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Abstract
Microprocessor power has become a first-order constraint at

run-time. Designers must employ aggressive power-management
techniques at run-time to keep a processor’s ballooning power
requirements under control. Effective power management benefits
from knowledge of run-time microprocessor power consumption in
both the core and individual microarchitectural structures, such as
caches, queues, and execution units. Increasingly feasible per-
structure power-control techniques, such as fine-grain clock gat-
ing, power gating, and dynamic voltage/frequency scaling (DVFS),
become more effective from run-time estimates of per-structure
power. However, run-time computation of per-structure power esti-
mates based on utilization requires daunting numbers of input sta-
tistics, which makes per-structure monitoring of run-time power a
challenging problem.

To address the challenges of estimating per-structure power in
hardware, we propose a new technique, called Common Activity-
based Model for Power (CAMP), to estimate activity factors and
power for microarchitectural structures. Despite using a relatively
few input parameters—specifically nine—based on general micro-
processor utilization statistics (e.g., IPC and load rate), our linear-
regression-based model estimates activity and dynamic power for
over 100 structures in an out-of-order x86 pipeline and core power
with an average error of 8%. Because the computations utilize few
inputs, CAMP is simple enough to implement in hardware, provid-
ing run-time structure and core power estimates for dynamic power
management. Because the input statistics are generic in nature and
the model remains accurate across incremental microarchitectural
refinements, CAMP provides simple intuitive equations relating
global microarchitectural statistics to structure activity and power.
These equations provide a simple technique that can equate
changes in one structure’s activity to power variations in other
structures across the pipeline.

1  Introduction
Microprocessor power has become a first-order constraint at

run-time. Transistor densities have increased exponentially over
successive process technologies, but supply voltage has not
decreased proportionately. Consequently, transistor count has
increased faster than per-transistor power has decreased. Designers
must employ aggressive power-management techniques at run-
time to keep a processor’s ballooning power requirements under
control. A challenge to effective run-time power management is
knowing the run-time power consumption of the microprocessor. 

Microprocessor power estimates may be computed at several
levels, including system, die, core, and per-structure power. System

and die power estimates can be used to monitor and control sys-
tem-level attributes like disks, fans, and case temperature. Core-
level power estimates are a popular topic of recent research
because these estimates may be used to address power and power-
density concerns on a multi-core die. Beyond the core level, run-
time power estimates for individual microarchitectural structures,
such as caches, ALUs, and queues, would be useful for fine-grain
management of package temperature and core power requirements.
We refer to estimates at this level as “per-structure” power esti-
mates. Per-structure power estimates will be useful for controlling
selective enabling and disabling of microarchitectural resources.
As power-management becomes increasingly important in micro-
processors, coarse-granularity core-level power estimates are likely
to become inadequate to manage and to reallocate continuously
power budgets for individual microarchitectural structures.
Increasingly feasible per-structure power-control techniques, such
as fine-grain clock gating, power gating, and dynamic voltage/fre-
quency scaling (DVFS), will also benefit from run-time estimates
of per-structure power. 

System-level power estimates can be computed by directly
sensing current because of the fairly long response time constants
(many milliseconds or a few seconds) of the system-level
attributes. However direct monitoring of core power in a multi-core
die, let alone structure power, faces several challenges. On-die cur-
rent sensors have been proposed for quiescent current (IDDQ) test-
ing but have rarely been used in production for even that purpose
due to problems such as area and performance overhead and cali-
bration drift due to process variations [27]. Other proposed current
sensors for IDDQ attempt to address these problems [27,5], but
these sensors are still experimental, and no proposal suggests using
the sensors for run-time dynamic power monitoring in a deployed
microprocessor. In addition, it would be difficult to use such sen-
sors to estimate per-structure power because each structure would
need a separate power domain, increasing design and layout com-
plexity.

It might seem possible to estimate structure or core power at
run-time by borrowing methodology from design-time power mod-
els like Intel’s ALPS [8]. These techniques count utilization of
structures (e.g., register reads) and compute power estimates based
on a per-event power model. However, such direct computation of
core and structure power at run-time based on utilization would be
complex due to the hundreds of utilization statistics required for
the core and tens of statistics required for each structure. For exam-
ple, in a Intel® Core™-like processor, ALPS would calculate reor-
der-buffer (ROB) power for a single cycle using structure-specific
input statistics, such as ROB reads, register-file reads, double-
width register-file reads, number of operations retired, number of



operations written back, occurrence of nuke operations this cycle,
and occurrence of integer, floating-point, and branch operation
activity this cycle. Tracking such a myriad of cryptic statistics for
each structure in hardware would lead to tremendous wire and
logic complexity and is thus impractical.

To address the challenges of estimating per-structure power in
hardware, we propose a new analytical model, called Common
Activity-based Model for Power (CAMP), to estimate activity fac-
tors and power for microarchitectural structures. This model does
not rely on current monitoring or simulating dozens or hundreds of
utilization statistics. Instead CAMP is based on a few input statis-
tics—specifically 9—that are general microarchitectural statistics
(e.g., IPC, fetch rate, number of loads). In spite of this limited input
data, CAMP’s linear-regression-based methodology can estimate
activity for tens or hundreds of microprocessor structures. It can
also estimate the overall core power to within 8%. The reason only
a few input statistics are sufficient to estimate the dynamic power
of a microprocessor is because the myriad per-structure events are
related to a small set of global parameters, such IPC and load rate.
We use this key observation to drive the development of CAMP. 

CAMP is simple enough to implement in hardware because the
computations are based on a few input statistics which can be
obtained easily from performance counters. Without CAMP, a
hardware power estimator based on structure activity and perfor-
mance counters (similar to ALPS), would require many tens or
hundreds of structure-specific inputs encompassing most pipeline
structures, leading to wiring and power overhead from routing and
counting the many statistics. With CAMP, we avoid the use of
cryptic statistics by using data from a few general performance
counters to estimate structure-level and core-level power at
extremely fine time intervals (on the order of 100 microseconds).
To the best of our knowledge, no previous published work has pro-
posed such fine-grained per-structure power models using global
statistics.

