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Abstract

As modern GPUs rely partly on their on-chip memories
to counter the imminent off-chip memory wall, the efficient
use of their caches has become important for performance
and energy. However, optimising cache locality system-
atically requires insight into and prediction of cache be-
haviour. On sequential processors, stack distance or reuse
distance theory is a well-known means to model cache be-
haviour. However, it is not straightforward to apply this
theory to GPUs, mainly because of the parallel execution
model and fine-grained multi-threading. This work extends
reuse distance to GPUs by modelling: 1) the GPU’s hier-
archy of threads, warps, threadblocks, and sets of active
threads, 2) conditional and non-uniform latencies, 3) cache
associativity, 4) miss-status holding-registers, and 5) warp
divergence. We implement the model in C++ and extend the
Ocelot GPU emulator to extract lists of memory addresses.
We compare our model with measured cache miss rates for
the Parboil and PolyBench/GPU benchmark suites, showing
a mean absolute error of 6% and 8% for two cache config-
urations. We show that our model is faster and even more
accurate compared to the GPGPU-Sim simulator.

1. Introduction

In the past decade, graphics processing units (GPUs)
have emerged as a popular platform for non-graphics com-
putations. Through languages such as OpenCL and CUDA,
programmers can use these massively parallel architec-
tures for domains such as linear algebra, image processing
and molecular science. To counter the imminent memory
wall [9], GPUs have been equipped with software-managed
(scratch-pad) and hardware-managed (cache) on-chip mem-
ories. In particular for integrated solutions with general-
purpose memories (e.g. ARM Mali, Xbox One) off-chip
memory bandwidth is scarce: using the on-chip memories
efficiently is paramount to exploit the GPU’s full potential.

Because GPUs are designed to hide their memory la-
tencies through fine-grained multi-threading, the goal of
a GPU’s on-chip memory is not to reduce latencies as is
the case for CPUs. Instead, the GPU’s on-chip memories
serve the purpose of reducing the off-chip memory traf-
fic. An increased cache hit rate will translate to perfor-
mance improvements for memory-intensive programs, as
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off-chip memory traffic (the performance limiting factor) is
decreased proportionally. In fact, many GPU programs are
memory bandwidth intensive: for an example set of bench-
marks, this is as much as 18 out of 31 [13]. Specific ex-
amples of cache optimisations include cache blocking for
sparse matrix vector multiplication (5x speed-up) [24] and
tiling for a stencil computation (3x speed-up) [19].

Since GPUs rely on their on-chip memories to reduce
off-chip memory traffic, optimising GPU programs for
cache locality has become important for performance and
energy. However, to be able to perform cache locality opti-
misations efficiently, insight into the types of cache misses
and a prediction of the amount and source of cache misses
is essential, as shown for example in [4, 12, 16]. A cache
model can also be used to guide compilers to select their op-
timisation parameters, e.g. a loop-tiling factor and a thread
coarsening factor. An example is the polyhedral model
based C-to-CUDA compiler PPCG [22], which leaves the
problem of tile-size selection to the programmer because
of a lack of insight into cache behaviour. Additionally, a
model can accelerate design space exploration, i.e. find-
ing cost-efficient values for cache parameters such as asso-
ciativity or the cache-line size. An analytical cache model
can thus help to obtain insight into cache usage, to guide
programmers and compilers, and to evaluate the effects of
cache parameters on cache miss rates.

A well-known cache model is the 3C model [10], dis-
tinguishing three types of cache misses: 1) compulsory (or
cold): misses because of a first time access, 2) capacity:
misses because of a limited cache size, and 3) conflict:
misses due to a limited cache associativity or a non-ideal
replacement policy. To estimate the amount of cache misses
based on the 3C model, a reuse distance profile (or ‘stack’)
can be constructed from a memory access trace [4]. The
reuse distance theory keeps track of memory requests, mov-
ing recently used addresses to the top of an address stack.
Addresses not yet present in the stack are the compulsory
misses, and addresses with a stack depth larger than the
cache size are the capacity misses. Although this model
does not take conflict misses into account, it gives a good
lower bound for the total miss rate on sequential architec-
tures [4] and even on multi-core CPUs [18].

Existing performance and power models for GPUs
(e.g. [2, 11]) have not included a cache model up to



now: they are only valid for (older) GPUs without data
caches. However, understanding cache behaviour is im-
portant as off-chip memory bandwidth is becoming increas-
ingly scarce relative to compute power [9]. The main chal-
lenges of creating a cache model for GPUs lie in the execu-
tion model: as we will see in this paper, fine-grained multi-
threading and parallelism make it non-trivial to find the or-
der in which memory requests appear to the cache. Because
reuse distance theory can only be applied to an ordered
memory access trace, it is not directly suited for GPUs.
This work extends the reuse distance theory to model GPU
caches through the following extensions:

1. The reuse distance theory is adjusted to match the
GPU’s parallel execution model. This includes mod-
elling threads, warps, threadblocks, cores, and sets of
active threadblocks.

2. The GPU’s memory latency is modelled by keeping
track of in-flight accesses and their arrival times, in-
troducing a new type of misses: latency misses. Fur-
thermore, the memory’s non-uniformity is modelled
by sampling from a half-normal distribution.

3. Limited associativity is modelled by creating a pri-
vate reuse distance stack per cache set. We identify the
mapping of addresses to sets with micro-benchmarks.

4. The effects of miss-status holding-registers
(MSHRs) are modelled, which store in-flight memory
request information.

5. Threads within a warp are executed in lock-step, but
individual warps can make different progress. This
warp divergence is modelled by simulating a thread-
pool from which warps can be selected for execution.

The model is implemented in C++ (optimised for perfor-
mance) and the source-code is available on-line!, including
a custom CUDA memory access tracer for the Ocelot emu-
lator [7]. Our contributions can be summarised as follows:

e Five extensions to the reuse distance theory are pro-
posed, creating a detailed cache model for GPUs (sec-
tion 4). The model is validated for two cache configu-
rations and for two benchmark suites (section 6).

e Two architectural details are found through micro-
benchmarking: 1) the GPU’s mapping of addresses to
sets, and 2) the number of MSHRs (section 5).

e The usability of the model is demonstrated by showing
an example cache parameter sweep (section 7).

