submitted
after it. Thus, the RMS should make sure that applications
are not delayed, as long as they have “reasonable” lengthy
resource selection algorithms.

III. The CooRM Architecture
This section introduces CooRM, an RMS architecture

which delegates resource selection to applications. First,
the rationale of the architecture is given. Then, inter-
actions between applications and the RMS are detailed.
Finally, an implementation of the RMS policy is proposed.

A. Rationale
CooRM is inspired by a batch-like approach, where the

RMS launches one application after the other as resources
become available. Batch schedulers work by periodically
running an algorithm which loops through the list of
applications and computes for each one a start-time based
on their resource requests.
Similarly, in CooRM each application i sends one

request3 ri, containing the number of hosts to allocate
on each cluster and the estimated runtime for which
the allocation should take place. The RMS shall even-
tually allocate resources to the application, guaranteeing
exclusive, non-preempted access for the given duration.
Requests never fail, their start-time is arbitrarily delayed
until their allocation can be fulfilled4. The application is
allowed to terminate earlier, however, the RMS shall kill
an application exceeding its allocation.

3One request is sufficient for an application which cannot change
its resource allocation during execution, a simplification that we have
made in Section I.

4Abusing this concept, if an application requests more resources
than exist on the platform, the start-time is set to infinity.

Fig. 3. Application Callbacks and RMS Interface in CooRM

In order to optimize an internal criterion, applications
need to adapt their requests to the availability of the
resources. To this end, CooRM presents each application
i a view Vi which stores the estimated availability of
resources. A view associates to each cluster a Cluster
Availability Profile (CAP), which is a step function
presenting the estimated number of available hosts as a
function of time, as illustrated in Figure 2. Some hosts
might not be available during a certain period, either be-
cause of the request of another, higher-priority application,
or because of policy-specific decisions (e.g., applications
may not run overnight). The views represent the currently
available information which aids applications in optimizing
their requests. For example, an application i can use its
view Vi to compute a request ri which would most likely
minimize its completion time.

One more issue remains. When an event occurs (e.g., an
application finishes earlier than it estimated), the views
of applications might change and previously computed
requests might be sub-optimal. For example, if a new
resource is added to the system, an application that has
not yet started might want to update its request in order
to take advantage of this new resource. Therefore, until its
start, each application i receives an up-to-date view V ′

i , so
that it can send an updated request r′i to the RMS.

The above approach can be considered a dynamic,
distributed scheduling algorithm. The RMS is responsible
for applying a policy, which decides how to multiplex
resources among applications, while the selection of re-
sources, which decides how to optimize the application’s
structure to the available resources, is handled by the
applications themselves.

B. Actors and Interactions
The system consists of one or more applications, their

launchers (which contain the application-specific resource
selection algorithm) and the RMS. Since the interac-
tions between the launcher and the application itself are
programming-model dependent and do not involve the
RMS, this section focuses on the interactions between the
launcher and the RMS (Figure 3).

An application negotiates the resources it will run on
through its launcher, which could run, either collocated
with the RMS on a front-end, or on a distinct host (e.g.,
the user’s computer). Before describing the RMS-launcher
protocol, let us first define some data types:

• FILTER is a JSDL-like [6] filter to select candidate



Fig. 4. Example of interactions between an RMS, an application
and its launcher.

clusters. It specifies the minimum number of hosts,
per-host RAM, total RAM, scratch space, etc.

• CID (cluster ID) uniquely identifies a cluster.
• CINFO (cluster info) stores the cluster’s properties,

e.g., the number of hosts, the number of CPU cores
per host, size of RAM, size of scratch space, etc.

• ICINFO (inter-cluster info) stores information about
the interconnection of one or more clusters, e.g.,
network topology, bandwidth and latency.

• CAP (see Section III-A) stores the number of available
hosts as a function of time.

• REQUEST describes a resource request. It contains the
number of hosts to allocate on each cluster and the
duration of the allocation.

• RID (resource ID) uniquely identifies a host, e.g., by
hostname.