An additional benefit of CAMP is that it provides simple intui-
tive equations relating global microarchitectural statistics to struc-
ture activity and power. These equations provide a simple
analytical model that can equate changes in one structure’s activity
to power variations in other structures across the pipeline. For
example, CAMP equations might reveal the impact of increasing
branch prediction accuracy on decreasing power and activity in the
pipeline back-end due to reduced mis-speculation. This type of
expression is useful in early design stages for evaluating trade-offs,
and the equation-based analysis can be done in spreadsheets prior
to development of a detailed performance simulator.

Our common activity-factor-based model differs from previous
proposals for run-time power models. Previous work on run-time
power monitoring has focused either on embedded designs, micro-
processors with little power management, or on directly monitoring
current externally [10] and not on run-time monitoring in produc-

tion microprocessors in the field. We compare CAMP to previous
analytical power models and discuss related work in more detail in
the next section. 

The main contributions of this paper are:
• We propose CAMP, a regression-based model that can estimate

activity and power for over 180 structures with high accuracy,
using only nine input statistics, that estimates power for about
90% of microarchitectural structures to within 5%.

• We explain how the model can be implemented in hardware for
run-time power estimates in the field at either the structure-
level or the core level. 

• We explain how the model can be used at design-time to
explore the impact of microarchitectural changes on individual
structure activity and power. CAMP is unique among run-time
power estimation techniques in that the same concepts can be
applied in early design analysis.

The rest of this paper is organized as follows. In Section 2 we
discuss related work. Section 3 covers power-modeling back-
ground, and Section 4 describes our infrastructure and methodol-
ogy. We describe the details of CAMP in Section 5. In Section 6 we
discuss using CAMP in hardware and present results. Section 7
discusses using CAMP for power estimates at design time. We con-
clude in Section 8.

2  Related Work
In this section, we discuss previous proposals for run-time

power monitoring and related analytical design-time models for
performance and power estimation. Figure 1 summarizes the
design space for power estimation, and Table 1 summarizes the
categories of run-time techniques. First we discuss techniques that
either target or are conceptually suitable for run-time power esti-
mation; these categories are shown in ovals on the figure. Then we
discuss techniques that are suitable only for offline power estima-
tion, shown in the table at the left of the figure. Finally, we discuss
related analytical performance models that do not target power esti-
mation. 

2.1 Run-time Power Monitoring

Several proposals either aim to monitor run-time power or
might seem suitable for monitoring run-time power. The first run-
time power monitoring category targets power studies using a cur-
rent-sensor as one of the inputs. Isci and Martonosi [10] implement
run-time power monitoring for a single-core Intel® Pentium™ 4
(Willamette) using a combination of performance counters and an
inline external ammeter. Performance-counter results and current
measurements are fed to a separate monitoring machine which
computes power in software on intervals of about 400 millisec-
onds. The model estimates power for 22 microprocessor structures

Table 1: Run-time estimation techniques for high-performance CPUs with aggressive power management
Technique and inputs Structures covered Limitations
Runtime power-monitoring (e.g., [10]) core and few structures need sensors, limited structure power
Wire or structure specific stats (e.g., [4] [2] [3]) many many input statistics
Counter-based techniques (a) (e.g., [12][1]) core no structure power
Counter-based techniques (b) (e.g., [26][20]) few structures ratio of input statistics to structures not scalable
CAMP many (180)



using 24 statistics plus the meter. While this model is quite useful,
the external hardware requirement for model construction makes it
unwieldy for run-time power monitoring in the field, particularly in
a multicore microprocessor where each processor core might
require an on-package current monitor.

Other power estimation proposals rely solely on performance
metrics as input statistics. One category uses a large number of
wire-specific or structure-specific statistics relative to the number
of structures for which power is estimated. Examples include the
Cai-Lim model [4], which uses structure activity and power densi-
ties to compute power for 17 structures and PowerTimer [3], which
relies on many switching factors as input statistics. Another exam-
ple is Wattch [2], which is similar to the Cai-Lim model but derives
energy costs from wire-delay and circuit models instead of power
density. Wattch uses a few dozen input statistics to estimate power
for about a dozen structures. Wu et. al [26] estimate power for 15
P4 structures using up to 22 input statistics, and Peddersen et. al
[20] estimate power for 5 structures in a small embedded-type core.
While these estimation techniques are conceptually suitable for
run-time power estimation, the number of input statistics relative to
the number of structures for which they compute power makes
them impractical for run-time estimation for many structures.

Another category of power estimators rely on a handful of glo-
bal or generic input statistics for core-level estimates, and thus
would be more suitable for run-time power estimation. One exam-
ple is Joseph and Martonosi’s work [12], which uses performance
counters to estimate power in the Intel® Pentium Pro™ over 10
millisecond intervals. The authors note that there is limited clock-
gating in this microprocessor and thus little variation between min-
imum and maximum power (about 25%). Estimating run-time
power on a complex wide-issue processor with aggressive clock
gating is substantially more difficult, as noted by Isci and Mar-
tonosi [10]. Due to limited clock gating, Joseph and Martonosi [12]
were able to assume constant power for many structures and prima-
rily focus on memory and ALU operation power. Another work,
Bellosa [1], estimates core power at run-time in software, using
Intel® Pentium™ 4 performance counters. Sharkey [22] also esti-
mates core-level power.

It is also possible to estimate system-level power (e.g., includ-
ing DIMMS, disks, and other I/O) using global statistics. One

example is Economou et. al [6].
CAMP differs from other techniques that use global input sta-

tistics to estimate core or die power in that CAMP estimates per-
structure power for over 180 structures on an aggressively clock-
gated microprocessor. 

