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Abstract—Non-volatile memory (NVM) is emerging as a
fast byte-addressable alternative for storing persistent data.
Ensuring atomic durability in NVM requires logging. Existing
techniques have proposed software logging either by using
streaming stores for an undo log; or, by relying on the combina-
tion of clflush and mfence for a redo log. These techniques
are suboptimal because they waste precious execution cycles to
implement logging, which is fundamentally a data movement
operation. We propose ATOM, a hardware log manager based
on undo logging that performs the logging operation out of the
critical path. We present the design principles behind ATOM
and two techniques to optimize its performance. Our results
show that ATOM achieves an improvement of 27% to 33% for
micro-benchmarks and 60% for TPC-C over a baseline undo
log design.

I. INTRODUCTION

Byte-addressable non-volatile memory (NVM), also
known as persistent memory, is a new type of memory that
aims to bridge the gap between memory and storage and
is fast emerging as a new tier in the memory and storage
hierarchy. NVM can be realized, for instance, using the
recently announced 3D XPoint memory [1] and various other
technologies under development like PCM, STT-MRAM and
ReRAM. Because of its low power and high storage density
properties, NVM is widely expected to replace or comple-
ment DRAM in future systems [2], [3]. NVM incorporates
the speed and byte-addressability of volatile memory and
the persistence and high capacity of storage. With NVM,
applications can access vast amounts of persistent data using
the fast (load/store) processor interface, without having to
pay the costs of packing/unpacking data in/out of storage
and executing expensive system calls.
The Problem. An important challenge in designing NVM
systems is guaranteeing the consistency of persistent data in
the presence of system failures. Data structure consistency
is required for the correct recovery of program state after
a failure. Consider the example of two cache lines being
modified as part of an atomic update to a data structure.
If the system crashes after one of the cache lines reaches
NVM, then the data structure is left in an inconsistent state
because of the partial update to NVM. To avoid this scenario,
a mechanism for atomic durability needs to be provided.

Recovery mechanisms like write-ahead logging [4] have
been employed to provide atomic durability in many NVM
proposals [5], [6], [7], [8], [9]. These mechanisms operate

on the principle of physical logging: maintaining a persistent
copy of the old and new versions at all times during the
atomic update so that state can be recovered to either
of the versions. Write ahead logging writes undo or redo
log entries for all data updates, and enforces the ordering
constraint that all log entries become durable before any
data update (log → data ordering). In systems with NVM,
log implementations rely on instructions like non-temporal
stores and cache-line write backs to durably write log entries
to memory. Moreover, ordering constraints to memory have
to be explicitly enforced using instructions like pcommit and
sfence [10], [11], [12].

Support for atomic durability using the above method
has a fundamental drawback: durably writing log entries to
NVM is in the critical path of execution. Since the software
has no control over when a cache line is flushed out of
the cache, any data update cannot be performed until the
corresponding log entry persists in NVM, which can result in
significant performance degradation. Our experiments with
a set of micro-benchmarks show that durably writing log
entries in the critical path degrades throughput by 40% on
average and upto 70% (Figure 5: BASE vs NON-ATOMIC).
Our Approach. Our goal is to reduce the overhead of
logging by moving it out of the critical path. We observe that
logging, fundamentally, is a data movement task associated
with stores in the original program. Our insight is to perform
logging transparently in hardware by: (i) coupling log
writes with data stores; and (ii) co-locating data and their
corresponding log entries at the same memory controller. In
doing so, we not only minimize wasteful data movement, but
also enforce log → data ordering constraint in the memory
controller (out of the critical path).

We propose ATOM: a hardware log manager to guarantee
atomic durability through transparent and efficient logging.
ATOM manages log allocation, ordering and log truncation
in hardware. At the same time, ATOM is distributed across
memory controllers and handles logging for multiple threads
on a multicore processor. Our logging design is in many
ways similar to the data movement tasks offloaded to a DMA
engine. Offloading logging to a log manager in hardware
frees up CPU resources, and relieves the programmer from
explicitly implementing the logging logic.

In ATOM, we expose atomic durable regions to hardware
via ISA support (Atomic Begin and Atomic End instruc-



tions). Stores in this region that require logging (i.e., the first
store to a cache line) are detected dynamically and the log
write corresponding to the store is performed transparently.

We leverage operating system (OS) support to reserve log
space behind each memory controller. ATOM ensures that a
log write is sent to the same memory controller as that of
the corresponding data. This allows us to efficiently enforce
the log → data ordering constraint at the memory controller
level, thereby moving the ordering overhead out of the
critical path. We also propose an optimization called source
logging in which the memory controller eagerly performs
logging for read exclusive requests, thereby eliminating
wasteful data movement.

Finally, we ensure that the log structure is preserved for
recovery by forcing every memory controller to flush critical
hardware structures (128 bytes per memory controller) to
the NVM. Recovery is then ensured through a routine
implemented as a system call that undoes all the updates
that were incomplete at the time of the crash.
Contributions. In summary:
• We propose a log organization that allows us to eliminate

log persist operations from the critical path of program
execution by enforcing log→ data ordering at the memory
controller (§III-C).

• We propose an optimization to minimize data movement
for log entries by dynamically identifying when logging
can be done at the source (§III-D).

• We propose an efficient log manager in hardware that
manages allocating log space, writing log entries and
truncating logs transparently with only 3.125 KB overhead
per memory controller (§IV).

• We evaluate ATOM and show that it can improve perfor-
mance by 27% to 33% for micro-benchmarks and by 60%
for large-scale transactional workload (TPC-C) over a
baseline undo log design. ATOM also compares favorably
with a competing approach which provides support for
redo logging (§VI).