• CHANGE represents a change event for a cluster. It is
composed of the tuple { CID, type, CAP }, where type
specifies whether cluster information, inter-cluster in-
formation or the availability has changed. In the first
two cases, the launcher shall pull the information it
requires using the interface provided by the RMS.
In the latter case, the new CAP is contained in the
message.

• Plurals are used to denote “set of” (e.g., CIDs means
“set of CID”).

Figure 4 presents a typical example of interaction be-
tween a single application (through its launcher) and the
RMS: (1) The launcher subscribes to the resources it
is interested in. Depending on the input of the applica-
tion, the launcher might use the filter to eliminate unfit
resources like hosts with too little memory or unsupported
architectures. (2) The RMS registers the application in
its database and sends a changeNotify message with the
relevant clusters and their CAPs; the launcher uses this

data to update its local view of the resources. (3) Since the
launcher has no previous knowledge about the clusters, it
has to pull the CINFOs by calling listClustersInfo and
(4) the ICINFO by calling listInterClusterInfo. (5) The
launcher executes the resource selection algorithm, com-
putes a resource request and sends it to the RMS. (6) Until
these resources become available and the application can
start, the RMS keeps the application informed by sending
changeNotify messages every time information regard-
ing the resources or their estimated availability changes.
(7) The launcher re-runs the selection and updates its
request, if necessary. (8) When the requested resources
become available, the RMS sends a startNotify message,
containing the RIDs that the application may use. (9)
The launcher deploys the application. (10) Finally, when
the application has finished, it informs the RMS that the
resources have been freed by sending a done message.

For multiple applications, each launcher creates a sepa-
rate communication session with the RMS. No communi-
cation occurs between the launchers. It is the task of the
RMS to compute for each of them a view, so that the goals
of the system are met.

C. A Simple RMS Policy
This section presents an example of an RMS policy

implementation (as defined in Section III-A).
The policy is triggered whenever the RMS receives a

request or a done message, similar to how rigid-job RMSs
run their scheduling algorithm when a job is received or
a job ends. In order to coalesce messages coming from
multiple applications at the same time and reduce system
load, the policy is run at most once every re-policy
interval, a parameter of the system. The choice of this
parameter is briefly discussed in Section IV.

The policy algorithm is similar to first-come-first-serve
with repeated, conservative back-filling (CBF) [21]. For
each cluster, a profile with the expected resource usage at
future times is maintained, which is initialized to exclude
the resources used by running applications. Then, for each
waiting application, ordered by the time-stamps of their
subscribe messages (which serve as an implicit priority),
the algorithm executes the following actions:

1) Set the view of the current application to the current
profiles.

2) Find the first “hole”, where its request fits and store
the found start-time.

3) Update the profiles to reflect the allocation of re-
sources to this application.

If a stored start-time is equal to the current time, RIDs
are allocated from the pool of free hosts and startNotify
is sent to the corresponding application.

Fairness: Let us come back to the fairness issue (see
the definition in Section II) and explain how CooRM
solves it. Let us assume that three applications are in
the system. App0 is already running, while App1 and App2
have sent requests to the RMS and are waiting for the



(a) without fair-start delay (b) with fair-start delay

Fig. 5. Fairness issue for adaptable applications

startNotify message. Also, let App1’s resource selection
algorithm take d1 seconds, while App2’s d2 seconds, with
d1 > d2. According to our goal of fairness, since App1
arrived before App2, the latter should not be able to delay
the former.
Figure 5(a) shows how App1 could be delayed by App2.

When App0 sends the done message, both applications
want to take advantage of the newly freed resources.
Since App2 has a quicker resource selection than App1,
without any mechanism in place, the RMS would launch it
immediately. App1, which has a slower resource selection,
could not take advantage of these resources, despite the
fact that it had priority over App2.
Therefore, in order to ensure fairness for applications

with a lengthy resource selection, resources allocated to
an application are not immediately released after a done
message, but are artificially marked as occupied for a
fair-start amount of time (see Figure 5(b)), which is
an administrator-chosen parameter. This additional delay,
allows high-priority applications with intelligent resource
selection enough time to adapt and request the resources
that will be freed after the fair-start delay expires. How to
choose this parameter is discussed in the next section.