2.2 Offline Analytical Power Monitoring

There are a number of analytical power models that target
offline power estimation using inputs that would be unsuitable for
run-time estimation in hardware. These techniques are summarized
in the table at the left of Figure 1. One category uses profiling,
sampling, and statistical or probabilistic analysis to estimate power.
The typical approach is to perform detailed simulations of a few
design points, use data from these to fit inference models that relate
performance/power to architectural statistics and then predict the
performance/power at different design points [16,11,9]. For exam-
ple, Lee and Brooks [16] use trace-driven simulation of 4000 sam-
ples to fit linear regression models that relate several micro-
architectural design parameters to performance and full-CPU
power. Similar analysis can be done at the RTL level, such as Macii
et al. [18], which uses statistical sampling for RTL estimation and
Katkoori et al. [14], which generates behavioral profiles from RTL
simulations.

Offline estimation at the circuit level or RTL can also use wire-
specific or structure specific inputs (e.g., temperature estimates or
transistor count) for even finer granularity. For instance, Srini-
vasan, et al. [23] present an empirical approach to determine the
optimal pipeline depth considering both power and performance
constraints. Zyuban and Strenski [28] present a mathematical
approach based on hardware intensity, which relates delay and
average energy consumption. Lee et al. [17] analyze low-level
power for embedded DSP software. Landman et al. [15] surveys
power-estimation techniques ranging from counting gate equiva-
lents to circuit-level estimation. PowerTimer [3] and Wattch [2]
can also be considered in this space when specific values of input
bits (e.g., the addends in an addition operation) are considered as
one of the inputs. 

2.3 Analytical Estimation at Design

Analytical performance models are related to offline power-
estimation techniques. These models might be used in conjunction
with CAMP to provide estimates for the input parameters to the
power model before an architectural simulator is available. Many
analytical performance models determine overall performance for
an ideal processor (no misses, infinite hardware resources) and
then derive performance limits imposed by adding constraints,
such as dependencies and hardware limitations. The models are
typically parameterized with data obtained from trace-driven simu-
lations. Noonburg and Shen [19] develop such a model based on
probability matrices, while Karkhanis and Smith [13] present a
more concise model that calculates performance using two compo-
nents - a constant, ideal component and a performance loss compo-
nent. 

3  Power Modeling Background
CAMP extends an existing design-time power-modeling meth-

odology for simulation to generate activity and power metrics at
run-time. In this section, we provide background on design-time

FIGURE 1: Taxonomy of power-estimation 
techniques: related work and CAMP
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power modeling techniques used in CAMP to estimate run-time
metrics. 

3.1 Components of Microprocessor Power

Microprocessor power can be broken into three major compo-
nents: static, dynamic-idle, and dynamic-active. Static power, also
called leakage power, is dissipated whenever the microprocessor is
connected to a power-supply. Static power is not a function of
microprocessor utilization but is a function of manufacturing pro-
cess technology, circuit topology, temperature, and the power-gat-
ing status of the core. The methodology to estimate static power in
a microprocessor is now somewhat well-understood. Process tech-
nology and circuit topology are constants at runtime, making run-
time leakage computation a single equation with two variables: 1)
temperature and 2) power-gating status. Temperature can be
obtained from on-die sensors [8]. Power gating, not to be confused
with clock gating, refers to leakage-reduction techniques such as
gated-Vdd [21]. Power-gating status can be obtained from a core’s
power-control unit. Because estimating leakage at run-time is less
complex than estimating dynamic power, we do not discuss it fur-
ther.

Dynamic-idle power is dynamic power that is not conditionally
clock-gated, and thus is not a function of utilization. This power
dissipates whenever the microprocessor core is clocked. Thus, as
long as global clock-gating conditions are known (i.e., is the entire
core gated?), we can also estimate dynamic-idle power in a micro-
processor. 

The final, largest, and hardest-to-estimate single component,
dynamic-active power, is dissipated according to microprocessor
utilization. This component represents power for structures that are
either not clocked or are conditionally clock-gated when idle.
Dynamic-active power is often the largest component of power and
often represents over 50% of total power. Estimation of dynamic-
active power is the focus of this work; from this point forward,
“power” refers to dynamic-active power unless stated otherwise.

3.2 Circuit and Architectural Power Modeling

Microprocessor power estimates for architectural design are
typically calculated by extending the energy-modeling methodol-
ogy for circuits to the architectural level. For a circuit, power (P)
for a single-switching event is calculated as the capacitance of the
circuit (C) times the square of the voltage (V) times the clock fre-
quency. Average power can be calculated by multiplying energy by
the activity factor (a), or fraction of cycles the circuit is switching.
This calculation leads to the familiar equation:

At the architectural level, we know the activities of structures
and blocks, such as register files, arithmetic-logic units (ALUs),
and caches, but we do not know the activity of individual signals or
circuits. However, architectural simulation can abstract the individ-
ual signals up to the structure and block level.

Power modeling techniques, such as Intel’s Architecture Level
Power Simulator (ALPS) [8], Wattch [2], or PowerTimer [3],
abstract the power equation from the circuit level to the architec-
tural level. Each method obtains power estimates differently and at
different structural granularity, but with the same overall goal. Here
we focus on ALPS. ALPS uses power estimates from previous
designs and/or circuit simulations on micro benchmarks to estimate

power for architectural events (e.g., register reads, ALU opera-
tions) down to the functional-unit-block (FUB) level. The power-
per-event numbers can then be multiplied by activity to compute
power. This computation is equivalent to modifying the circuit-
power equation above to use effective capacitance (Ceffective) as the
equivalent capacitance of architectural events and architectural
activity (A) as the fraction of cycles a specific event occurs:

Note that in ALPS an individual structure (e.g., a cache) can
have multiple FUBs (e.g., data bank, tag bank, decoder) and each
FUB can have multiple events (e.g., read, write), each with their
own effective capacitance. ALPS estimates dynamic-active power
for individual FUBs and an entire core by summing all of the event
powers for each FUB and summing all of the FUB powers.

As described, this power-modeling methodology is useful in
detailed software-based execution-driven simulators. Wattch [2]
uses a similar technique to map power for a few tens of structures
to a few tens of events, while Intel has used ALPS to maps power
for hundreds of FUBs to hundreds of events in complex products
like the Pentium 4 [8]. 