II. BACKGROUND AND MOTIVATION

A. Logging Techniques

Storage systems have traditionally employed write-ahead
logging (WAL) [4] or shadow paging [13] to provide atomic
durability for a group of writes – an atomic update. While
shadow paging is useful if writes belonging to an atomic
update happen at page granularity, WAL works better for
atomic updates consisting of scattered writes which happen
at a cache line or finer granularity [5], [6], [7], [8], [9], [10].
WAL, as the name suggests, requires that the log entries be
made persistent before data values can persist in memory. It
can be implemented by using either a redo log or an undo
log. When the system crashes in the middle of an atomic
update, the atomic update can either be reapplied (for a
redo log) or undone (for an undo log). We consider an undo
log based WAL implementation as it enables in-place data

writes, so the program can read the latest value without
any redirection. In a redo log based implementation, data
writes happen in the log area and read requests need to be
redirected to the redo log for the latest value. Alternatively,
if in-place writes are allowed, cache overflows need to be
stored in a victim cache [14].

B. Traditional Undo Logging

Traditional systems with volatile main memory and per-
sistent secondary storage typically follow the sequence of
actions shown in Figure 1(a) for implementing atomic dura-
bility through an undo log. An atomically durable update
using WAL is divided into two phases. The first phase is
volatile execution: for each data item that is part of the
atomic update, new values are computed in the compute
stage, an undo log entry is written to in the Write Log
stage and the data locations are updated in-place in the
Write Data stage. The second phase is persistence: first the
entire log is made durable in the Persist Log stage and then
all the data updates are made durable in the Persist Data
stage. After updating data, the log is truncated. Note here
the clear separation of the volatile and persistence phases,
which is justified due to two reasons. First, secondary
storage is many orders of magnitude slower than memory
and hence making any data durable incurs high latency.
Second, secondary storage devices like disks are block based
devices, so any update will write an entire page or block to
secondary storage. Thus, traditional systems have a separate
persistence phase to amortize the cost of performing the
atomic update. Moreover, the boundary between volatile
memory and persistent storage is software controlled: no
data can persist without software’s knowledge; this enables
the separation.

C. Undo Logging with NVM

In contrast, in systems with non-volatile memory (NVM),
the boundary between volatile caches and non-volatile mem-
ory is hardware controlled. Cache line replacements can
move data from volatile caches to NVM without software’s
knowledge. Therefore, such systems cannot completely sep-
arate volatile execution from persistence. Moreover, NVM
has very different properties than secondary storage. It is
expected to have close to DRAM speed, while allowing for
updates at a much finer (cache line) granularity. Because of
the relatively lower cost (low latency and fine granularity)
of persistence there is little need for amortization. Therefore
it is not necessary to separate volatile execution from per-
sistence. In fact, it is important to begin persisting data as
soon as it is modified to avoid being limited by the write
bandwidth, which can happen if all data is simultaneously
flushed to persist at the end of the update.

Since we cannot and need not decouple volatile execution
from persistence, let us examine the challenges (or con-
straints) for an undo log implementation in systems with
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(a) Undo logging in disk based systems with a clear separation of execution and persistence phases.
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(b) Undo logging in NVM based systems with overlapping volatile execution and persistence phases.
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Legends:

Create log entry before modifying data in−place in cache.

Persist log entry before persisting data in−place in NVM.

Persistence Phase

(c) Undo logging in NVM based systems with decoupling of execution and logging by enforcing two invariants.

Figure 1: Sequence of actions to be performed for undo logging in various scenarios.

NVMs. Undo log WAL implementation requires that the
system maintain a persistent copy of the old version of all
data items that are part of the atomic update at all times
during the update. Hence, the in-place version of data cannot
be modified until the undo log entry of the corresponding
data has been made durable. Therefore, it is necessary to
persist undo log entries before modifying data structures in-
place. Figure 1(b) shows the sequence of actions performed
for an undo log WAL implementation in NVM. The update
process is split into two phases. In the first phase, there
is an interaction between volatile execution and persistence
operations; the compute stage takes place and an undo log
entry is written to; then, the undo log entry is persisted
and data is modified in-place. In the second phase the data
updates are persisted and finally the log is truncated.

The bottleneck in this approach is that undo log entries
have to be made durable in the critical path of execution. Our
goal is to decouple log management from volatile execution
and move the operation of persisting log entries out of the
critical path of execution. As shown in Figure 1(c), writing
an undo log entry and persisting log entries can be safely
moved out of the critical path only if the following two
invariants are satisfied.
Invariant 1. A store should not complete until an undo log
entry is created for the data being modified by the store.
Invariant 2. In-place data should not be made durable until
the corresponding log entry is made durable.
Invariant 1 ensures that an undo log entry exists for every
data that is being modified as part of an atomically durable
update. Invariant 2 ensures that if the atomically durable
update fails, undo log entries for all the data items updated
in-place are durable. These log entries can be used to undo
the partial changes of the failed update.

III. ATOM DESIGN

In this section we introduce the conceptual design for
ATOM, a hardware log manager for undo logging. We begin
the section by first introducing the programming model

While (!Done) {

}

Flush Modified Data

Write Undo Log

Flush Log

Write Data

(a) Traditional Model

Flush Modified Data

Write Data

While (!Done) {

}

Atomic_Begin

Atomic_End

(b) Proposed Model

Figure 2: Undo Log Programming Model

with and without ATOM and then go on to establish a
baseline design for an undo log manager in hardware. We
then propose two optimizations: (i) to eliminate log persist
operations out of the the critical path, and (ii) to minimize
data movement.

A. Programming Model

A typical approach towards atomic durability in software
using an undo log is shown in Figure 2(a). An undo log entry
is created and flushed before writing to data in-place. After
completing the update, the modified data is flushed to NVM
to complete the atomic update. In ATOM, we introduce two
primitives, Atomic_Begin and Atomic_End to demar-
cate the start and end of the code segment performing an
atomic update. Using these two primitives, the programmer
does not have to create and flush undo log entries, but only
write data in-place and flush data on completion of the
update (Figure 2(b)). ATOM, the hardware log manager, will
create undo log entries and flush them to memory before the
in-place data modifications are written to memory.