"http://github.com/cnugteren/gpu-cache-model

This work focuses on the GPU’s L1 data caches: after it
is known in what order memory accesses appear in the L1
cache and which of those miss, existing multi-core CPU
models can be applied to model the GPU’s L2 cache.

2. Related work

There is only a single other complete GPU cache model
presented in the literature (to the best of our knowledge).
This model by Tang et al. [21] is also based on reuse dis-
tance theory. However, there are a number of reasons why
we propose a new cache model. First, in contrast to our
work, Tang et al. model only a single threadblock, assume
warps to execute in lock-step, do not model MSHRs and
the mapping of addresses to sets, and do not give any de-
tails on the used memory latency model. Second, their
validation is very limited: 1) they validate against a GPU
simulator, not against real hardware, and 2) they include
only basic, hand-picked kernels with non-representative in-
put data-sizes. Third, their model is limited to kernels that
can be statically analysed. This is in contrast to our ap-
proach, where we support any GPU kernel: we use an em-
ulator to generate traces. Our final reason is practical: their
model is not available in the form of source-code or binary.

Another cache model [15] is part of a complete GPU
model, but assumes hit and miss rates to be known. Fur-
thermore, other work has used reuse distance to analyse
non-GPU multi-core and many-core workloads [6, 17, 18].
In contrast to our work, they investigate cache contention
caused by running multiple programs on different cores.
Because they do not target GPUs, many of their assump-
tions (e.g. no data reuse among threads, execution order
known) are not valid for our work (and vice versa).

3. Background

This section briefly introduces the GPU execution
model, the cache architecture, and the reuse distance the-
ory. Additional background information on GPUs can be
found in the CUDA programming guide [14] and on caches
and reuse distance theory in literature [5].

We use NVIDIA’s Fermi architecture as an exam-
ple throughout this paper and experiment on a GeForce
GTX470 GPU (but can be applied to others as well). The
Fermi architecture has up to 16 cores (also known as
streaming multiprocessors or compute units), of which 14
are available in the GTX470. The cores each contain 32
processing elements and share a 64KB on-chip data mem-
ory, configurable as a combination of a scratchpad and a
L1 cache (16/48KB or 48/16KB). All cores share a larger
L2 cache (up to 768KB). This work focuses on the L1 data
cache, the main challenge of modelling GPU caches. The
GPU’s L1 cache handles only off-chip loads: stores are han-
dled by the L2 cache only, not by the L1 cache [14]. There-
fore, only loads are considered in this work, although the
presented cache model can be applied to stores as well.



The cache-related terminology used is as follows [5].
‘Cache-line’ describes a location in the cache, while ‘cache-
block’ refers to the data that goes into a cache-line. Further-
more, S represents the number of sets in a cache.

3.1. The CUDA/OpenCL execution model

The programming frameworks CUDA and OpenCL al-
low programmers to specify small programs (kernels) that
are executed multiple times. Each instance of a kernel
(threads in CUDA terminology, workitems in OpenCL ter-
minology) has its own unique identifier in order to work
on different data. Programmers furthermore divide all their
threads in fixed-sized blocks (threadblocks in CUDA, work-
groups in OpenCL). Within a threadblock, threads share an
on-chip local memory and can synchronise through barri-
ers. However, there is no synchronisation or communica-
tion support among threads in different blocks.

In a Fermi GPU, a threadblock is mapped in its en-
tirety onto a core. Together, threads from one or more
threadblocks can form a set of active threads on a single
core. For Fermi GPUs, this is limited to 8 threadblocks or
1536 threads, whichever limit is reached first [14]. Such
a set of active threads executes concurrently in a multi-
threaded fashion as warps (NVIDIA terminology) or wave-
fronts (AMD terminology). In the Fermi architecture, a
warp is a group of 32 threads executing in lock-step in an
SIMD-like fashion on a single core, dividing the workload
over the core’s processing elements [14].

3.2. The GPU cache architecture

The Fermi GPU has multiple data caches: a L1 cache for
each core and a shared L2 cache. Fermi has a 16KB 4-way
associative L1 cache, which can store 128 cache-lines of
128 bytes each [23]. The 128 lines are divided over 32 sets,
each containing 4 lines: every memory address is mapped
onto one of the sets of the cache using a mapping func-
tion. Reads to the off-chip memory are cached in L1, writes
are not. The GPU’s cache replacement policy is unknown,
however, the simulator GPGPU-Sim [3] assumes a least-
recently-used (LRU) policy, although no proof is given.

3.3. Reuse distance theory

Given an ordered memory access trace, a reuse distance
profile (or stack) [4] can be computed as follows. For each
access, the reuse distance is the number of unique addresses
accessed between this access and the most recent previous
access to the same address. When there is no previous ac-
cess, the distance is set to infinity (co). Constructing a reuse
distance profile can be done at for example address granu-
larity or at cache-line granularity. An example of both is
given in table 1, assuming a cache-line size of 4 elements
(time progresses from left to right).

A reuse distance profile can be used directly to obtain
cache hit/miss rates. Given a fully-associative cache of n
lines with a least recently used (LRU) replacement policy,

Table 1. Reuse distance example

access x[0] x[5] x[3] x[9]1 x[3] x[3] x[5]
address 0 5 3 9 3 3 5
distance 00 00 00 00 1 0 2
cache-line 0 1 0 2 0 0 1
distance 00 00 1 00 1 0 2

any access with a reuse distance d larger than or equal to
n (d > n) will miss. Vice versa, when d < n, the access
will hit in the cache. In this way, the reuse distance pro-
file at cache-line granularity gives the compulsory miss rate
(d = o0) and the capacity miss rate (d > n and d # o0).
For our example in table 1, given a cache size of 2 lines,
we find 3 compulsory misses (42%), and 1 capacity miss
(14%). A reuse distance profile can also be visualised by
constructing a histogram, containing all necessary data to
compute compulsory and capacity miss rates. A histogram
for our example data from table 1 is given in figure 1 (at
cache-line granularity).
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Figure 1. A table and histogram reuse dis-
tance profile for the example from table 1
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4. Reuse distance for GPUs

Reuse distance theory can only be applied to an ordered
memory access trace?: finding this order for a GPU is not
trivial. This section discusses five extensions to the reuse
distance theory, four of which are related to finding the or-
der in which memory accesses appear to the cache. The the-
ory is extended by: 1) integrating the GPU’s parallel execu-
tion model of threads, warps, threadblocks and sets of active
threads, 2) introducing non-uniform memory latencies, 3)
modelling cache associativity, 4) modelling MSHRs, and 5)
modelling warp divergence. Furthermore, implementation
details of the model are given.