3.3 Limitations of Existing Power Methodologies

The key limitation that prevents methodologies, such as ALPS
(or Wattch or PowerTimer), from being used to estimate power in
hardware or from being used in design before a detailed simulator
is available is the sheer number of input statistics required. Track-
ing many tens or hundreds of statistics in hardware is overly com-
plex. It is equally daunting for an early design-time power model
(before a detailed simulator is created) to generate those statistics,
as they tend to be highly specific (e.g., read of d-cache bank 0 or
access to instruction-decoder 2). A technique both to reduce the
number of statistics and to generalize them to be less structure-spe-
cific would enable hardware power monitoring and early design-
time power estimates.

4  Methodology and Infrastructure
In this section, we describe the infrastructure that we use to

model activity factors and power and the system that we model.
We use a detailed execution-driven simulation in the Asim [7]

simulation environment to simulate an Intel® Core™-like micro-
processor core. The parameters of our core are shown in Table 2
For this core, we have a detailed ALPS-like [8] power model that

P aCV2f=

P ACeffectiveV2f=

Table 2: System parameters
Instruction issue 4, out-of-order
I-cache 64KB 4-way
D-cache 64KB 8-way, 2 cycles
Branch Predictor (size) Bimodal (512)+ Gshare (1024)
Branch Target Buffer 4K entries; 16-way
Fetch / Decode queues 14/24 entries
Reservation Stations 32
Reorder Buffer Entries 96
Load/Store Buffers 50/24 entries
L2 cache 1MB, inclusive, 8-way, 10-cycles
L2 miss latency 200 cycles



covers over 200 architectural structures comprising over 300
FUBs. ALPS is Intel’s premier micro-architectural power simulator
and has been validated against silicon for several products. It is
generally believed to be accurate to within 5% to 10%. This power
model is integrated into our simulator, which tracks architectural
activities for each of those FUBs. 

To make our power results process (voltage and frequency) and
logic-style independent, we normalize all power results with
respect to voltage and frequency, and the Ceffective of the macro-
instruction-queue (IQ) write event. We call these units pseudo-
Watts. Recalling the equation from Section 3.2, pseudoWatts are
expressed as:

To show energy, we use the equivalent in similar pseudoJoules.
For our implementation of CAMP, we focus on events in 60

architectural structures—comprising 180 FUBs—that cover 95%
of the core’s dynamic-active power. Due to space limitations, we
limit our discussion to the 22 structures shown in Table 3. How-
ever, the overall non-structure-specific results do include all 60
structures. Each of these structures corresponds to one or more
power macros. Power macros are our smallest unit of power com-
putation and correspond to well-defined structures such as register-
files or execution units. Each macro has one or more events that are
used to compute its power (e.g., the uop buffer may be read or writ-
ten). 

To train our CAMP model, we run a suite of 73 benchmarks
including SPEC CPU 2K [24], SPEC CPU 06 [25], multimedia,
server, and TPC-C workloads. To test our model, we run a suite of
83 different traces from among the same workload classes. For
training and testing, detailed simulations are run for 10 million
macro-instructions chosen as representative traces. Memory struc-
tures are warmed up prior to the detailed runs.

5  CAMP: Activity Factor Estimation 
In this section, we describe our methodology for exploring sev-

eral micro-architectural statistics and selecting the best subset that
needs to be directly observed in order to estimate microprocessor
power. A reduced number of statistics can be monitored simply in
hardware or can facilitate quick power-performance trade-offs at
design-time. We focus on general statistics that report performance
and which correlate well with the activity factors (a.f.s) of most
pipeline structures. We then use these statistics as predictors (Ter-
minology note: in this section we mean predictors in the linear
regression sense, not in the architectural speculation sense) to con-
struct linear regression models that can be used to estimate activity
factors for each structure. Note that for our studies, we use simple
linear regression models. Other models are possible, including
multi-variable regressions and iterative analysis, such as in [26].
Analysis of these alternative models is beyond the scope of this
work; the goal of CAMP is to show that it is possible to estimate
core and fine-grain structure power using few input statistics, not to
pick the optimum regression model. 

Our studies show that nine general micro-architectural statistics
are adequate to measure 95% of dynamic-active power with an
average of 90% accuracy for a typical out-of-order pipeline. By
using the same set of statistics that are used to summarize perfor-
mance to also estimate activity factors (and hence, power), we
demonstrate that hardware utilization is the key commonality

between performance and power. 

5.1 Selection of Predictors

The activity factors of most structures in a microprocessor pipe-
line correlate well to key system utilization statistics. This behavior
is not unexpected - activity factor is fundamentally a function of
utilization. For example, activity factor in the instruction decoders
is expected to correlate well to the number of instructions fetched
and activity factor of the retire logic is expected to correlate well to
the number of instructions retired. However, some correlations
may not be particularly obvious as in these examples. For instance,
do writes to the data operands stored in the ROB correlate to
instructions fetched, instructions retired, load hits, or some combi-
nation of these and other statistics? Further, a key question for
design-time decisions is whether such correlations hold over
micro-architectural perturbations.

To answer these questions, we performed correlation analysis
between activity factors and architectural statistics including
macro-instructions-per-cycle (IPC), instructions-fetched-per-cycle
(speculative-IPC, or SIPC, since the metric includes mis-specu-
lated instructions), number of loads, number of stores, number of
branch instructions, and number of 128-bit (SIMD) floating-point
instructions. Figure 2 plots the correlation coefficients for the mac-
ros (as defined in Section 4) for a subset of these parameters, aver-
aged over the 73 training benchmarks described in Section 4. The
x-axis lists the structures in pipeline order, starting with the
FETCH_CONTROL_LOGIC to the ROB_RETIRE_LOGIC, and
the y-axis plots the correlation coefficients. (Recall that correlation
coefficients range from -1 to 1, with values near zero correspond-
ing to no correlation and values near 1 corresponding to strong
negative or positive correlation.) 