The Atomic_Begin and Atomic_End construct only
guarantees atomic durability and not isolation in a multi-
threaded context. We require software to provide isolation.
Specifically, following Chakrabarti et al. [5], we require the
durable regions to coincide with outermost critical sections.

B. Baseline Design

The purpose of ATOM is to provide atomic durability for
updates in NVM. Recall that to provide atomic durability, an
undo log manager has to perform two tasks. First, creating



a log entry consisting of: the old value of the data being
modified, and its address. Second, ensuring that the log
entry persists before the corresponding data is persisted.
For the purposes of our discussion, we consider a generic
chip multi-processor with private L1 caches, a multi-banked
shared L2 cache and multiple memory controllers. ATOM is
implemented as a distributed log manager, that is distributed
across L1 caches and memory controllers – with the former
responsible for creating log entries and the latter responsible
for enforcing log → data ordering constraint. Finally, the
OS reserves log space behind each memory controller for
ATOM to write log entries into.
Creating a log entry. A log entry (old value, address pair)
has to be created before modifying any data in an atomic
update. Hence we use a store operation, belonging to an
atomic update, to trigger the creation of log entries. We
propose that the log manager in L1 cache couple the creation
of a log entry with the processing of a write request from a
store operation. Specifically, when the L1 cache controller
receives a write request for a cache line, it first sends a
log entry to the memory controller by piggy backing on the
cache write-back interface. This ensures that the log entry
is created before completing the write request, satisfying
Invariant 1. The memory controller then writes the log entry
into the log area in the NVM.

Note that while a cache line can get modified multiple
times during an atomic update, it does not have to be logged
every time it gets modified. Since an undo log stores the old
value, it is sufficient to log a cache line only once: on the first
write. To detect the first write to a cache line, we augment
all the cache blocks with an additional log bit. The log bit is
set when a cache line is written to for the first time during an
atomic update. It is cleared when the modified value of the
cache line is durably written to memory. This mechanism
is similar to the log mechanism employed in LogTM [15].
The critical difference is that the log write in this case is
not cached but has to be written to NVM. The log bit is
only maintained during the lifetime of a cache line in the
cache. As soon as a cache line is replaced, information about
whether that cache line is logged or not is lost. Therefore,
after being flushed to memory, when a cache line is modified
again in the same atomic update the log bit is not set and the
log manager logs it again. However, this is not a problem
for ensuring correct recovery. During recovery the roll backs
are applied in the order of newest first. This ensures that, at
the end of recovery, the value of a cache line is restored to
the one before the atomic update started.
Enforcing log → data ordering. The next task is to
enforce ordering between log writes and in-place data writes.
Therefore, upon detecting the necessity to log a cache line,
the log manager first durably writes a log entry to the log
area in NVM. After completing the write, it updates the
value of the cache line in the cache and retires the store from
the store queue (SQ). This ensures that an in-place data write

cannot become durable before the corresponding log entry,
thus satisfying Invariant 2. Figure 3(a) shows the sequence
of operations. The log manager in the cache controller, upon
receiving a write request from the SQ, checks if the log bit
is set for the cache line (A) being updated. If the log bit is
not set, the log manager creates a log entry (CL(A)) and
sends it to the memory controller. The memory controller
issues a write request for the log entry (WL(A)). After
durably writing the log entry to NVM (PL(A)), the memory
controller sends an acknowledgement (Ack(A)) back to the
log manager in the cache controller. The log manager then
completes the write request by modifying data in-place in
the cache (WI(A)), which allows the store to be retired
from the SQ. Under this baseline design, durably writing
the undo log entry is in the critical path of completing the
corresponding store operation from the SQ.
Sources of reordering. The log manager cannot allow the
update of data in the cache until it receives an acknowledge-
ment that the log entry has been made durable. This is
because the cache line containing the modified data can
be replaced at any time from the cache and could possibly
overtake the log entry to NVM, which in turn will violate
Invariant 2. This overtaking can happen because of the
possible reordering in either the on-chip network (between
the cache and NVM) or at the memory controller. Reordering
is possible even if we consider the network and the memory
controllers to be strictly ordered. It can arise if the log area
and the data (cache line) are mapped to different memory
controllers.
Logging cost. Store operations are typically not in the
critical path in modern processors because they employ a
queue to buffer store operations. But durably writing the
undo log to memory is in the critical path of store operations.
This reduces the rate at which store operations are completed
from the SQ, which leads to a back pressure that can fill up
the SQ and eventually stall the processor pipeline. Thus, it
is important to reduce the critical path of store operations.

C. Posted Log Optimization

Currently, for each store, the critical path includes writing
the log durably to memory as shown in Figure 3(a). To
minimize the performance overhead of enforcing the log
→ data ordering constraint, we propose to allow the log
manager in the cache controller to perform posted log writes
to the memory controller, where the log manager enforces
log → data ordering at the memory controller level. By
doing so, we move the performance overhead of durably
writing log entry to NVM, out of the critical path.