4.1. The GPU’s parallel execution model

A GPU typically executes thousands of small, light-
weight threads. Because of the parallelism expressed in the
execution model, these threads can to some extent be exe-
cuted independently on different cores. Furthermore, due
to limited resources (e.g. register file, scratchpad memory),
not all threads can be active at the same time, i.e. eligible
for execution. Tang et al. [21] argue that there is limited
reuse across different threadblocks on the same core: they

2The traces used in this work are not obtained from simulation: they
are rather unordered lists of memory accesses and only contain ordering
information with respect to a single thread.



model only a single block of threads on a single core. To
create a more realistic model, we do model complete sets of
active threads (one or more threadblocks). Furthermore, we
model multiple of such sets and multiple cores (because the
workload can vary for different cores).

To determine which threads execute together as a set of
active threads on a single core, we follow Fermi’s execu-
tion model (an example is shown in figure 2). First, thread-
blocks are divided round-robin over the cores until they are
full. Then, a new threadblock is scheduled when another
threadblock is done (first-done, first-serve). For each core,
threadblocks are grouped in sets of active threads accord-
ing to the block-size and the resource limitations as listed in
section G.1 of the CUDA programming guide [14]. Further-
more, threads in a warp are scheduled simultaneously. De-
termining the scheduling order among warps in a set of ac-
tive threads is not straightforward (e.g. dependent on thread
workload and cache contents): this is approximated step-
by-step in the remainder of this paper.
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Figure 2. Execution model examples

Transforming the parallel execution model into an or-
dered memory access trace can be done by: 1) applying the
GPU’s thread-scheduling policy, and 2) by taking into ac-
count pipeline and memory latencies. For now, we assume
a basic round-robin scheduling policy among warps in a set
of active threads (divergence is discussed in sections 4.4
and 4.5), and zero-latency hardware (latencies are discussed
in section 4.2). Now, for a given kernel, its execution can be
sequentialised to obtain an instruction trace. We illustrate
this with an educational example: a kernel with 4 threads,
each performing 2 loads (x [2xtid] and x [2+tid+1],
for which ‘t 1d’ denotes a thread’s unique identifier). Given
the round-robin scheduling of threads and no latencies, we
obtain the reuse distances (for lines) as shown in table 2, as-
suming a cache-line size of 4 elements, a single thread per
warp, and only a single set of threads on a single core.

Table 2. GPU reuse distance computation

instruction o o O o1 1 1 1
thread ID o 1 2 3|0 1 2 3
address o 2 4 6|1 3 5 7
cache-line 0o O 1 110 0 1 1
distance co 0 oo Of1 0 1 O

However, before a reuse distance profile can be con-
structed from a given thread order, memory requests need
to be combined according to the GPU’s memory coalesc-
ing capabilities. Coalescing is applied in specific cases,
for example when threads from a single warp access the
same cache-line. Coalescing is implemented according to
the specifications of the GPU architecture, as described in
section G.4.2 of the CUDA programming guide [14].

4.2. Memory latencies

In reuse distance theory for sequential processors it is
assumed that either: 1) memory latencies are non-existent,
or 2) memory accesses cannot overtake each other. Al-
though individual threads on a GPU execute in-order, these
assumptions are not valid across different GPU threads.
Moreover, the GPU’s memory latencies are typically high
compared to CPU latencies. Therefore, the reuse distance
theory is extended to model the GPU’s latencies.

First of all, the notion of time is introduced. Every
column in the reuse distance theory is assigned with a
monotonously increasing time-stamp (not reflecting actual
processor cycles or time). Now, each access is assigned a
specific latency to delay its effect. We illustrate this based
on the same example as shown in table 2 with 2 accesses
and 4 threads. Table 3 shows the updated results: every
memory request occurs at a fixed time (0-7) and is assigned
a latency (a fixed value of 2 time units in this example).
Accumulation of an access’s latency with its issued time-
stamp determines when the request will have effect in the
cache. We show this in the ‘effect at’ row of table 3. Now,
computation of the reuse distances is no longer based on
the ‘cache-line’ row, but on the new ‘cache effect’ row, as
shown in the table. In this particular example, the cache-line
data is simply shifted by 2 time-stamps (highlighted).

Table 3. Reuse distance with fixed latencies
time 0 1 2 314 5 6 7|8 9
instruction 0 0 0 0 1 1 1 1]- -
thread ID 0 1 2 3170 1 2 3 |- -
address 0 2 4 6 1 3 5 7|- -
cache-line 0 0 1 1 o o0 1 1/|- -
cacheetfect | - - | OROROR
distance oo oo oo oo |0 1 0 1]- -
hit/miss m m m m|h h h h|- -
latency 2 2 2 2 12 2 2 2|- -
effect at 2 3 4 5 6 7 8 9| - -

Adding the notion of time and latency changes the reuse
distances obtained. This can be seen for example by com-
paring the distances found in tables 2 and 3. The addition
of latencies can thus transform capacity misses in hits and
vice-versa. However, this approach can also introduce addi-
tional infinite distances (co) that are not compulsory misses.
To repair this, the notion of latency misses is introduced:



requests that miss in the cache because an earlier request to
the same cache-line is still in-flight.

So far, we have modelled only a fixed latency. To better
reflect the reality, two additional aspects are also modelled:
1) conditional latencies applied depending on the reuse dis-
tance, and 2) non-uniform memory latencies. In this case,
we need to distinguish between cache hits (to model the
pipeline latency) and cache misses (to model the memory
latency). This requires us to embed information about the
cache size in the model, making the reuse distance profile
no longer cache-size independent.