Many activity factors correlate highly (correlation coefficient
over 0.9) to either or both of instructions-per-cycle (IPC) and
instructions-fetched-per-cycle (SIPC). However we found that
64% of all macros do not correlate well to either of these basic sta-
tistics, so others are needed for a complete model. It is interesting
to observe that some macros correlate well with only a few statis-
tics - for example, the floating-point ALUs correlate well with only
the SIMD instruction rate but with none of the other statistics, and
the branch rate is the only statistic to correlate highly to the EXE1
execution unit (which is used to compute branch outcome). It is

PseudoWatts A
Ceffective

CeffectiveIQWrite
----------------------------------------V2f

V2f
-------- A

Ceffective
CeffectiveIQWrite
----------------------------------------= =

Table 3: Microprocessor structures considered
Front End i-cache tag
fetch control logic macro-inst (macro-op) decoder
i-cache data micro-inst (uop) decoder
macro-inst queue (IQ) micro-instruction (uop) buffer
Back End
allocate resources (ALLOC) rename
ROB allocate (ROB_ALLOC) ROB operand (high & low)
reservation station (RS) cam RS scheduler
RS source regfile (RS_SRCRF) Execution units (EXE)
committed PC logic ROB retire logic
Memory Subsystem DTLB
data-cache (DCU) tag data-cache (DCU) data
store buffer (STB) load buffer (LDB)



also interesting that the instruction decoders and decode queue cor-
relate fairly well with the number of loads. We also assess the
robustness of these correlations across microarchitectural perturba-
tions (e.g., structure size changes); those results are presented in
detail in Section 7.

Based on the analysis of which statistics correlate highly to
structure activity factors, we narrowed the number of statistics to 9
to use as predictors for the linear regression models described next.

5.2 Model Construction

We fit linear regression models for each structure of interest
using the predictors described in the previous section. To simplify
CAMP, we aim to keep the number of predictors to about 10, so we
performed four fits using a combination of the 11 predictors shown
in Table 4. In what follows, we term a specific combination of pre-
dictors as a fit and the resulting linear equations as models. Seven
statistics are common to all fits. The fit DistLoads uses load hits
and load misses as additional predictors. The fit uSIPC uses the
micro-SIPC, and the fit Branches uses the branch rate. Finally, the
fit BEST uses micro-SIPC as well as branch instructions (but not
load hits and misses). Each fit uses at most nine predictors.

The accuracy of these models also depends on the workloads
used to generate samples for the fit. We expect the workloads that
exercise all macros in the pipeline to be good samples. To assess
the sensitivity of the a.f. models to different workloads, we use two
different sets to generate samples. The first set, termed as MIX uses
the 73 training benchmarks described in Section 4. The fitted mod-
els are then used to predict the activity factors over 83 different
traces derived from the same mix. The second set of samples is
derived using traces from only the SPEC CPU 2K suite (SPEC2K).
The resulting models are then used to predict a.f.s over the same 83
traces as before. 

This analysis produces an activity factor model for each struc-
ture (i.e., power macro) and the resulting a.f. numbers can be used
in the power equation from Section 3.2 to compute power esti-
mates. For example, the activity model for the reservation-station
first-source operand register read (RS_SRCRF_1_Read) macro
using the Branches fit is shown in Figure 4. Note that the largest

contributing statistic to this activity factor (i.e., largest coefficient)
is the branch rate.

As discussed in Section 1, CAMP equations like that in
Figure 4 expose the dependence of structure power on global statis-
tics, allowing design-time reasoning about trade-offs regarding
specific architecture choices or workload characteristics. For
example, the equation indicates that an increase in the rate of float-
ing-point loads and stores will tend to decrease activity of the
RS_SRCRF_1 structure, but an increase in 64-bit floating-point
instructions will increase activity. This sort of reasoning is more
difficult with per-structure activity models that rely entirely on
structure-specific statistics (e.g., number of reads to the structure)
that are not related to global characteristics.

5.3 Model Evaluation

In this section, we evaluate the quality of the fits used to predict
activity factors. We expect high-quality fits because the predictors
for the fits were chosen to ensure that statistics that correlate highly
to each structure’s activity were included. We expect fits that
include micro-SIPC and branch rate to perform the best overall,
because micro-SIPC correlates highly to activity for many struc-
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FIGURE 2: Per-structure a.f. correlation with selected micro-architectural statistics

Table 4: Statistics (Predictors) used for each fit
Statistic Fit
IPC

Used in all fits

SIPC
Load rate
Store rate 
FP Ld/St rate
SIMD inst rate
64-bit FP inst rate
Micro-SIPC rate uSIPC, Best
Branch rate Branches, Best
Load hit rate (per cycle) DistLoads
Load miss rate (per cycle) DistLoads
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tures, and branch rate is the only highly-correlating statistic for one
structure, as we saw in Figure 2 from the last subsection.

We use the adjusted R-sq values, distribution of residuals, and
the mean absolute error of predictions as metrics to assess the fits.
Figure 3 plots the cumulative distribution (CDF) of the absolute
error in a.f. predictions, and Table 5 summarizes the metrics used
to assess fits. Each CDF curve represents a fit, which is labeled by
the workload used to train the fit (MIX or SPEC2K) and the statis-
tics in the fit (DistLoads, uSIPC, Branches, and BEST).

On an average across all fits, more than 77% of the models
(each structure has its own model, or equation, within each fit) pre-
dict a.f. within 5%, 96% predict within 10% and all predict within
25% of the actual a.f. values. This result shows that a single set of
linear models is adequate to predict power over a wide range of
workloads. The SPEC2K fits show that even if the models are gen-
erated using a previous generation of benchmarks, they are capable
of accurately predicting power for future workload generations
(e.g., SPEC CPU 06) and even other classes of workloads (e.g.,
TPC-C). This behavior is not surprising because the equations are
fundamentally a function of the hardware and its utilization, not the
specific workload run on the hardware. (Of course that is true only
if the workloads in the fit fully exercise the structures.) 

We also examine fits by studying the distribution of residuals
using a quantile-quantile plot where standard normal quantiles are
plotted on the x-axis and residual quantiles on the y-axis. A linear
trend indicates a model with good prediction capability. These
plots also provide insight into selection of predictors. Figure 5(a)
and Figure 5(b) indicate good fits because both of these macros
correlate well with the selected parameters. Figure 5(c) is a qq-plot

for the EXE1 macro using the MIX_DistLoads fit. EXE1 correlates
well with the branch instruction rate which is not part of this fit, so
the residuals show significant deviation from normal. Similarly,
DCU_DATA_Write correlates well with only one parameter (store
instruction rate, which is not shown in Figure 2), so all the fits
deviate slightly from the normal. In general, we found that the dis-
tribution of residuals for the “MIX_BEST” and “SPEC2K_BEST”
followed the normal most closely. 