Figure 3(b) shows the sequence of operations for logging
with a posted write feature. Upon receiving a write request
from the SQ, the log manager in the cache controller sends
a log entry to the memory controller. The memory controller
locks the cache line (LA(A)) for which the log entry is being
persisted and then sends an acknowledgement back to the
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(a) Baseline Undo Log Implementation: On receiving a write request ((St(A)) from the SQ, the cache creates a log entry (CL(A)) and sends it to the
memory controller. The memory controller issues a write log (WL(A)) command to memory and after persisting it (PL(A)) sends an ack (Ack(A)) to cache
which writes data in-place (WI(A)), then store is retired (Ret(A)).
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(b) Posted Log Optimization: Similar to baseline implementation to the point where the cache creates a log entry (CL(A)) and sends it to the memory
controller. But the memory controller instead of waiting for the log write to complete, locks the cache line (LA(A)), sends an ack (Ack(A)) to the cache
and issues a write log (WL(A)) in that order. The cache then writes data in-place (WI(A)), then store is retired (Ret(A)). When log entry has been persisted
(PL(A)), the memory controller unlocks the line (UA(A)).
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(c) Write Miss in a Posted Log Design: On a cache miss (Miss(A)) for a store (St(A)) in a posted log design, the cache sends a read request to the
memory controller. The memory controller issues a read command (Rd(A)) and reads the cache line from memory (Read(A)) and sends it back to the
cache (Data(A)). The cache then follows the posted log procedure.

St (A)

Rd(A)
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NVM Read (A)

Ret(A)

UA (A)

PL (A)

WI (A)

WL (A)LA (A)
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Data*(A)

(d) Source Logging Optimization: After reading the cache line (Read(A)) on a store miss (MissX (A)), the memory controller locks the cache line (LA(A)).
It then sends the cache line back to the cache (Data*(A)) with log bit set, so the cache does not send a log write request. The cache then writes data
in-place (WI(A)), then store is retired (Ret(A)). The memory controller, meanwhile issues a write log (WL(A)) request and unlocks the cache line (UA(A))
after persisting the log entry (PL(A)).

Figure 3: Sequence of actions of store queue (SQ), cache, memory controller (Mem Ctrl) and non-volatile memory (NVM)
for undo logging in NVM based systems.

cache controller. Upon receiving the acknowledgement, the
cache controller completes the write request, allowing the
store to retire from the SQ (without having to wait for the log
write to persist). When the log write eventually completes,
the log manager in the memory controller unlocks the
cache line (UA(A)). Whenever a write entry is ready to be
scheduled out of the memory controller, the log manager is
first consulted; only if the cache line is not locked, the write
is allowed to go to NVM. In effect, this is a simple and
efficient approach to enforcing the log → data ordering at
the memory controller.

The posted log optimization cannot be applied if the log
and data are mapped to different memory controllers. It can
be challenging to ensure log-data co-location in software
because an application program might be modifying data
scattered behind multiple memory controllers. But because
we perform logging in hardware, we are able to ensure that
the log entry is sent to the same memory controller as the
corresponding data (§IV-B). Thus, by co-locating log and
data behind the same memory controller, we can enable the
posted log optimization. With posted log optimization even

though a store completes before durably writing the log entry
to NVM, log → data ordering is enforced by the memory
controller and hence Invariant 2 is satisfied.

D. Source Log Optimization

Performing a posted write to the memory controller still
incurs the cost of writing to and receiving an acknowledge-
ment from the memory controller in the critical path of the
store operation. But this can be further optimized in certain
scenarios. Consider the scenario shown in Figure 3(c). The
cache controller receives a write request for a cache line
(A). It misses in the cache (Miss(A)), so the cache controller
sends a fetch request to the memory controller. When the
memory controller responds with the data (Data(A)), the
cache controller checks for the log bit, which in this instance
is not going to be set since the cache line has just been read
from NVM. So the cache sends a log entry for cache line
A to the memory controller. In a posted log design, the
memory controller locks the cache line and responds with
an acknowledgement, which completes the write request
enabling the SQ to retire the store.



In the above example, however, there is unnecessary
data movement from the cache controller to the memory
controller in performing the log write. If a cache line is
not present in the cache, then the in-place data in NVM
is actually the old value of the cache line that needs to be
written to the undo log. So the data that the cache controller
sent back along with the undo log request is actually the
same data that it just received from the memory controller
because of its fetch request. This data movement from the
cache controller to the memory controller can be avoided if
the memory controller itself can write the old value of the
cache line in the log area. We call this optimization source
log optimization and is shown in Figure 3(d). The cache con-
troller on detecting a miss on a write request (MissX (A)),
sends a fetch exclusive request to the memory controller.
The memory controller follows the posted log procedure
after reading the cache line from NVM (Read(A)). It first
locks the cache line (LA(A)), and then sends a data response
to the cache with the log bit set (Data*(A)). On receiving
data with the log bit set, the cache controller completes the
write to the cache line. The memory controller, after sending
the data to the cache, writes the log entry to NVM and
eventually unlocks the cache line (UA(A)) on completion
of the log write (PL(A)). Thus, this technique completely
removes logging out of the critical path for stores that miss
in the cache. It also eliminates redundant data movement.

IV. ATOM ARCHITECTURE

In this section, we present the architectural and imple-
mentation details of ATOM.

A. Overview

The primary functions of ATOM are initiating log writes,
managing log space (log allocation and clearing) and en-
forcing the log → data ordering constraint. These functions
are implemented across two modules. The log write initiate
module (LogI) and the log manage (LogM) module. The
LogI module is embedded in the L1 cache controller as
shown in Figure 4(a) and is responsible for initiating log
write requests. The LogM module is embedded in the mem-
ory controller as shown in Figure 4(a) and is responsible for
managing log space and enforcing the log → data ordering
constraint. ATOM supports one atomic update per core. But
it allows for concurrent execution of atomic updates across
different cores by creating multiple (one per core) instances
of the tracking structures in the LogM module.

B. Log Write Initiate (LogI) module

As discussed in §III-A we extend the processor-to-
memory system interface to include two new commands,
Atomic_Begin and Atomic_End. These commands sig-
nify the start and the end of an atomic update respectively.
The memory system, upon seeing the Atomic_Begin
command, will start logging for the cache lines being

modified by subsequent stores. It will stop logging upon
receiving an Atomic_End command. We handle nested
atomic sections by flattening them.