IV. Experiments and Results
This section evaluates CooRM. First, an overview

of the experiments is given, then the simulation results
are analyzed. Finally, the simulations are validated, by
comparing the results with values obtained using a real
implementation.

A. Overview
The purpose of CooRM is to allow applications with

complex structure (we call them complex-moldable) to
employ their own resource selection algorithms, while
ensuring scalability and fairness as defined in Section II.
In our experiments, a multi-cluster CEM application is

used as a complex-moldable application. However, it is
unlikely that a platform will be reserved for running
only applications with a complex structure. Therefore,
the testing workloads also need to include single-cluster
applications with a simple structure (we call them simple-
moldable), submitted, as it is currently done, either as
rigid jobs (the host-count is fixed by the user) or using
a list of moldable configurations (the host-count is chosen
from several values, but cannot be changed once the job
started).

Comparison to an existing system is difficult, since there
are no RMSs that offer the exactly same services. Thus,
CooRM is compared to an RMS that gives equivalent
schedules, so as to focus on the overhead that CooRM
may bring. To this end, we have chosen OAR [9] both
because it uses the CBF scheduling algorithm and due
to its support for moldable jobs. In essence, each job is
submitted with a list of host-count, wall-time pairs and
OAR greedily chooses the configuration that minimizes
the job’s completion-time. Exhaustively enumarating all
the configurations is at most linear for simple-moldable
applications: for nC clusters with nH host, one has to enu-
merate at most nC×(nH−1) configurations. However, the
number of configurations can be exponential for complex-
moldable applications: for nC clusters with nH hosts per
cluster, the CEM application presented as motivation has
(nH +1)nC − 1 configurations. Clearly, it is impractical to
enumerate them all.

Simulator: We have written a discrete-event simulator
to study the behaviour of CooRM, which includes a
“mock” implementation of OAR (we shall call it OAR-
sim). For CooRM, the re-policy interval has been set to
1 second since we want a very reactive system. The fair-
start has been set to 5 seconds, a good value to allow the
applications we target enough time to run their resource
selection algorithms. This parameter will be further dis-
cussed in Section IV-C.



For CooRM, applications receive their views (Figure 2)
and “instantly” (i.e., the simulation time is not advanced)
send a new request aimed at minimizing their completion-
time. For OARsim, applications enumerate all the possible
configurations and let the RMS choose which one to
execute.

Resource Model: Resources are made of nC clusters,
each having nH = 128 hosts. To add heterogeneity, the ith
cluster (i ∈ [2, nC ]) is considered 1+0.1×(i−1) times faster
than the 1st cluster. The clusters are interconnected using
a hierarchical model of a WAN, with latencies typically
found over the Internet.

Application Model: We generated two types of work-
loads. First, workloads W0 include only “legacy” appli-
cations to compare CooRM with OARsim. They were
generated by taking packs of 200 consecutive jobs from the
LLNL-Atlas-2006-1.1-cln trace from the parallel workload
archive [1]. Since traces do not contain enough information
to reconstruct the moldability of applications, we consider
that 20% of the applications are simple-moldable, having
an Amdahl’s-law speed-up. The remaining 80% of the
applications are considered rigid, with host-counts and
execution-times found in the traces, subject to the speed-
up of our resource model. The job arrival rate is set to 1
application per second, as the issues we are interested in
appear when the system is under high load.
Second, we generate workloads which include complex-

moldable applications. Since, the number of configurations
to submit to OARsim for CEM is exponential in nC

(see above why), we only test CooRM with these work-
loads. We only present a subset of setups, so as to focus
on the most interesting ones. Workloads W1 have been
generated starting from W0 in which one instance of the
CEM application (see Section II) has been inserted. These
workloads act as a reasonable case, with a realistic mix of
applications. Workloads W2 have been generated starting
from W0 by replacing 50% of the jobs with instances of the
CEM application. These workloads are the worst-case for
CooRM that we have found during all the experiments.
Workloads W3 contain 100% CEM application, to test the
scalability in an extreme case, with only complex-structure
applications.