The combination of high-quality and simplicity of the CAMP
models allows intuition into the relationship between architectural
statistics and structure power. Simplicity also allows the models to
be used for both run-time and design-time power estimates as
explained in the following sections.

6  CAMP for Run-time Power Estimation
Accurate run-time power estimation is valuable in driving a

variety of run-time power management techniques in both hard-
ware and software. Prediction accuracy, granularity (both temporal
and structural) and the cost (in area and time) are the three main
aspects of a run-time power estimator. We would like the energy
estimates to be accurate to enable correct power management deci-
sions, and we would like choice in the temporal granularity of esti-
mates. Finer structural granularity of estimates can be used to drive
more aggressive, fine-grained power management in hardware,
while coarser-granularity power information can be used at higher
levels in hardware or software. Finally, estimates should be
obtained without a large area or power overhead.

In this section, we explain how CAMP can address these chal-
lenges. We outline a low-overhead hardware mechanism that cou-
ples the CAMP linear equations with a few hardware counters to
construct an accurate, fine-grained, low-overhead run-time energy
estimator. We then show that CAMP can produce accurate core and
structure energy estimates at different temporal granularities. 

6.1 CAMP Hardware for Run-time Estimation

CAMP may be implemented using a set of hardware counters
that monitor microprocessor statistics for an interval of time over
which we then compute estimated power. The interval size may
vary from tens of thousands of cycles, to enable fine-grained hard-
ware power management, to millions of cycles, to enable software-
based power management. (If long calculation intervals are
desired, larger hardware counters are needed to prevent overflow.)

CAMP uses the output of the hardware counters and pre-com-
puted per-structure linear regression models to compute the esti-
mated power. The effective capacitance used in the power-
computation equation from Section 3.2 is provided by an architec-
tural power model for the microprocessor. Figure 6 shows the
structure of our run-time power estimator. Because only nine
counters are required and the energy computation is performed at
relatively infrequent intervals over many cycles, power overhead is
negligible.

6.1.1 Hardware Implementation Details

The hardware required to implement the predictors could be
complicated because the predictors we use to construct the regres-
sion models are generally a count divided by the number of cycles
in an interval. To simplify the hardware required, we suggest that
interval lengths be limited to a power-of-two number of cycles.
This limitation allows the division to be implemented with a simple

(a) ROB_RETIRE_LOGIC (b) STB

(c) EXE1

FIGURE 5: MIX_DistLoads fit residuals QQ-plots

(d) DCU_DATA_Write
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Table 5: Summary of Fit Evaluation Metrics
Fit Adj. R_sq Mean Rela-

tive Error (%)
Mean Abso-
lute Error

Training 
Workload: 

MIX SPEC
2K

MIX SPEC
2K

MIX SPEC
2K

DistLoads 0.957 0.974 10.2 21.24 0.035 0.050
uSIPC 0.972 0.972 7.84 19.73 0.026 0.041
Branches 0.959 0.974 9.29 22.90 0.031 0.053
Best 0.976 0.975 7.37 20.00 0.025 0.041



bit shift left by log2 the number of cycles per interval. To limit our
mechanism to integer arithmetic, we define a minimum interval
size (minInterval in Figure 6) of 65536 (i.e., 216) cycles and
express each predictor in terms of events per 216 cycles. Thus, dig-
its beyond the decimal point are not needed to maintain high accu-
racy. This simplification would be implemented by simply shifting
log2(65536) or 16 bits less than would be indicated by the interval
size and adjusting the value of the linear-equation coefficients
accordingly. This simplification allows us to use only integer arith-
metic and has no significant effect on the accuracy of our mecha-
nism. An alternative simplification that would not require defining
a minimum interval would be to simply pad the counter values and
coefficients with zeros (effectively multiplying by 2 to the number-
of-zeros power) and adjust the linear equations accordingly, though
this might increase the width of the arithmetic logic.

If programmable interval lengths are not necessary, a final sim-
plification is to fix the interval size, eliminate the dividers (bit
shifters) altogether, and simply use the raw counts as input to the
linear equations.   This simplification requires changing the coeffi-

cients of the linear equations to be the original values times the
number of cycles in the fixed interval length. (Of course, this
change is one-time and static, not a dynamic calculation.)

6.2 Accuracy of Run-time Energy Estimates

In this subsection, we assess the accuracy of energy estimates
provided by CAMP using the BEST and SPEC2K_BEST fits from
Section 5.2. We use the SPEC2K_BEST fit to demonstrate that a
CAMP model built from older workloads is capable of estimating
energy in newer workloads, as discussed in Section 5.3. We expect
the microprocessor energy estimates to be accurate compared to
detailed simulation, because of the high quality of these fits. We
expect accurate estimates regardless of interval length, because as
we saw in Section 5.3 the fits are functions of utilization and not
workload or program phase.

We estimate energy consumption for a 35-trace subset of the 83
traces used for testing in Section 5.3; we do not show results for all
83 traces to avoid clutter on the plots. This subset contains traces
from all of the workload categories from Section 4. Energy is esti-
mated at 64K (65536) cycle intervals, 1M (1048576) cycle inter-
vals, and full-simulation intervals. Energy values are normalized
using the mechanism described in Section 4.

Figure 7 ((a) through (d)) show the per-interval energy esti-
mates for two traces for 1M and 64K interval lengths, respectively,
for both the BEST and SPEC2K_BEST fits. In all cases, the esti-
mates track well with the actual energy consumption (from detailed
simulation), also shown in the figure. On an average across all the
35 traces, the mean relative error for BEST and SPEC2K_BEST is
2.7% and 6.2% respectively with the maximum error being 14%
and 39% respectively.