The LogI module looks at the log bit of each cache
line before completing a write request. If the bit is set, the
write request is immediately serviced. Otherwise the write
request is stalled, a miss status handling register (MSHR) is
allocated and a log write request is initiated to the memory
controller associated with the corresponding cache line. The
memory controller associated with the cache line is easily
determined from the cache line address. By sending the log
request to the same memory controller as the data, we ensure
log-data co-location.

C. Log Manage (LogM) module

ATOM’s LogM module manages a central log space
which is shared across all threads and is statically allocated
by the OS. ATOM manages this log space in terms of records
and buckets as is described next.
Log Record Organization. We consider a system with 64
byte cache lines and ATOM performs logging at a cache line
granularity. Therefore, each log entry consists of a cache
line as data and address as meta-data. The simplest way to
organize logging is to allow all threads to create individual
log entries in the central log space. Writing a log entry to
NVM in this way would require 2 write requests to memory
since the size of a log entry is greater than a cache line.
To minimize the overhead of multiple write requests we
propose log entry collation (LEC), in which multiple log
entries are collated into a single log record. The size of each
log record is 512 bytes (or 8 cache lines). A log record can
contain up to 7 log entries, and is divided into data (7 cache
lines) and header (1 cache line) as shown in Figure 4(c).
The header contains the addresses of all the 7 cache lines,
the number of cache lines logged in the current record, and
some reserved bits. On receiving a log write request, only
the data field is written to memory at first. The meta-data
for the log entry (consisting of its address) is added to the
record header. A log entry is not considered durable until its
corresponding record header persists. After logging 7 cache-
lines, the header is written to memory, thus persisting the
entire log record. When all 7 log entries in a log record are
occupied, LEC reduces the overhead of writing a log entry:
from 2 write requests for 1 log entry to 8 write requests for
7 log entries, which is a 57% reduction in the number of
write requests to memory for logging.

LEC can lead to a violation of Invariant 2 if the cache line
containing an in-place update is replaced from the cache
and is made durable before the log header corresponding
to its log entry. To avoid this, and before writing any data
cache line to NVM, the memory address is compared to
the addresses in the record header. The data cache line is
written to memory only if there is no match in the header.
If there is a match, then the header is first made durable to
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complete the log write and then the data write is allowed
to persist in NVM. Adding the address of a cache line in
the record header corresponds to the concept of locking the
cache line described in §III-C. The record header is cleared
after persisting it in NVM, which corresponds to unlocking
the cache lines.

The centralized shared log space can potentially be man-
aged at a log record granularity. The log manager can
maintain a log record head pointer and keep adding new
log records to the central log space based on the requests
received from different atomic updates. There are two ways
to clear such a log. In the first approach, on completion of an
atomic update, the log manager can read the log space start-
ing from the beginning of log and clear all records belonging
to the corresponding atomic update individually until the
corresponding commit record is encountered. Unfortunately
this will generate additional memory read requests to read
log record headers sequentially and additional memory write
requests to clear records corresponding to the completed
update. Moreover, this will leave the log space fragmented.
In the second approach the log manager – instead of clearing
log records on completion of atomic updates – can wait for
the completion of all concurrent atomic updates and then
clear the log space. This method will avoid fragmentation,
but will stall the processing of new atomic updates during
the wait.
Log Bucket Organization. To overcome these limitations
we propose dividing the shared log space into buckets of log
records and managing log space allocation and deallocation
at a bucket granularity, resulting in the organization shown in
Figure 4(c). An atomic update has an associated bit-vector,
known as bucket bit vector, indicating the buckets allocated
to that update. Using a bit-vector alleviates the first problem
of requiring additional memory read and write requests to
allocate or clear the log as it can be used to identify free
buckets and to clear allocated buckets. Along with the bit
vector, there is a current bucket register that identifies the
bucket to which log records are being added currently; a
current record register that indicates the record in the current
bucket being written to; and, finally, a record header register
that stores the meta-data for the log record currently being
updated as shown in Figure 4(b). A new bucket is allocated

from the free list bit vector, which is generated by NORing
all the bucket bit vectors.

The bucket bit vector and current bucket, current record
and record header registers – together track a single atomic
update and are collectively known as an atomic update
structure (AUS). So to support concurrent atomic updates,
these need to be replicated as shown in Figure 4(b). We
support up to 32 concurrent updates in our system (1 per
core). The sizes of all the registers is shown in Figure 4(b).
The space overhead of LogM module amounts to 3.125 KB.

The bucket organization, by allocating log buckets from
a central pool, allows for dynamic sharing of log space by
concurrent atomic updates. It also simplifies log clearing
on completion of an atomic update. LogM does not have
to read the log space, but only has to clear the bit vector
corresponding to the atomic update and update the free
list bit vector. This is a single cycle operation and will be
completed even if a power failure occurs at the moment of
clearing the log.

D. Recovery

After a power failure, the incomplete atomic updates need
to be undone to restore the system to a consistent state.
The enforcement of Invariant 2 guarantees that at any point
of time during execution, if a log entry has not persisted
then the corresponding data would not have persisted either.
Hence in the event of a power failure, all the pending
log writes in the memory controller store buffers can be
safely discarded. Only those log entries that have already
persisted need to be considered during recovery. However,
on a power failure the information about valid log buckets in
the memory controller will be lost. To correctly access the
log space we need to be able to identify which buckets are
valid (contain valid log records). This can be identified by
taking a complement of the free list bit vector. Also, some
of the valid buckets might be partially filled because log
entries were being added to them when the power failure
occurred. These partially filled buckets can be identified
from the current bucket register. And finally the number
of valid log records in those partially filled buckets can be
identified from the current record register. The total size
of the above 3 critical structures is 128 bytes. To ensure



Cores 32 OoO cores @ 2GHz
ROB Size 192 Entry
Store Queue 32 Entry
L1 I/D Cache 32KB 64B lines, 4−way
L1 Access Latency 3 cycles
L2 Cache 1MB×32 tiles, 64B lines,

16−way
L2 Access Latency 30 cycles
MSHRs 32
Memory Controllers 4
NVM Access Latency 360 (240) cycles write (read)
On-chip network 2D Mesh, 4 rows, 16B flits

Table I: System Parameters

that these critical structures are preserved, we utilize a
feature similar to Asynchronous DRAM Refresh (ADR)[16]
supported by Intel. ADR ensures that on a power failure, all
the memory controller buffers (24 or more cache lines) are
flushed to memory. In our implementation, only the critical
structures (amounting to only 2 cache lines) need to be
written to NVM on detecting a power failure.