B. Scalability

We are interested in the following metrics: the number
of computed configurations (defined in Section II) and
the simulation time (measured on a single-core AMD
OpteronTM 250 at 2.4GHz) which gives us the CPU-time
consumed on the front-end to schedule all applications in
the workload. For the case where the launchers and the
RMS are run on separate hosts, we also need to measure
the network traffic. Therefore, we measure the total size
of the messages, by encoding CooRM messages simi-
larly to Corba’s CDR. For each of these metrics, Figure 6
plots the minimum, maximum and quartiles.

Key: OAR CooRM
W0 W0 W1 W2 W3

0 

5k

10k

15k

20k

25k

30k

35k

40k

12345678 12345678 12345678 12345678 12345678N
u

m
b

er
 o

f 
C

o
m

p
u

te
d

 C
o

n
fi

g
u

ra
ti

o
n

s

Number of Clusters

6
4

k
6

5
k

7
8

k

0 

50 

100 

150 

200 

12345678 12345678 12345678 12345678 12345678
S

im
u

la
ti

o
n

 T
im

e
 (

s)
Number of Clusters

2
5

6
2

5
7

3
8

9

0 

10M

20M

30M

40M

50M

12345678 12345678 12345678 12345678 12345678

T
o

ta
l 

S
iz

e 
o

f 
M

es
sa

g
es

 (
b

y
te

s)

Number of Clusters

5
2

M
5

7
M

6
0

M

Fig. 6. Simulation results for OAR (W0) and CooRM (W0−3) for 1
to 8 clusters.

For simple-moldable applications (W0), the results show
that CooRM outperforms OARsim both regarding the
number of computed configurations and the simulation
time. We remind the reader that the obtained sched-
ules are equivalent. For CooRM, more data needs to
be transferred between the RMS and the applications,
nevertheless, the total size of the messages is below 35MB
for 200 applications, in average 175KB per application,
which is a relatively low value for today’s systems.

For complex-moldable applications, the results show
that introducing one single CEM application does not
significantly influence the metrics (W1). Workloads W2,
which are the worst case, increase the values of the metrics,
nevertheless, the scalability of the system holds. The
network traffic is below 60MB, in average 300KB per
application, a value which can be handled by today’s
systems. The time to schedule all applications is below
400 s, usually below 100 s, which is quite low, considering



 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

1 10 100 1k 10k 100k

P
er

ce
n
t 

o
f 

S
im

u
la

ti
o

n
s 

(%
)

End Time Increase (s)

Adaptation
Delay

1s
2s
3s
4s
5s
6s
9s

Fig. 7. Unfairness caused by insufficient fair-start delay.

that it includes the time taken by the CEM resource
selection algorithm.
For W3, an extreme case where only CEM applications

are present, the metrics tend to have smaller values. This is
due to the fact that the resource selection algorithm tries
to select all the hosts from a cluster, thus applications
are better “packed”. Therefore, the number of computed
configurations is significantly reduced.
To sum up, results show that CooRM scales well both

for existing workloads and workloads in which the number
of complex-moldable applications is large.

C. Fairness
Let us now discuss the importance of the fair-start pa-

rameter (see Section III-C). To simulate applications with
lengthy selections, we took workloads W1 (see Sect. IV-A)
and added to the CEM application an adaptation delay:
when receiving a new view, the launcher waits for a
timeout to expire, before sending a new request. Thus
we are interested in how much the application ends later
compared to an “instant” response.
Figure 7 shows the empirical cumulative distribution of

the end-time increase, which is the end-time for the plotted
adaptation delay minus the end-time when the adaptation-
delay is zero, for an otherwise identical experiment in-
stance. We note that the higher the adaptation delay, the
more the CEM application is delayed. In particular, when
the adaptation-delay is higher than the fair-start delay,
the application is significantly impacted; in up to 5% of
the cases the application was delayed more than an hour.
Therefore, the fair-start delay should be set to a high-
enough value, so that complex-moldable applications have
time to compute a new request.
Note that a high fair-start delay makes resources idle

longer, thus increasing resource waste. Depending on the
average job execution time, a high fair-start delay might
not be acceptable. For example, the traces used in the
experiments have an average job runtime of 1.5h. Thus,
0.5% of the resources would be wasted, for a fair-start
delay of 30 s, which is quite small. In contrast, if the
average job runtime were 5min, 10% of the resources