Figure 8 is a scatter plot of the actual (x-axis) vs. the estimated
(y-axis) total energy for the 35 traces which shows that the esti-
mates are generally accurate regardless of workload. One outlier
for both the BEST and SPEC2K_BEST fit is SPEC06-libquantum,
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although even for this outlier the relative estimation error is only
12%. This application has a large working set (32MB) which
strains the memory hierarchy differently from any of our other
traces; as a result, the activity estimates for the data cache and L2
cache have substantial errors. Another application, tpcc-sas, is an
outlier for the SPEC2K_BEST fit, but not for the BEST fit, indicat-
ing that there are advantages to training over a broader set of work-
loads.

6.2.1 Accuracy of per-structure energy estimates.

CAMP’s energy estimates are also accurate for individual struc-
tures. Figure 9 shows the 29 macros corresponding to the 22 struc-
tures highlighted earlier in Table 3 (some structures such as the uop
decoder comprise more than one macro) along the x-axis, normal-
ized actual energy and estimated energy (using the BEST fit and
SPEC2K_BEST fit) in the bottom graph, and estimation error for
those structures in the top graph. The bottom graph shows that esti-
mated energy tracks actual energy well. The top graph shows that
for the BEST fit, the error is less than 5% for all but one high-
lighted structure, the store buffer (STB). The generally high accu-
racy of CAMP’s per-structure estimates extends beyond the
highlighted structures to the 60 power-macro structures discussed
in Section 4 that comprise 180 FUBs and 95% of core power.
Although not shown in Figure 9, the additional structures were
included in the distribution shown in Figure 3, which shows that
nearly 90% of structures had estimation errors less than 5%.

The SPEC2K_BEST fit, which uses a much more limited train-
ing set than the BEST fit, still achieves reasonable per-structure
estimates. All but 6 of the 29 estimates are within 20% of the actual
value. In terms of normalized energy (the bottom graph), even the
6 outliers are not extreme. This demonstration of an extreme case
where a fit based on SPEC2K is used to estimate energy for a much
broader suite of workloads (including server and media workloads
not in SPEC2K or SPEC06) shows the versatility of CAMP in esti-
mating per-structure power.

In summary, these results indicate that CAMP is an effective
solution to the accuracy and granularity challenges in run-time
power estimation. These results also show that the predictive mod-
els that make up CAMP capture the inherent relationship between
hardware utilization, performance and power irrespective of the
workload being run. Such run-time power estimation can be used
to facilitate a variety of hardware and/or software-based power-

management techniques such as voltage-frequency scaling, clock
gating and selective disabling of resources. In the following sec-
tion, we describe how the same models can be used during design
time to guide early power-performance trade-off analysis.

7  CAMP for Design-time Power-Perf. Analysis
Power estimation is a key aspect of early-stage micro-architec-

tural design space exploration. In addition to estimates of core
power, it is useful to understand variation in per-structure power to
drive power-aware design. Designers typically rely on detailed,
cycle-accurate simulation coupled with complex power models to
obtain detailed power estimates, creating a bottleneck for exploring
the power impact of design changes. CAMP aims to reduce the bot-
tleneck by providing an intuitive model that accurately estimates
energy using the same parameters that summarize performance. 

Our key observation is that the accuracy of CAMP’s activity
estimations is accurate across incremental micro-architectural
structure-size changes. The CAMP model constructed for a base
architecture continues to provide accurate energy estimates for dif-
ferent micro-architectural changes across all the workloads we
consider. This consistency across different designs allows CAMP
to be used as an effective early-stage power-performance analysis
tool. We show that CAMP provides useful insights and facilitates
reasoning about the power-performance behavior across the pipe-
line using only a single set of performance parameters and without
requiring a detailed power model. 

In Section 7.1 we provide results to validate CAMP's robust-
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ness across micro-architectural perturbations. In Section 7.2 we
give an example of how CAMP can be used to compare different
micro-architectural choices at early design stages.

7.1 Robustness of CAMP to structure size changes

In Section 5.2, we demonstrated the close correlation between
activity factors of selected structures with several micro-architec-
tural statistics. We performed a similar analysis for 12 different
micro-architectural configurations obtained by varying the data
cache, L2 cache, IDQ, RS, ROB and BPU sizes. We expect activity
correlations to remain strong under perturbations because the rela-
tionship between structures is not changing, only their sizes.

We found that correlations of these statistics to per-structure a.f.
remain consistent across structure size changes. Across all macros,
all micro-architectural perturbations and all statistics, the standard
deviation of correlation coefficients was 15% with a maximum
deviation of 26% (observed for micro-SIPC). To assess the predic-
tive power of the a.f. models of a single fit across different micro-
architectural configurations, we plotted the CDF of their absolute
prediction error (not shown). Analogous to the correlation analysis,
the regression models also hold fairly consistently across structure
size perturbations - 82% of the models predict a.f. within 5%, 93%
within 10%, and all within 40% of the actual a.f.s.

Given the values of a few micro-architectural statistics for dif-
ferent designs, CAMP can be used to obtain energy estimates
instead of using a detailed power model. Figure 10(b) illustrates a
scatter plot for specific cases where the RS-ROB, L1 d-cache, L2
cache, and BPU sizes were varied. The plot shows the actual vs.
estimated total energy using the BEST fit for a set of 58 traces from
the SPEC06-FP, SPEC06-INT, SPEC2K-FP, SPEC2k-INT, TPC-C
and multimedia suites. As before, each trace is 10M instructions
long. A linear trend line is included to show how the estimated val-
ues track the actual energy consumption. Across the 12 designs, we
observed a mean relative error of 3.3% and maximum error of
14.6% (observed for IDQ size set to 16) over all the traces.

Figure 10(a) plots the average estimated energy and actual
energy (from detailed simulation) for individual macros; each point
is averaged across the 58 traces and across all 12 micro-architec-
tures. The estimated and actual points frequently overlap, and due
to the small prediction error, the error bars when averaged over all
traces were too small to show up on this plot. Instead we add an

additional series for estimated SPEC06-gcc energy, and we plot
error bars for that benchmark to verify that the error is small even
for individual traces. 