Recovery after a power failure is accomplished in software
through a generic recovery routine provided as a system call
which relieves the programmer from having to implement
custom recovery schemes. The recovery routine will read the
bucket bit vectors and current bucket and record information
from NVM and reconstruct the state of the log space at the
time of the crash. It will then perform undo operations in
the reverse order starting from the last log record to the first
one for each incomplete atomic update. The recovery routine
performs undo operations for all the cache lines recorded in
the log even though some of the cache lines may not have
been updated in memory at the time of crash. This might
impose a performance overhead during recovery but does
not affect the correctness.

E. Log Allocation and Overflow

In our design, a central log space is allocated by the
operating system (OS) which is shared between concurrent
atomic updates. The OS is aware of the number of physical
pages associated with each memory controller. It reserves a
proportional number of these pages as the log area. The OS
then ensures that no virtual page is mapped to any of these
reserved log pages. Recall that the LogI module ensures that
each log entry is correctly directed to the memory controller
where the corresponding data page resides.

There can be two kinds of overflows in the system. The
first type of overflow, known as structural overflow, occurs
when the number of concurrent update requests are higher
than the number of updates supported by the hardware. An
Atomic_Begin instruction checks for the availability of
an AUS. If an AUS is not available it will stall. Eventually
as other atomic updates complete (execute Atomic_End
instruction), an AUS will free up and will be allocated to
the stalled update. The waiting update does not have any

Hash Insert/delete entries in a hash table
Queue Insert/delete entries in a queue
RBTree Insert/delete nodes in a red-black tree
BTree Insert/delete nodes in a b-tree
SDG Insert/delete edges in a scalable graph
SPS Random swaps between entries in an array

Table II: Micro-benchmarks used in our experiments

resources reserved and hence cannot block any other update.
Thus, a structural overflow cannot result in a deadlock.

The second type of overflow, known as log overflow,
occurs when a new bucket needs to be allocated behind
a memory controller, but no more buckets are available in
the corresponding free list bit vector. In other words, all
of the reserved log pages in the memory controller have
been exhausted. In this scenario, the OS is interrupted to
allocate additional log pages for that memory controller,
which will be used to store subsequent log records. Because
this additional resource (log space) is allocated to the
requesting update, it will make forward progress and not
block any other update. Hence, a log overflow will also
not result in a deadlock. Moreover, dynamically sharing the
log space between atomic updates reduces the probability of
log overflow as opposed to a design where the log space is
statically partitioned.

V. EXPERIMENTAL SETUP

We now describe our simulation infrastructure, system
configuration, benchmarks and designs that we evaluate. We
implemented ATOM on gem5 [17] with Ruby in full system
simulation mode. The on-chip interconnect is modelled
using Garnet [18]. We extend the Ruby memory model to
implement the proposed log manager. We evaluate ATOM
on a 32-core multicore (1 thread per core) with multi-banked
LLC and 4 memory controllers placed on the corners of the
die. We consider a MESI based coherence protocol for our
evaluation. Table I shows the main parameters of the system.
The memory write latency that we consider is 10× that of
typical DRAM latency. We assume a single memory channel
per memory controller unless otherwise stated. The peak
memory bandwidth in our setup is 5.3 GB/s per memory
channel. We model an address match latency of 1 cycle in
the memory controller to check if the data write request has
a corresponding log entry pending in the record header.
Workloads. We use the micro-benchmarks listed in Table II
to evaluate ATOM and the proposed optimizations. These
micro-benchmarks implement data structures that are similar
to those in the benchmark suite used by NVHeaps [7], except
for the queue micro-benchmark, which is similar to the copy-
while-locked queue of [19]. We evaluate these workloads
with two data set sizes (table entries, tree nodes, queue
entries etc.): small (512 bytes) and large (4 KB). Each
benchmark performs search and atomic insert and delete
operations on the corresponding data structure.
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Figure 5: Transaction throughput normalized to BASE for micro-benchmarks.

We also evaluate ATOM using the TPC-C benchmark
where the TPC-C schema is implemented using B+-
Trees [6]. We use a scaling factor of 1 and use 32 threads to
simulate the 32 terminals issuing new order transactions.
Our goal is to measure the overhead in write-intensive
operations. Therefore, the new order transaction is the best
choice as it is the most write-intensive TPC-C transaction.
We slightly modified the benchmark and removed the wait
times (implemented using sleep system call) to allow us to
execute the benchmark in a reasonable amount of time.
Designs: We compare the following designs:
• BASE: The baseline hardware undo log which performs

logging transparently in hardware (without additional in-
structions for logging), but the log write happens in the
critical path of a store operation. (§III-B).

• ATOM: Proposed design with posted log optimization
(§III-C).

• ATOM-OPT: The above with source log optimization as
well (§III-D).

• NON-ATOMIC: No logging operations are performed,
and hence this design represents upper bound on per-
formance for a logging implementation. On completion
of each atomic update, all the data modified within the
atomic update is still written back to NVM.

• REDO: The redo log design of Doshi et al. [14] with a
couple of modifications (that actually benefit their design).
First, although their implementation requires additional
log write instructions in software, we do this in hardware
by allowing the cache to issue log writes on receiving a
store, for the sake of fair comparison. Second, we consider
an infinite size victim cache. Similarly to their design, we
implement write combining for log writes.