 0

 10

 20

 30

 40

 50

0 20 40 60 80 100 

C
o

m
m

u
n

ic
at

io
n

 (
M

B
)

CEM Applications (%)

Simulations
Real experiments

(a) Network Usage

 0

 50

 100

 150

 200

 250

 300

 350

 400

0 20 40 60 80 100 

C
P

U
 T

im
e 

(s
)

CEM Applications (%)

Simluations
Real experiments

(b) CPU Usage

Fig. 8. Comparison between simulations and real experiments.

would be wasted. Thus, an administrator has to reach a
compromise between resource waste and fairness.

D. Validation
We have developed a proof-of-concept implementation

of CooRM in Python to validate the values obtained by
simulations. The communication protocol has been ported
to Corba as it was straightforward. Since we focus on the
RMS-launchers interactions (which are functionally equiv-
alent to the simulations), launchers are only deploying a
sleep payload.

For these experiments, we used an instance of workload
W0 in which we replaced a percentage of applications with
instances of the CEM application, similarly to W2 and W3

(see Section IV-A). We used the same resource model as
during simulations, with nC = 8. The RMS was run on
the first processor, while all the launchers were run on the
second processor of a system with two single-core AMD
OpteronTM 250 processors, running at 2.4GHz.

Figure 8(a) compares the TCP traffic generated in prac-
tice to the simulation results. Values obtained in practice
are up to 50% higher than those obtained by simulations.
This is caused mainly because of Corba’s IIOP overhead,
but also because we neglected some messages in the simu-
lations. However, the generated traffic is of the same order
of magnitude, therefore we argue that the scalability from



the network perspective is validated, even if the RMS and
the launchers run on separate hosts.
Figure 8(b) compares the simulation time to the CPU-

time consumed by the whole system (RMS and launchers).
Practical values are up to 3.3 times higher than simula-
tions. However, this is to be expected, since data needs
to be marshalled/unmarshalled to/from Corba. Also, the
measured CPU-time includes starting up the launchers
which, due to the need of loading the Python executable
and compiling the byte-code, is non-negligible. Neverthe-
less, the load on the CPU is quite low, which shows that
CooRM scales well as the number of applications with
intelligent resource selection increases.
To sum up, the differences between theoretical and

practical results are implementation specific. A different
implementation (e.g., another middleware than Corba)
might show values closer to the simulations. Therefore,
we argue that the conclusions drawn in Section IV-B
and IV-C are of practical value.

V. Discussions
The RMS policy proposed in Section III-C does not

attempt to do any global, inter-application optimizations.
We deliberately chose a simple approach, as, in real-life,
access to HPC resources is either paid or limited by a
quota. This forces users to choose the right trade-off be-
tween efficiency and completion-time. CooRM is flexible
enough to allow applications to consider quota-related
criteria when selecting resources. Nevertheless, should a
better RMS policy be found, it can readily be used by
changing only a few implementation details.
Simple-moldable applications (characterized by a sin-

gle integer, i.e., the number of processors) can be re-
shaped [24], so as to improve system throughput. Such an
approach might be extended and used as an alternative
CooRM policy; however, whether this benefits complex-
moldable applications needs to be studied.
An alternative design could have allowed applications to

submit utility functions [19], then let the RMS optimize
global utility. We have refrained from adopting such a
solution, because we do not believe that utility can be
translated into comparable values for applications with a
complex structure.

VI. Related Work
We group related work into three categories: theoretical

studies of moldability, RMS support for moldability and
application-level scheduling.

A. Theoretical Studies of Moldability
Let us first review articles that have studied moldability

from a theoretical perspective.
To our knowledge, Feitelson [14] was the first to in-

troduce the word moldable in the context of parallel job
scheduling, defining it as a job for which the scheduler
can choose the number of processors at launch. We extend

this definition and differentiate between simple-moldable
applications, whose simple structure allows the scheduler
to decide how to launch it, and complex-moldable, whose
complex structure requires an application-specific resource
selection algorithm.