The example of table 3 is extended to include a hit la-
tency of 0 and a miss latency of 2. If we furthermore as-
sume a cache-size of 2 lines, the results as shown in table 4
are obtained. We observe that the reuse distances change
again, influenced by the reduced latency of the last 4 mem-
ory accesses. Furthermore, multiple ‘cache effects’ can now
occur simultaneously at a single time-stamp (highlighted in
the table). Such simultaneous accesses are handled in the
order in which the memory accesses were issued.

Table 4. Extended with conditional latencies

time 0 1 2 3 4 5 6 17
instruction 0 0 0 0 1 1 1 1
thread ID 0 1 2 3 0 1 2 3
address 0 2 4 6 1 3 5 7
cache-line 0 0 1 1 0 0 1 1
cache effect | - - 0 0 ! 10 1 1
distance o oo oo oo |0 0 1 0
hit/miss m m m m |h h h h
latency 2 2 2 2 0 0 0 0
effect at 2 3 - 5 ! 5 6 7

This theory is extended to a more realistic model by clip-
ping the ‘effect at’ time to the time of a still in-flight request
for the same cache-line (if present). This will for example
change the ‘effect at’ time of the request at time-stamp 1
in table 4 from 3 to 2, as the request for cache-line 0 was
already made at time-stamp O.

Finally, the non-uniform latency of accessing the GPU’s
off-chip memory is modelled. Because a detailed model
of the memory latency is beyond the scope of this pa-
per (it requires a full GPU model or simulator, includ-
ing e.g. the pipeline and interconnect), a probabilistic
approach is taken. The memory latency is modelled as
Amin+|N(0,0?)|: a fixed minimum latency \,,;,, offset by
the absolute value of a normal distribution NV (u, 0?) with
zero mean, i.e. a half-normal distribution. The parameters
to set are the memory’s best-case latency \,,;, and a mea-
sure for the memory’s non-uniformity: the standard devia-
tion o of the half-normal distribution.

The ‘latencies’ discussed in this section are not real la-
tencies: the cache model is not a complete GPU model and
does not have a notion of actual clock cycles. For example,

there can be a varying number of non-memory operations
between two memory accesses, affecting latency greatly. To
model the effects of non-memory operations would require
integration with a complete GPU model, which is beyond
the scope of this work. Therefore, the introduction of la-
tencies to our model should be seen as a way to capture the
global ordering roughly rather than as a way to obtain an
exact reuse distance profile.

4.3. Cache associativity

The reuse distance theory models the compulsory and
capacity misses, but does not take into account misses
caused by the limited associativity of a cache (part of the
conflict misses). It has been shown that such misses form a
relatively small percentage of the total amount of misses for
sequential processors, even in the case of a direct mapped
cache [4]. However, typical GPU programs are more sensi-
tive to associativity, because they often show regular mem-
ory access patterns on large data structures (e.g. matrix or
image operations). To improve the accuracy, we extend the
reuse distance theory to model cache associativity.

The reuse distance theory can be extended to model as-
sociativity as follows. Instead of keeping track of a single
reuse stack, a private stack is created for each set in the
cache. In that way, a set becomes a small cache with a size
in lines equal to the number of ways, i.e. the associativity.
For a fully-associative cache, this reduces again to a single
stack because it has only a single set.

Along with the introduction of multiple sets (and their
corresponding reuse stacks), we need to define a mapping
of memory addresses to sets. Such a mapping can be either
obtained directly by taking the last logs(S) bits from the
line address, or by a more advanced hashing function, cre-
ating a hash-associative cache [5]. The simulator GPGPU-
Sim [3] uses a direct mapping for Fermi GPUs, but does not
claim that this is realistic. Therefore, because Fermi’s map-
ping function is not public knowledge, a micro-benchmark
was constructed to find the mapping. Therefore, because
Fermi’s mapping function is not public knowledge, a micro-
benchmark was constructed (see section 5), finding a hash-
ing function with a 5-bits XOR operation for a Fermi GPU.

4.4. Miss-status holding-registers

A GPU can have only a finite number of memory re-
quests pending: pending requests are stored in miss-status
holding registers (MSHRs), per-core registers that keep
track of in-flight (in progress) memory requests. The reuse
distance theory is extended to model such registers to im-
prove the accuracy of the cache model. MSHRs are organ-
ised in such a way that each entry can service a unique
cache-line request: requests to the same cache-line are
merged into a single entry (up to a certain limit). A limited
amount of registers limits the number of outstanding mem-
ory requests: either all MSHR entries are occupied when a



new cache-line is requested, or an MSHR entry correspond-
ing to a specific cache-line is full. In either case, the active
warp will be stalled because it cannot perform any more
memory requests. While waiting for an entry to become
free, the GPU processes warps that do not require MSHRs.

We model the limited amount of MSHRs, but assume
that requests to the same cache-line are merged into a sin-
gle entry. Our model keeps track of the number of unique
outstanding memory requests. Before a warp modifies the
reuse stack, it is ensured that it is either a hit or that the num-
ber of outstanding requests is not exceeding the number of
MSHRs. If the warp cannot continue, it is put on-hold and
issued again later. This is illustrated in table 5, in which the
example of table 4 is shown, but now with the assumption
that there is only a single MSHR available. Only threads
0 and 2 are shown to make the example concise. From ta-
ble 5, we see that instruction O of thread 2 is cancelled and
re-issued at a later time. Also, we see that instruction 1 of
thread 2 (issued at time 4) does not have to be postponed: it
uses the already occupied MSHR for cache-line 1.

Table 5. Extended with MSHR modelling

time 0 1 2 3 4 5 6
instruction 0 0 1 0 1 - -
thread ID 0 2 0 2 2 - -
address 0 4 1 4 5 - -
cache-line 0 1 0 1 1 - -
cache effect - - 00 - - 1 1
distance 00 00 0 00 00 - -
MSHRs used | 0 1 0 0 1 - -
status miss cancel  hit miss | miss - -
MSHRs used | 1 - 0 1 1 - -
latency 2 - 0 2 2 - -
effect at 2 - 2 5 6 - -

Similar to the case of the hash function of the cache, it
is not publicly known how many MSHRs a GPU core has.
The GPU simulator GPGPU-Sim [3] uses a default of 32
MSHRs per core for a Fermi GPU, but does not claim that
this value is realistic. Through micro-benchmarking (see
section 5), we find that a Fermi GPU core has 64 MSHRs
and a single warp can use only up to 6 MSHRs.