VI. RESULTS

We first present the speed-up due to ATOM and analyze
the impact of both posted logging and source logging
optimizations. We then show how ATOM reduces the critical
path of logging operations by looking at the occupancy
of the store queue and also analyze the reasons behind
the magnitude of performance improvement due to source
logging. We also compare ATOM with a REDO log based
design [14] and perform a sensitivity study by varying

memory latency. Finally we present the performance of
ATOM for the TPC-C benchmark.

A. Transaction Throughput

Figure 5(a) shows transaction throughput for the ATOM,
ATOM-OPT and NON-ATOMIC designs, normalized to
BASE for small dataset sizes. On average, ATOM improves
transaction throughput by 23%. Recall that the posted log
optimization reduces the critical path of store operations by
enforcing log → data ordering at the memory controller.
ATOM-OPT improves the throughput by 27% on average
over BASE which is a 4% improvement over ATOM. Recall
that source logging optimization further reduces the critical
path of stores that miss in the cache by eliminating the
log write request from cache to memory controller. The
improvement because of this optimization will depend on the
percentage of log writes that are source logged. We analyze
this further in §VI-C.

The NON-ATOMIC design has a 38% higher throughput
than BASE. The ATOM-OPT design, by improving the
throughput by 27%, is able to close about 71% of the
performance gap between BASE and the optimal (NON-
ATOMIC) design.

Figure 5(b) shows the normalized transaction throughput
for large dataset sizes. On average, ATOM improves the
transaction throughput by 24%, while ATOM-OPT improves
it by 33% over BASE which is a 9% improvement over
ATOM. For large dataset sizes NON-ATOMIC design im-
proves the throughput over BASE by 41% and ATOM-OPT
design is able to close 83% of this performance gap between
NON-ATOMIC and BASE designs.

B. Impact on Critical Path

Store operations are not typically in the critical path of
program execution because most processors employ store
queues (SQ) to complete stores out of the critical path.
But with logging, writing to NVM is in the critical path
of completing store operations from the SQ. This creates a
back pressure, which eventually fills up the SQ and stalls
the processor pipeline. Figure 6 shows the number of SQ-
full events for ATOM-OPT and NON-ATOMIC designs,
normalized to BASE for benchmarks with small dataset
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Figure 6: SQ full cycles normalized to BASE for micro-
benchmarks with small dataset size.

btree hash queue rbtree sdg sps
small 0.12 0.12 0.07 0.01 0.04 0.01
large 0.4 0.4 0.7 0.4 0.07 0.01

Table III: % of source logged cache lines for ATOM-OPT

sizes. ATOM-OPT reduces the SQ-full cycles by 21% on
average which correlates with the increase in throughout.
Benchmarks with high reduction, like queue (43%) and
rbtree (35%) also show high improvement in throughput:
47% and 46% respectively. Similarly, sps which has the
minimum reduction (1%) shows the minimum improvement
in throughput (4%). On average ATOM-OPT has only 10%
more SQ-full cycles than NON-ATOMIC.

Benchmarks with large dataset sizes show a similar trend
but we do not show them because of space constraints. In
these benchmarks the average reduction in the number of
SQ-full cycles drops to 11% from the high 21% seen for
benchmarks with small dataset sizes. With increasing dataset
sizes, the number of cache lines to be written back at the
end of an atomic update increases. This places additional
pressure on the SQ occupancy and hence the scope for
reducing SQ-full cycles decreases.

C. Source Logging

The source logging optimization removes log writes from
the critical path for store operations that miss in the cache.
ATOM-OPT logs the cache lines for which a fetch exclusive
request is received by the memory controller during an
atomic update. Table III shows the percentage of source
logging for benchmarks with small and large datasets. We
see that even with as little as 0.12% of log writes being
source logged, ATOM-OPT provides a transaction through-
put improvement of about 10% and 13% over ATOM for
btree and hash benchmarks respectively for small datasets.

As the dataset size grows, the percentage of store oper-
ations missing in the cache increases. We see that queue,
which has the highest percentage (0.7%) of source logging,
provides the highest throughput improvement (16%) for
ATOM-OPT over ATOM. Moreover, sps, which has the
lowest percentage of source logged cache lines for both
small and large datasets does not show any improvement
compared to ATOM.
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Figure 7: Transaction throughput for REDO and ATOM-
OPT designs normalized to ATOM-OPT for benchmarks
with small dataset size.

D. Comparison with Redo Log

We compare ATOM-OPT with the recently proposed
REDO log design [14]. In addition to the setup of §V,
we also evaluate these designs in a configuration with
two memory channels at each memory controller (*-2C),
where one channel is used for data while the other channel
is used for logging, in order to mimic the configuration
used by the authors in [14]. Figure 7 shows the transac-
tion throughput normalized to ATOM-OPT. In the single
channel configuration REDO is only able to achieve 22%
of the transaction throughput of ATOM-OPT while in the
two channel configuration it is able to achieve 30%. We
identified that the disparity in performance between ATOM-
OPT and REDO is because of the difference in their memory
bandwidth requirements.

REDO generates 19× more log entries than ATOM-OPT.
This is because in REDO, every store operation in an atomic
section generates a log entry. Whereas in ATOM, a log
entry is generated only on the first write to a cache line.
These log entries increase the pressure on the memory write
bandwidth. Moreover, in REDO the log entries have to be
read from memory to perform in-place data updates. These
log read requests interfere with the critical data read requests
from the cores, thus slowing down execution. In the two
channel configuration, the log and data reads go to separate
channels and hence the log read requests do not interfere
with the critical data read requests. Therefore, the throughput
of REDO-2C increases by 9% over REDO.