The benefits of treating jobs as moldable has been
highlighted in [17]. However, the cited work assumes that
applications have constant area (i.e., doubling the number
of hosts halves the execution time), which does not hold
for many applications. Other works assume more realistic
moldable application models [13] and study how to effi-
ciently schedule them on super-computers [25], [24].

In contrast, our approach assumes that resources are not
homogeneous. Applications include several codes, which
can be launched on multiple clusters. The performance
models of such applications become complex and exhaus-
tively enumerating all configurations to the RMS, as done
in cited works, is impractical. Indeed, if a multi-cluster
application can choose any number of hosts between 0
and nH on nC clusters, then the number of resource
configurations the application can run on is (nH+1)nC −1,
which is exponential.

B. RMS Support for Moldability
This section reviews how moldable applications are

supported in current Resource Management Systems.
High-performance computing systems, such as clusters,

federation of clusters or supercomputers, are managed by
RMSs which offer the same base functionality: submitting
jobs, which are launched once the requested resources are
available, or making advance reservations, which have a
fixed start-time [15]. The resources are chosen by the
RMS based on a user-submitted Resource Specification
Language (RSL).

Let us review some RSLs in increasing order of their
expressiveness. Globus’ RSL [16], which aims at targeting
common features found in all cluster schedulers, specifies
requirements like the number of hosts and wall-time,
thus jobs are rigid from the RMS’s point-of-view. For
example, Oracle Grid Engine (former Sun Grid Engine)
does not allow the user to express moldability [2]. OGF’s
JSDL [6] and SLURM [18] improve on this, allowing ranges
(minimum and maximum) to be used for the host-count,
thus supporting a basic form of moldability. However,
there is a single wall-time, which cannot be described
as a function of the allocated resources. This reduces
back-filling opportunities, as an application cannot express
the fact that it frees resources earlier if more hosts are
allocated to it.

An improved support for moldability can be found in
OAR [9]. The user gives a list of host-counts and wall-
times, then the RMS chooses the configuration which
minimizes the job’s completion time. This approach al-
lows more flexibility in describing the resources that an
application can run on, however, exhaustively describing
the whole set of configurations (limited to the resources



available to the RMS) may be very expensive. Never-
theless, this approach seems compelling if the number of
configurations is small, which is why we chose to compare
against it.
The Moab Workload Manager [3] supports a similar

way of scheduling moldable jobs (which are call “malleable
jobs” in the Administrator’s Guide). The user provides
a list of host-count and wall-times (called “task request
list”), from which the RMS will chose the resource con-
figuration that minimizes both job completion time and
maximizes job utilization. Unfortunately, we have been
unable to find more details about the employed algorithm,
which is why we refrained from comparing against Moab.
At any rate, one would have to enumerate all configura-
tions, similarly to using OAR, which would only solve our
problem if the number of configurations is small.

C. Application-level Scheduling

To optimize scheduling of individual applications, bro-
kers (also called application-level schedulers) have been
proposed which first gather information about the system,
then use advance reservations [26] or redundant requests.
Advance reservations are used as they offer a solution

to the co-allocation problem [20], however, they also frag-
ment resources [23], thus leading to inefficient resource
utilisation. Redundant requests are multiple jobs targeted
at individual clusters: when one of these jobs starts, the
others are cancelled. Redundant requests are harmful as
they worsen estimated start times and create unfairness
towards applications which cannot use them, by hinder-
ing back-filling opportunities [12]. The impact of using
redundant requests for emulating moldable jobs has not
been studied, however, we expect them to be at least as
harmful.
To retrieve information about the available resources,

grids expose information through the GLUE schema [5],
which presents both current resource availability and
scheduled jobs. However, the future estimated resource
occupation (as computed by the RMS) is not provided.
Estimating when a request might be served is cumber-
some, since the application has to emulate the scheduling
algorithm of the RMS. Even if the approach were theoret-
ically possible, jobs are usually not exposed in grids, due
to privacy concerns.
Similarly to GLUE, resource- and job-related informa-

tion can be accessed through the WIKI Interface [3].
Besides the drawbacks highlighted above, this interface
has been designed for system-level consumption, between
a site-level scheduler and a cluster-level scheduler, and
applications cannot connect to it.
In contrast to the above solutions, CooRM allows

applications to select the resources they need without
resorting to workarounds. Co-allocation in a single ad-
ministrative domain is provided without fragmenting re-
sources. For selecting the desired resources, applications

are provided with the best information that the RMS has
about the current and future availability of the resources.