The relevance of modelling MSHRs is demonstrated
with a simple experiment for the GPU’s 16KB (128 lines)
cache. The experiment consists of a kernel that performs a
copy of a 2D matrix in a column-major fashion: each thread
copies an entire row. Cache-line locality is not among
threads (accesses are uncoalesced) but within each thread.
Figure 3 illustrates the experiment and shows the results,
varying the height of the 2D matrix from 32 to 1024 (equal
to the number of threads: one threadblock only). A constant
width of 1024 is set and a data-size of 4 bytes is used. The
results show that the measured cache miss rates do not cor-
respond to the miss rates when assuming an ordered round-

robin schedule. We conclude from the table that, because of
the limited number of MSHRs, certain threads run ahead of
others. This can result in performance improvements (256—
1024 threads) or losses (64—128) compared to a fair round-
robin schedule. In other words: for a GPU cache model to
be accurate, MSHRSs need to be modelled.

) threads | measured expected
2 Width (1024) (height) | missrate  (round-robin)
S | 32 3.13% 3.13% = 55
S| | — 64 3.77% 3.13%
S 128 32.71%  3.13%
Sl 256 42.05% 100.00%
2vI=== 512 67.20% 100.00%
line locality 1024 82.28% 100.00%

Figure 3. The relevance of MSHR modelling

For example, when running 128 threads in round-robin,
each cache-line can store a single cache-block (for a cache
of 128 lines). However, when warps diverge, threads can
run ahead and request new cache-blocks while others are
still using their previous cache-block. Due to a non-oracle
replacement policy, this can result in additional misses. On
the other hand, when running 256 threads in round-robin,
threads 128-255 overwrite the cache-blocks required by
threads 0-127. In this case, divergence can only amelio-
rate cache behaviour: when threads run faster than others,
they can benefit from their intra-thread cache-line locality.

4.5. Warp divergence

As a final extension, a warp divergence model is in-
troduced. Warp divergence is defined as the process that
causes program counters of warps to differ from each other
as execution progresses. This is not to be confused with the
non-cache related concept of thread divergence, which de-
scribes divergence within warps caused by branch instruc-
tions taken by a subset of threads in a warp. Instead, we
discuss warp divergence: divergence among warps as a re-
sult of aspects such as on-chip local memory bank conflicts,
non-uniform memory access latencies, instruction or data
cache misses, and per-warp branches in program code.

Because we do not model the entire GPU and only have
information on memory references, not all possible sources
of warp divergence are modelled. Instead, the focus lies
on the memory-related sources: 1) data cache hit and miss
latencies, 2) non-uniform off-chip memory latencies, and 3)
the limited number of MSHRs. The first two are introduced
in section 4.2, and the third in section 4.4. This section
models how these sources affect the warp execution order.

To model warp divergence, the concept of a warp queue
is introduced. Initially, the queue is filled with all active
warps (from one or more threadblocks) ordered by warp
identifier (thread identifier modulo the warp size). As long
as the queue is non-empty, a warp is selected based on a
first-in first-out (FIFO) policy and a single memory request



is processed for each thread in the reuse distance model.
After a warp finishes a memory request, it is not directly
pushed to the back of the warp queue. Instead, it is delayed
proportionally to the corresponding request’s latency. Fur-
thermore, if a warp does not succeed because all MSHRs
are in use, it is sent to the back of the warp queue.

4.6. Implementation of the model

This section gives an overview of the implementation of
the model and its infrastructure, as illustrated by figure 4.

CUDA+kerneI

GPU cache model

7 s
V D

performance
counters

I'ﬂl

cache miss rate
comparison

Figure 4. Infrastructure of the cache model

The Ocelot GPU emulator [7] is used to produce (un-
ordered) memory access traces for CUDA kernels. A cus-
tom tracer ((A) is implemented on top of Ocelot, creating
a trace containing for each access: 1) the thread ID, 2)
whether it is a read or a write, 3) the memory address, and
4) the size of the memory access. Because Ocelot does not
simulate the GPU, the ‘traces’ are actually unordered lists
of memory accesses rather than ordered traces that can be
obtained from simulators. The only ordering in the traces is
with respect to the instruction stream of a single thread.

Before the reuse distance theory can be applied, the
memory accesses have to be ordered. Therefore, we first
perform the allocation of threads to warps, warps to thread-
blocks, and threadblocks to cores (B). We follow the
GPU’s execution model as discussed in sections 3.1 and 4.1,
and in section 4.1 of the CUDA programming guide [14].
The thread to warp allocation in particular can be modi-
fied for architecture exploration purposes, e.g. by changing
the warp size or by implementing a strided assignment of
threads to warps. Another possible modification is to incor-
porate dynamic warp scheduling to reduce warp branch di-
vergence, performing for example thread block compaction
or two-level warp scheduling. However, dynamic warp
scheduling techniques might rely on details not available to
the cache model, such as branch and warp divergence infor-
mation. A solution for this is to implement such a dynamic
warp scheduler in Ocelot (already used to produce traces).
Rather than using this scheduler to change the schedule in
Ocelot (which makes no sense for an emulator), it can be
used to report a specialised thread to warp assignment that

can be used within our cache model.

Next, a memory coalescing model (/C) is implemented
according to the behaviour as defined in section G.4.2 of
the CUDA programming guide [14]. Coalescing is mod-
elled before applying the reuse distance theory, as this can
give a significant reduction in computational and memory
complexity of the cache model: coalescing can compact the
memory trace significantly.