E. Sensitivity to Memory Latency

Figure 8 shows the transaction throughput for the rbtree
benchmark with small dataset size for varying memory laten-
cies (as a ratio of DRAM latency). At NVM latencies similar
to DRAM, REDO provides higher transaction throughput
than ATOM-OPT because of two reasons. First, the low
latency memory is quickly able to absorb the large number
of log writes generated by REDO. So this is no more a
bottleneck for REDO. Second, REDO performs in-place
updates of data in the background, whereas ATOM-OPT
has to persist all the in-place modifications to NVM at the
end of each atomic update. But on increasing the latency,
the performance of REDO degrades super-linearly because
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BASE ATOM ATOM-OPT REDO
Throughput 1 1.58 1.6 1.47

Table IV: TPC-C throughput normalized to BASE.

of the relatively high memory bandwidth requirement. The
throughput of ATOM-OPT degrades almost linearly because
its memory bandwidth requirement is lower than REDO.

F. TPC-C

As a case study we evaluate ATOM using TPC-C, annotat-
ing all the critical sections as atomic regions. Table IV shows
the throughput for TPC-C normalized to BASE. ATOM
provides a throughput improvement of 58% over BASE
whereas ATOM-OPT provides an improvement of 60% over
BASE. ATOM-OPT provides negligible improvement over
ATOM because only 0.02% of log operations were source
logged. ATOM-OPT reduces the SQ-full cycles by 42%.

REDO on the other hand provides a throughput im-
provement of 47% over BASE (13% lesser improvement
than ATOM-OPT). It is worth noting that both ATOM and
REDO provide higher gains for TPC-C as opposed to micro-
benchmarks. This is because TPC-C has relatively lower
frequency of updates in comparison to micro-benchmarks,
and hence memory bandwidth is less of a problem.

VII. RELATED WORK

Non-volatile memory (NVM) technologies have been
studied for various application scenarios, e.g., program
checkpointing [20], [21], [22], databases [23], [24], [25],
[26], in-memory persistent data structures [5], [6], [7],
[8], [9], [21], [27] and file systems [10], [28]. All these
scenarios require support for atomic durability, which can
be implemented using either WAL or shadow paging.

Systems like Mnemosyne [8], REWIND [6] and Atlas [5]
support atomic durability through write ahead logging im-
plemented in software. Hence they rely on the pcommit
instruction which enforces the log → data ordering in the
critical path of execution. In [29], the authors propose a
software approach to reducing ordering overhead for pro-
viding atomic durability, by reducing the number of copy
operations and by persisting data in bulk. In [23], the authors
propose a group commit mechanism to amortize the cost of
persist ordering constraints within a transaction. All these
techniques have to persist the log in the critical path.

Many hardware techniques have been proposed to
avoid persisting the log in the critical path of execution.
NVHeaps [7] relies on epoch barriers [19], [28] to persist
the log out of the critical path. Implementing epoch barriers,
however, requires significant changes to the cache hierarchy.
Besides, their efficacy is limited (and hence performance
sub-optimal) for smaller epoch sizes [21]. In a concurrent
proposal [30], the authors propose delegated persist ordering
that, similar to our posted log optimization, enforces order-
ing constraints at the memory controller. However, they only
provide ordering but not atomic durability. In LOC [31],
the authors provide hardware support for atomic durability
through redo logging. Their proposal again requires exten-
sive changes to the cache hierarchy along with support for
multi-versioned caches.

Kiln [32] provides atomic durability in presence of a
non-volatile cache (NVC). Having an NVC eliminates the
requirement of logging by allowing NVC and NVM to hold
two versions of a cache line where one of the versions
can conceptually be considered as a log. Memory controller
optimizations [33], [34], [35] have been proposed to improve
the performance by differentiating between log writes and
data writes. These proposals are broadly aimed at reducing
latency of persist operations and are complementary to our
proposal of removing log writes from the critical path.

Pelley et al. propose the concept of memory persistency
models in terms of persist ordering constraints [19]. In [36]
the authors analyze dependencies that need to be satisfied
to implement transactions under various persistency models
and propose optimizations to improve performance. These
proposals broadly deal with reducing dependencies across
transactions and are complimentary to our approach of
reducing dependencies within a transaction.

Recently, redo logging for atomic durability was proposed
in [14]. After completing an atomic update, the backend con-
troller reads the log entries from the log area in memory and
updates data in-place. Reading log entries after each update
places additional pressure on the memory read bandwidth
and can significantly delay the critical read requests coming
from the processor. Another drawback is that it can lead
to multiple log entries for the same data if the data gets
modified multiple times during an atomic update (§VI-D).
They also need a victim cache to avoid spilling dirty cache
lines into memory.

NVM cannot be used as a drop-in replacement for disks
without modifying the surrounding software stack [23], [25],
[37]. In systems with NVM, the synchronization overheads
of a centralized log are high and hence there have been
proposals for using per-thread distributed logs [24], [25]. In
ATOM, however, the log space is centralized and shared
across all threads to reduce fragmentation and improve
utilization. We overcome the synchronization overhead by
partitioning the log space into buckets and managing log
space at bucket granularity in hardware.



ATOM provides atomic durability and relies on software
locks to provide isolation [5]. But it can be adapted to
leverage other ways to provide isolation such as hardware
transactional memory (including but not limited to Intel’s
Transactional Synchronization Extentions [12] and [15]).

VIII. CONCLUSION

We have presented ATOM: a hardware log manager that
provides atomic durability in NVM via undo logging. We
have described the salient principles behind ATOM’s design
and have shown how these principles can be implemented in
hardware so that logging operations can be moved out of the
critical path. We have evaluated ATOM on a variety of work-
loads, ranging from standard micro-benchmarks to large-
scale database management scenarios. Our results show that
ATOM delivers on its promise of high-performance logging
at minimal overhead across the board.
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