Pilot jobs [11] (i.e., submitting container jobs inside
which tasks are executed) are used either to reduce RMS
overhead, or to allow on-the-fly resource acquisition. For
the first case, pilot jobs can be readily used with CooRM.
For the latter, CooRM does not deal with dynamic
resource usage, which has been left as future work.

The AppLeS project [7] offers a framework for
Application-Level Scheduling. The moldable-application
scheduler (called “SA”) was designed to improve schedul-
ing on a single super-computer. SA gets a list of host-
count and wall-times from the user, then chooses a job size
which would reduce turn-around time. The choice is made
at submit-time, which, since it does not use the most up-
to-date information about the state of the resources, does
not always achieve the best results.

While we share some of the concerns of the AppLeS
project, our focus is to define a clean and simple
application-RMS interaction, which would allow effective
usage of multi-cluster platforms. For example, CooRM
notifies the applications when the state of the resources
changed and, through it’s fair-start mechanism, ensures
that the state of the resources is somewhat more stable.
Therefore, applications have better information about the
state of the resources and can take better decisions.

VII. Conclusion
This paper proposes CooRM, an RMS which allows

complex-moldable applications to employ their specialized
resource selection algorithms. This allows such applica-
tions to select resources so as to optimize their structure,
thus enabling an efficient execution.

When used in multi-cluster environments, applications
can easily span multiple clusters. Such platforms are com-
mon in today’s computing centers, as several generations
of hardware coexist.

In the end, CooRM offers a clean and simple interface
for resource selection, so as to allow developers to easily
create application-specific launchers. Both simulations and
real experiments using the resource selection algorithm
of a multi-cluster CEM application have been presented.
They have shown that the approach is feasible and per-
forms well with respect to scalability and fairness.

Future work can be divided in two directions. First,
CooRM assumes that clusters are perfectly homogeneous
and that the choice of host IDs inside a cluster can be left
to the RMS. However, large clusters and supercomputers
feature non-homogeneous networks (such as a 3D torus [4])
with varying latencies and bandwidths between hosts.
While research is still in progress, in future, applications
might want to optimize their resource selection for an
efficient placement inside non-homogeneous clusters. For
example, resources might be selected so that codes which
communicate often are placed close, while those who
communicate rarely are placed on distant hosts.



Second, current HPC RMSs lack support for applica-
tions with dynamic resource requirements. For example,
Adaptive Mesh Refinement (AMR) simulations [8] unpre-
dictably change their resource requirements during execu-
tion. Currently, the users of such applications are forced
to reserve enough resources to meet the peak demand of
the application, which is inefficient. In future, we aim at
extending CooRM with runtime resource negotiation, so
as to efficiently support such applications.

VIII. Acknowledgments
This work was supported by the French ANR COOP

project, n◦ANR-09-COSI-001-02.
Experiments presented in this paper were carried out

using the Grid’5000 experimental testbed, being developed
under the INRIA ALADDIN development action with
support from CNRS, RENATER and several Universities
as well as other funding bodies (https://www.grid5000.fr).

References
[1] Parallel workload archive. www.cs.huji.ac.il/labs/parallel/

workload.
[2] qsub man page – Sun Grid Engine. http://gridscheduler.

sourceforge.net/htmlman/htmlman1/qsub.html.
[3] Adaptive Computing Enterprises, Inc. Moab workload

manager administrator guide, version 6.0.2. http://www.
adaptivecomputing.com/resources/docs/mwm/index.php.

[4] N. R. Adiga, M. A. Blumrich, et al. Blue Gene/L torus
interconnection network. IBM J. Res. Dev., 49:265–276, 2005.

[5] S. Andreozzi et al. GLUE Specification v. 2.0. Report GDF.147,
OGF, 2009.