All extensions to the reuse distance theory are imple-
mented on top of the original theory (D). In this way,
we can make use of the already available computational
and memory efficient implementations for sequential pro-
cessors [1]. A naive implementation of a reuse distance
stack has a computational complexity of O(N M), in which
N is the trace length (the total number of memory ac-
cesses) and M the number of unique accesses. To han-
dle the GPU’s large number of threads and accesses, a
more computationally efficient version is used: a binary-
tree C++ implementation of Bennett and Kruskal’s algo-
rithm [1]. This implementation has a computational com-
plexity of O(N log(N)), is independent of M, and gives
a better scaling for traces where M is proportional to V.
When modelling associativity, we increase the complexity
by creating a binary-tree for each set in the cache. However,
because the number of accesses per set is pre-computed,
the size of each tree is reduced accordingly, achieving an
overall comparable complexity. Further optimisations could
be made to reduce the memory footprint (around 2GB for
benchmarks from section 6), e.g. with a splay tree [1, 8].

To reduce the overall complexity and computational re-
quirements, the number of threads can be limited in two
ways: 1) a limited number of cores can be modelled, gen-
eralising results across all cores, and 2) a limited number
of threads can be modelled. These core and thread counts
are configurable parameters, set to a single core with up to
8192 threads for our experiments.

Finally, a verification method based on hardware coun-
ters ((E) is included. NVIDIA’s profiler NVPROF is used to
output the measured number of cache-line hits and misses
in the L1 data cache. The comparison of these numbers with
the cache model’s result is automated, producing the graphs
as shown in the remainder of this work.

4.7. Overview of abstractions

The reuse distance theory assumes a least-recently-used
(LRU) cache replacement policy, and so does our model.
From the results of the micro-benchmark to find the asso-
ciativity hash function (section 5.1, figure 5), we observe
that the replacement policy resembles LRU in this case: or-
acle replacement would have caused a single miss only for
each experiment. However, this is not a definite proof, and
thus the commonly used LRU policy is assumed.

Synchronisation barriers at threadblock level are not in-
cluded in the model. This could be added to the theory to



model warp divergence (and convergence) more precisely.

Different types of latencies are used in our model to
represent in-flight memory requests and warp divergence.
However, as discussed, this leaves the model in a grey area
between a dedicated cache model and a full GPU model.
To improve our latency and divergence model further, the
model needs to be extended beyond caches only.

5. Micro-benchmarks

To complete the models of sections 4.3 (associativity)
and 4.4 (MSHRs), additional information was obtained
through micro-benchmarking: carefully designing a bench-
mark to extract details on the GPU architecture. This sec-
tion describes these micro-benchmarks and the results.

5.1. Associativity micro-benchmark

The first micro-benchmark is designed to find the map-
ping of addresses to cache sets, crucial information to model
associativity. Our micro-benchmark (shown in figure 5)
launches a single block of 128 threads (4 warps), each per-
forming 3 stages. In the first stage, each thread performs
32 coalesced loads designed to fill the entire 16KB of the
L1 cache with subsequent addresses (an assumption at this
point). This access pattern is repeated in the third stage
while measuring the latencies of the individual loads. If
we do not perform anything in the second stage, all loads
show a low latency and are thus cache hits. This verifies
our assumption. Now, performing a single load in the sec-
ond stage will give increased memory latencies for some of
the loads® in the third stage, as they become cache misses.
By performing a sweep over different loads for the second
stage, a mapping of addresses that belong to the same set is
obtained. We find only up to 4 cache misses each time in the
third stage as long as line-aligned accesses are performed:
this is because of the 4-way associativity [23].

From the obtained mapping, the hashing function used to
map addresses to sets is reverse-engineered. For the 16KB
cache with 32 sets, we find that the 5 bits 7-11 and the 5
bits 13,14,15,17,19 of the byte-address are input to an XOR
port to obtain a logs(S16x ) = 5 bits set index, as shown in
figure 6. The first gap in the address (the 12th bit) is a con-
sequence of the cache configuration possibilities: Fermi’s
cache can also be configured as a 48KB 6-way associative
cache with 64 sets. If the micro-benchmark is repeated, we
find that the log2(S4sx 5) = 6 set index bits are constructed
by taking the 16KB’s 5 bits (after the XOR operation) and
prefixing bit 12.

To verify the found hashing function, an experiment with
strided accesses is performed for the 16KB case. We con-
struct a kernel with two identical loops, each time perform-
ing a number of non-overlapping 128-byte coalesced loads.
The kernel is configured with a single warp only. The miss

3The number of misses is dependent on the order of accesses by the
128 threads and the cache replacement policy.

1 __global__

2 void mbl(intx mem, intx time, int sv) {
3

4 // Stage 1

5 for (i=0; i<32; i++)

6 temp = mem[tid + i%128];

7

8 // Stage 2

9 if (tid == 0)

10 temp = mem|[sv];

11

12 // Stage 3

13 for (i=0; i<32; i++) {

14 start = clock();

15 temp = mem[tid + i%128];

16 time[tid + i*128] = clock() — start;
17

18 }

Figure 5. Associativity micro-benchmark
(simplified code for illustration)
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Figure 6. Usage of the byte-address bits

rate is measured at cache-line granularity using NVIDIA’s
profiler NVPROF. A sweep is performed over the number
of loop iterations and the stride of the memory accesses.
Figure 7 shows the results: either a cache miss rate of 100%
(misses in both loops) or 50% (only misses in the first loop).
The final row counts the number of set index bits varied
across the loads, derived as the number of 50% miss rates
in the row minus 1 (4 loop iterations always fit in a single
set). The figure confirms the hypothesis, as the number of
varied set bits (final row) corresponds to the number of bits
included in the hashing function counting from the logs of
the stride. For example, with a stride of 2'2 and 128 loads,
bits 12-18 are included, of which only 4 bits (13, 14, 15,
17) are used in the computation of the set index.
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Figure 7. Hash function verification



5.2. MSHR micro-benchmark

Similar to the case of the hash function for associativity,
it is not known how many MSHRs are available in the GPU.
Therefore, we constructed the following micro-benchmark
to find the number of MSHRs per GPU core. Initially, a
CUDA kernel with only a single thread is launched. The
kernel, as shown in figure 8, performs a configurable num-
ber of non-overlapping loads without dependences, which
are timed in its entirety. The idea is that the GPU will issue
multiple loads at a time, limited by the MSHRs. The re-
sults of this experiment are shown in figure 9 for a varying
number of warps and a varying number of loads per warp (1
thread per warp as threads within a warp run in lock-step).