These results support our intuition behind CAMP that both the
power and performance of a micro-architectural configuration can
be obtained by tracking a common set of utilization parameters
across the micro-architecture. This analysis implies that a CAMP
model for a previous generation microprocessor may be used for
initial estimates in the next-generation processor in the common
case where the new design builds from the previous and most of
the differences are structure-size changes. For example, the Intel®
Pentium™ Pro, Intel® Pentium™ II, Intel® Pentium™ III, Intel®
Pentium™ M, and Intel® Core™ each derived from the previous
generation P6 processor. Of course, a CAMP model from a previ-
ous generation would not be useful for an entirely new microarchi-
tecture (e.g., Intel® Pentium™ 4), but all-new micro-architectures
are not the common case.

Next, we show how this property of CAMP can be used to facil-
itate early-stage power-performance analysis.

7.2 Examples of Early Design Analysis with CAMP

In this subsection, we discuss a case study that uses CAMP to
study the power-performance trade-off of several designs obtained
by varying the RS and ROB sizes. We assume that values for per-
formance statistics used in the CAMP BEST fit (IPC, SIPC, loads,
etc.) are provided to us for a base design using cycle-accurate per-
formance simulation. These values could also be obtained from
analytical performance models as explained in Section 2. We
expect that, given a set of performance statistics for a base design
and a modified design, CAMP can provide accurate total as well as
per-structure power across different designs to compare their
power-performance behavior.

For each design, we show the IPC values obtained from simula-
tion and the per-structure energy and the overall energy-delay2

(ED2) product obtained using CAMP. Processor Energy-delay2

results are based on the approximation that the per-event power of
the structure being perturbed, such as the ROB, did not change
with the perturbation. This approximation is acceptable for early
design experiments and acceptable to the first order because: 1)
Only one or two structures are being perturbed, and no single struc-
ture makes up a majority of the processor power; and 2) Our main
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FIGURE 10: (a) Per-macro accuracy of energy estimates 
across all benchmarks and all structure size changes
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interest is in the impact of the architectural change on the power of
other parts of the pipeline, not the structure being perturbed;
obtaining an event-power analysis for an individual structure is a
circuit-power-modeling concern orthogonal to CAMP.

Each point is obtained by averaging across 58 traces from
among the six categories described in Section 4 and normalizing
with the corresponding value from the base micro-architecture. 

7.2.1 Varying RS and ROB size. 

The ROB is a key structure that determines the total number of
instructions in the pipeline. Though we refer to these variations as
ROB size changes, we vary the RS and ROB sizes together because
of their inter-dependence. Figure 11(a) and Figure 11(b) show the
effect of different ROB sizes on the macro-IPC and the ED2 for the
six benchmark suites. The “1X” point corresponds to the base
architecture. From the figure, it can be seen that there is a slight
performance gain by increasing the ROB sizes. However, the ED2

curves show that, except for SPEC06-INT, the energy-efficiency
remains fairly flat for ROB sizes greater than 1X. To understand
the behavior of SPEC06-INT, we looked at the energy expended by
other structures, specifically the L1 D-cache and the front-end for
different ROB sizes. 

Figure 11(c) and Figure 11(d), plotting estimated energy for the
L1 data cache and front-end respectively, show that SPEC06-INT
displays an unusual behavior where both the L1 d-cache and front-
end energy actually decrease as ROB size is increased. This behav-

ior also explains the drop in SPEC06-INT Energy-delay2 in
Figure 11(b). To validate that this result is not an experimental
anomaly, we compared our estimates against actual energy num-
bers from detailed simulation. Figure 11 (c) plots this comparison
for SPEC06-INT (dotted line), and shows that the CAMP estimator
tracks the results from detailed simulation. (In addition,
Figure 11(d) plots both estimated and actual energy for Media,
indicating that increasing trend is not an anomaly either.)

Typically, a detailed power model would be required to uncover
such behavior, but CAMP can provide valuable insight by tracking
the hardware utilization across the entire pipeline due to changes in
a single structure. This case study also reinforces that it is neces-
sary to vary multiple structures in synchrony and consider their
interaction when making micro-architectural design decisions. 

8  Conclusion
Effective CPU power management would benefit from knowl-

edge of run-time microprocessor power consumption in both the
core and individual microarchitectural structures, such as caches,
queues, and execution units. Increasingly feasible per-structure
power-control techniques, such as fine-grain clock gating, power
gating, and dynamic voltage/frequency scaling (DVFS) would ben-
efit from run-time estimates of per-structure power. However, run-
time computation of structure power estimates based on utilization
would seem to require daunting numbers of input statistics.

To address the challenges of estimating per-structure power in
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hardware, we propose a new technique, called Common Activity-
based Model for Power (CAMP), to estimate activity factors and
power for microarchitectural structures. In spite of using a rela-
tively few nine input parameters based on general microprocessor
utilization statistics (e.g., IPC and load rate), our linear-regression-
based model estimates activity and dynamic power for over 100
structures in an out-of-order x86 pipeline and estimates core power
with an average error of 8%. Because the computations utilize few
inputs, CAMP is simple enough to implement in hardware, provid-
ing run-time structure and core power estimates for dynamic power
management. Because the input statistics are generic in nature and
the model remains accurate across microarchitectural changes,
CAMP provides simple intuitive equations relating global microar-
chitectural statistics to structure activity and power. These equa-
tions provide a simple technique that can equate changes in one
structure’s activity to power variations in other structures across
the pipeline.

Because the input statistics are general and the accuracy of the
model is maintained across incremental microarchitectural
changes, design can use CAMP to estimate the power impact of
design choices. Before a detailed architectural simulator is avail-
able, designers can use intuition and the CAMP equations to esti-
mate how architectural changes will impact per-structure as well as
overall chip power. Our validation suggests that these results are
accurate as compared to detailed, cycle-accurate simulation. For
instance, across 12 different micro-architectural configurations
obtained by varying sizes of multiple structures, CAMP estimates
energy to within 3.3% of the actual energy across traces from six
benchmark suites. 
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