[6] A. Anjomshoaa, F. Brisard, et al. JSDL v. 1.0. Report GDF.136,
OGF, 2008.

[7] F. Berman, R. Wolski, H. Casanova, W. Cirne, et al. Adaptive
computing on the grid using AppLeS. IEEE Trans. Parallel
Distrib. Syst., 14:369–382, 2003.

[8] G. L. Bryan, T. Abel, and M. L. Norman. Achieving extreme
resolution in numerical cosmology using adaptive mesh refine-
ment: Resolving primordial star formation. In SC ’01.

[9] N. Capit, G. Da Costa, Y. Georgiou, G. Huard, et al. A batch
scheduler with high level components. CoRR, abs/cs/0506006,
2005.

[10] E. Caron, C. Klein, and C. Pérez. Efficient grid resource selec-
tion for a CEM application. In RenPar’19, Toulouse, France,
2009.

[11] A. Casajus, R. Graciani, et al. DIRAC pilot framework and
the DIRAC workload management system. Journal of Physics:
Conference Series, 219(6), 2010.

[12] H. Casanova. Benefits and drawbacks of redundant batch
requests. Journal of Grid Computing, 5(2):235–250, 2007.

[13] A. B. Downey. A model for speedup of parallel programs.
Technical report, 1997.

[14] D. G. Feitelson and L. Rudolph. Towards convergence in job
schedulers for parallel supercomputers. In IPPS ’96: Proceed-
ings of the Workshop on Job Scheduling Strategies for Parallel
Processing, pages 1–26, London, UK, 1996. Springer-Verlag.

[15] D. G. Feitelson, L. Rudolph, and U. Schwiegelshohn. Parallel
job scheduling - a status report. In Job Scheduling Strategies
for Parallel Processing, 2004.

[16] Globus Alliance. Resource specification language. www.globus.
org/toolkit/docs/5.0/5.0.2/.

[17] J. Hungershofer. On the combined scheduling of malleable
and rigid jobs. In SBAC-PAD ’04: Proceedings of the 16th
Symposium on Computer Architecture and High Performance
Computing, pages 206–213, Washington, DC, USA, 2004. IEEE
Computer Society.

[18] M. A. Jette, A. B. Yoo, and M. Grondona. Slurm: Simple
linux utility for resource management. In In Lecture Notes
in Computer Science: Proceedings of Job Scheduling Strategies
for Parallel Processing (JSSPP) 2003, pages 44–60. Springer-
Verlag, 2002.

[19] K. Kurowski, J. Nabrzyski, A. Oleksiak, and J. Węglarz. A
multicriteria approach to two-level hierarchy scheduling in grids.
Journal of Scheduling, 11(5):371–379, 2008.

[20] H. Mohamed and D. Epema. Experiences with the KOALA co-
allocating scheduler in multiclusters. In CCGrid’05, volume 2,
pages 784–791. IEEE CS Press, 2005.

[21] A. W. Mu’alem and D. G. Feitelson. Utilization, Predictability,
Workloads, and User Runtime Estimates in Scheduling the
IBM SP2 with Backfilling. IEEE Transactions on Parallel and
Distributed Systems, 12(6):529–543, 2001.

[22] A. Ribes and C. Caremoli. Salome platform component model
for numerical simulation. COMPSAC, 2:553–564, 2007.

[23] W. Smith, I. Foster, and V. Taylor. Scheduling with advanced
reservations. In Proc. of IPDPS’00, pages 127–132, 2000.

[24] S. Srinivasan, S. Krishnamoorthy, and P. Sadayappan. A robust
scheduling strategy for moldable scheduling of parallel jobs.
CLUSTER’03, page 92, 2003.

[25] S. Srinivasan, V. Subramani, R. Kettimuthu, P. Holenarsipur,
and P. Sadayappan. Effective selection of partition sizes for
moldable scheduling of parallel jobs. In HiPC’02, volume 2552
of LNCS, pages 174–183. Springer Berlin / Heidelberg, 2002.

[26] A. Sulistio, W. Schiffmann, and R. Buyya. Advanced
reservation-based scheduling of task graphs on clusters. In Proc.
of HiPC’06, 2006.