1 __global__ void mb2(int* mem, intx time) {
2 if (tid % 32 == 0) {
3 start = clock();
4
5 // Loop of independent loads (unrolled)
6 for (i=0; i<NUMLOADS; i++)
7 temp = mem[32x(tid + i*NUM.WARPS%32)];
8
9 time[tid/32] = clock() — start;
10 }
11}
Figure 8. MSHR micro-bench (simplified)
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Figure 9. MSHR micro-benchmark results

When evaluating the results of figure 9 for a single warp
(leftmost bars), we see that performing up to 6 loads yields
a similar latency. When performing an additional 7th load,
we observe a sudden increase in latency. From this data, we
conclude that there are only 6 MSHRs available in this case:
performing a 7th (or 13th, 19th, etc.) request increases the
latency significantly. However, when evaluating the results
of launching multiple warps, we observe that additional ac-
cesses can be performed without increasing the latency sig-
nificantly*. In fact, this is true for up to 10 warps, allowing
a total of 10 - 6 = 60 simultaneous requests. The figure
shows a decrease to 5 loads per warp for 11 warps, 4 for
13 warps, and 3 for 17 warps. From this, we conclude that

4As the number of instructions increases when performing more loads
or running more warps, the measured latency increases a bit as well.

there are 64 MSHRs (e.g. 16 warps with 4 simultaneous
requests each). We also conclude that a single warp is only
allowed to use up to 6 entries, although this specific limit
could be unrelated to the MSHR table, e.g. there could be a
limit on the number of outstanding incomplete instructions.

6. Verification of the model

To demonstrate the usefulness and accuracy of the cache
model, the modelled cache miss rates are compared against
cache miss rates using hardware counters on a Fermi GPU
and against a simulator. The verification is performed for
both the 16KB 32-set 4-way and 48KB 64-set 6-way cache
configuration on a GeForce GTX470 (newer Kepler GPUs
also support 32KB [14]). To ensure a wide variety of GPU
kernels, two complete benchmark suites are included: Poly-
Bench/GPU? and Parboil [20]. The only exclusions made
are the ‘mb_sad_calc’ kernel from Parboil’s ‘sad’ bench-
mark, because it relies on the GPU’s texture memory and
texture cache, and the ‘histo_main’ kernel from Parboil’s
‘histo’ benchmark, as it only uses atomic memory accesses.
PolyBench/GPU is configured to use default data-sizes, and
Parboil to use the ‘medium’ inputs (or ‘large’ where un-
available). For all Parboil benchmarks that run multiple iter-
ations, the iteration limit is set to a maximum of 2. The two
benchmark suites differ significantly: PolyBench/GPU con-
tains mostly naive implementations of variants of matrix-
multiplications (e.g. no on-chip local memory, limited par-
allelism), whereas Parboil contains optimised kernels of all
sorts. Note that Parboil also contains benchmarks where
‘caching’ is performed manually in scratchpad memory.
Their differences also become apparent by disabling the
GPU’s L1 data-cache in an experiment (the L2 is still en-
abled): the geometric mean performance drops by 5% (Par-
boil) and 15% (PolyBench/GPU).

6.1. Comparison against hardware counters

Using the infrastructure described in section 4.6, mod-
elled and measured miss rates are collected for the two
cache configurations. Figure 10 shows the results for the
16KB configuration, with kernel invocations on the x-axis.
Bracketed letters are used in case a kernel is invoked multi-
ple times. For each kernel, the left bar shows the modelled
L1 data cache miss rate, and the right shows the measured
miss rate using the profiler. The following types of mea-
sured misses are distinguished: 1) compulsory misses, 2)
capacity misses, 3) associativity misses, 4) MSHR misses,
and 5) latency misses. Latency misses are not included in
figure 10’s cache miss rate number: the profiler does not in-
clude these types of misses as they don’t cause additional
memory requests. We observe the following:

e The modelled compulsory misses (green) are lower or
equal to the measured misses (blue) for all kernels.

5Available on-line at: http://www.cse.ohio-state.edu/
~pouchet/software/polybench/
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Figure 10. Results for Parboil (top and middle) and PolyBench/GPU (bottom), showing modelled (left)
and measured (right) 16KB L1 miss rates: matching values represent a high modelling accuracy

This is important because the amount of compulsory
misses is cache parameter independent. Furthermore,
note that this results in a perfect model for cases where
the only type of misses are compulsory, e.g. in many
of the ‘mri-g’ and ‘mri-q’ kernels.

e Overall, most kernels show almost no associativity
misses. However, there are still cases where asso-
ciativity misses account for a significant fraction of
the total amount of misses, in particular for the Poly-
Bench/GPU benchmarks.

These benchmarks show no additional misses caused
by the limited number of MSHRs. In contrary, limiting
the size of the MSHR table reduces the cache miss rate
in many cases, as will also be shown in section 7.

The kernels that show the largest difference between
measured and modelled misses (e.g. ‘bfs’, ‘atax O,
‘histo intermediates’) are very sensitive to the memory
latency parameter. To improve the accuracy for these
benchmarks, the model needs to be extended beyond
caches only to obtain more realistic latency values.



cutcp Ibm sgemm spmv stencil tpacf
100 100 associativity 100—,—-'—'—'—' 100 100_@—7—'_VE~Y 100—v
cache-size '~\\'
cache-line size S —a
R 75 75 @ number of MSHRs 75 75 % 757 75—V —v=9=v
o = Y —n
s $&$7W
8 50 v — 50 v 50— 50 50 50
£ e P e
£ L/ - //
S v
S o5 = associativily 25 \ : v/ o5 ® associativily o5 ® associati.vity o5 ® associativily o5 ® associati.vity
cache-size oV e—a cache-size cache-size cache-size cache-size
cache-line size /v/ cache-line size cache-line size cache-line size cache-line size
o4V number of MSHRs o_v 04 v number of MSHRs o4V number of MSHRs o4V number of MSHRs o4V number of MSHRs
T T T T 1 T T T T 1 T T T T 1 T T T T 1 T T T T 1 T T T T 1
1-way ® 4-way ® 16-way 1-way ® 4-way ® 16-way 1-way ® 4-way ® 16-way 1-way ® 4-way ® 16-way 1-way ® 4-way ® 16-way 1-way ® 4-way = 16-way
4 KB 16 KB 64 KB 4 KB 16 KB 64 KB 4 KB 16 KB 64 KB 4 KB 16 KB 64 KB 4 KB 16 KB 64 KB 4 KB 16 KB 64 KB
32B 128B 512B 32B 128 B 512B 32B 128B 512B 32B 128 B 512B 32B 128B 512B 32B 128 B 512B
16 Vv 64 v 256 16 Vv 64 Vv 256 16 Vv 64 v 256 16 Vv 64 WV 256 16 v 64 v 256 16 Vv 64 Vv 256

Figure 12. Evaluation of different values (x-axis) for four parameters (coloured series) for 6 kernels.

> O] > O]

g model (16KB) | &N model (48KB)

S o | So

o o

IS (S

D e S R R T T T T
0 20 40 60 80 100 0 20 40 60 80 100
absolute error (%) absolute error (%)

> . > .

o | B simulator (16KB) o™ | B simulator (48KB)

Lo 2o

S 24 S 9

g4 k g4

Eolilledeal 18 ae E o Budd d sl atla o
0 20 40 60 80 100 0 20 40 60 80 100

absolute error (%) absolute error (%)
Figure 11. Absolute errors for the cache
model (top) and for GPGPU-Sim (bottom)

The results of figure 10 are summarised in the top half
of figure 11, augmented with the results for the 48KB con-
figuration (not shown in detail). The arithmetic mean in
absolute error® for our model is 6.4% for the 16KB con-
figuration and 8.3% for the 48KB configuration. Finally,
three scenarios are tested where a single component of the
model is disabled each time, showing how much the intro-
duced extensions to the reuse distance theory contribute to
the precision of the model. The 6.4% arithmetic mean in
absolute error changes as follows for the 16KB cache con-
figuration: 1) a 9.6% error when associativity is not mod-
elled, 2) a 12.1% error when latencies are not modelled, and
3) a 7.1% error when the number of MSHRs is unlimited.

6.2. Comparison against simulation

As a secondary verification metric, our cache model is
compared against version 3.2.0 of the GPGPU-Sim sim-
ulator [3]. The (Fermi) simulator is configured with the
specifications of the GTX470 GPU (both 16KB and 48KB
caches) and runs the two benchmark suites: Parboil and
PolyBench/GPU. The results are reported in the bottom half
of figure 11, in which we show the absolute difference in
cache miss rate compared to the results of the profiler. The
simulator shows on average a larger error compared to our

®Note: the absolute error of a metric measured in percentages (miss
rate) is also given in percentages.

model: it produces a mean absolute error of 18.1% for the
16KB configuration and 21.4% for the 48KB configuration.
Additionally, the run-time of the simulator is on average a
factor 268x higher than our model. For example, GPGPU-
Sim completes ‘cutcp’ in 10 hours, whereas the model takes
10 seconds (excluding 4 minutes emulation in Ocelot).

7. Example use: evaluating cache parameters

To demonstrate the use of the model, a sweep over the
cache parameters is performed. Evaluating all design points
or finding optimal design points is beyond the scope of
this work. Four different values are evaluated for the main
parameters: 1) associativity, 2) cache-size, 3) cache-line
size, and 4) the number of MSHRs. The values evaluated
are 0.25x, 0.5x, 2x, and 4x the GPU’s original value for
the 16KB configuration. The results (figure 12) include 6
benchmarks from Parboil, chosen because of their mix of
different types of cache misses. We observe the following:

e Associativity is a parameter of little importance for the
evaluated benchmarks. Small benefits of a high asso-
ciativity are only visible for ‘stencil’ and ‘Ibm’, bench-
marks originally showing 2-3% associativity misses.
Because hits and misses influence the thread order, a
lower associativity can sometimes give a lower miss
rate, as is the case for ‘spmv’ and ‘cutcp’.

e Cache-size is the most important parameter for ‘/bm’
and ‘spmv’, showing significant miss rate reductions.

e Cache-line size can have both a positive and a nega-
tive influence on cache misses. For our benchmarks, a
cache-line size of 128B or 256B gives the best results.

e Using only 16 or 32 MSHRs yields better cache be-
haviour for ‘/bm’ and ‘spmv’: alow number of MSHRs
allows inter-thread locality to be better exploited (see
section 4.4). The other benchmarks are not signifi-
cantly influenced by the MSHR parameter.



8. Summary and future work

This work has shown that reuse distance theory can be
used to model GPU caches in detail by extending it with: 1)
scheduling of the GPU’s threads, warps, threadblocks, cores
and sets of active threads, 2) in-flight memory requests and
conditional and non-uniform latencies, 3) cache associativ-
ity, 4) miss-status holding-registers (MSHRSs), 5) and warp
divergence. Additionally, micro-benchmarks showed how
a Fermi GPU maps addresses to sets in hash-associative
caches, and how many MSHRs are available per core.

The new cache model has been evaluated against the
Parboil and PolyBench/GPU benchmark suites, comparing
modelled miss rates for the GPU’s L1 data caches against
measured miss rates using hardware counters. The results
distinguish different types of cache misses. An example are
latency misses, a type not even measured by hardware coun-
ters. On average, our model predicts cache miss rates with
an absolute error of 6.4% (16KB 4-way) and 8.3% (48KB
6-way). From the 57 tested kernel invocations, 47 lie within
a 10% absolute error margin. Compared to the GPU simula-
tor GPGPU-Sim, our cache model shows a better accuracy
(6-8% versus 18-21%) and a lower run-time (267x on av-
erage). The importance of the discussed extensions become
clear when evaluating them separately, showing a reduction
in average absolute error when modelling: cache associa-
tivity (9.6% — 6.4%), latencies (12.1% — 6.4%), and a
limited amount of MSHRs (7.1% — 6.4%).

A more accurate memory latency and warp divergence
model can help improve the cache model further, but would
require integration with a full GPU execution model. Ad-
ditionally, the model can be extended to include other GPU
caches, such as the L2, the texture caches, or Kepler’s new
read-only L1 cache. Future work includes the verification
of the model on AMD Radeon and ARM Mali GPUs.
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