
HAL Id: hal-03361299
https://inria.hal.science/hal-03361299v1

Submitted on 1 Oct 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Deciding Non-Compressible Blocks in Sparse Direct
Solvers using Incomplete Factorization

Esragul Korkmaz, Mathieu Faverge, Grégoire Pichon, Pierre Ramet

To cite this version:
Esragul Korkmaz, Mathieu Faverge, Grégoire Pichon, Pierre Ramet. Deciding Non-Compressible
Blocks in Sparse Direct Solvers using Incomplete Factorization. HiPC 2021 - 28th IEEE International
Conference on High Performance Computing, Data, and Analytics, Dec 2021, Bangalore, India. pp.1-
10, �10.1109/HiPC53243.2021.00024�. �hal-03361299�

https://inria.hal.science/hal-03361299v1
https://hal.archives-ouvertes.fr

Deciding Non-Compressible Blocks in Sparse
Direct Solvers using Incomplete Factorization

Esragul Korkmaz∗, Mathieu Faverge∗, Grégoire Pichon† and Pierre Ramet∗
∗Inria Bordeaux - Sud-Ouest, Bordeaux INP, CNRS, University of Bordeaux

{esragul.korkmaz | mathieu.faverge | pierre.ramet}@inria.fr
†Univ Lyon, EnsL, UCBL, CNRS, Inria, LIP

gregoire.pichon@inria.fr

Abstract—Low-rank compression techniques are very promis-
ing for reducing memory footprint and execution time on a large
spectrum of linear solvers. Sparse direct supernodal approaches
are one of these techniques. However, despite providing a very
good scalability and reducing the memory footprint, they suffer
from an important flops overhead in their unstructured low-rank
updates. As a consequence, the execution time is not improved
as expected.

In this paper, we study a solution to improve low-rank
compression techniques in sparse supernodal solvers. The pro-
posed method tackles the overprice of the low-rank updates by
identifying the blocks that have poor compression rates. We
show that the fill-in levels of the graph based block incomplete
LU factorization can be used in a new context to identify most
of these non-compressible blocks at low cost. This identification
enables to postpone the low-rank compression step to trade small
extra memory consumption for a better time to solution. The
solution is validated within the PASTIX library with a large set
of application matrices. It demonstrates sequential and multi-
threaded speedup up to 8.5×, for small memory overhead of less
than 1.49× with respect to the original version.

Index Terms—sparse direct solvers, low-rank compression,
ILU factorization

I. INTRODUCTION

In many engineering and scientific applications, solving a
large sparse linear system of the form Ax = b is a mandatory
but very time consuming step. Among the many various
approaches to solve these systems, sparse direct solvers [1]
are a robust and widely used solution. However, they are
known to be both time and memory consuming. Recent
studies tackle these issues by experimenting different data-
sparse compression schemes trading a controlled precision
loss for better memory and computation complexities. These
techniques include but are not limited to (Multilevel-)Block
Low-Rank format (BLR) [2], [3], [4], H-Matrices [5], [6],
H2 [7], Hierarchical Off-Diagonal Low-Rank (HODLR) [8],
[9] or Hierarchically Semi-Separable (HSS) [10], [11]. These
techniques can be classified into two categories. The first one
considers the full problem and extracts the sparsity of the
matrix from the low-rank representation. The second solution
exploits the existing sparsity of the matrix structure and
compresses the blocks that compose it independently. This
paper focuses on the latter. More specifically, it targets block
low-rank methods (BLR).

In this context, as in other linear algebra solvers, one
of the most important operation is the block update. When
using regular block sizes, as in dense or sparse multifrontal
solvers, the cost of the low-rank update is usually small with
respect to the full-rank version. On the other hand, when
various block sizes are involved, as in sparse supernodal
solvers, the cost of the low-rank update depends on the largest
block involved. Therefore, the update operation may become
more expensive than the full-rank one. However, supernodal
approaches provide more parallelism and have less memory
overhead than multifrontal methods. As a consequence, in this
paper, we propose to improve supernodal methods by trading a
small memory overhead for lower flops count and better time
to solution. For that purpose, we implement our solution in
the sparse direct solver PASTIX [12], [4], which supports the
BLR compression scheme.

The PASTIX solver offers two opposite strategies: favor
memory peak reduction over time to solution (Minimal Mem-
ory), or prefer time to solution by delaying the data com-
pression (Just-In-Time). The former suffers from the costly
update operations, while the latter avoids it without reducing
the memory consumption compared to the full-rank solver.
Identifying the potential compressibility of each block is a
key problem to benefit from both strategies. In this work, we
propose a new technique based on incomplete factorization to
define levels of admissibility (compressibility) for the blocks.

The incomplete LU (ILU) factorization is a well-known
method to get a general preconditioner for the iterative solvers.
The idea of incomplete factorization relies on dropping some
entries with a given criterion. Among the many existing
criteria, the most used are the fill-in levels heuristic [13], which
is a graph based solution, and the threshold heuristic, which
relies on the numerical values [14]. Block versions of these
algorithms have also been developed to increase efficiency
and parallelism and are still widely studied [15], [16], [17].
In this paper, we propose to exploit the block fill-in levels
heuristic to provide an intermediate solution that exploits
strengths of both Minimal Memory and Just-In-Time strategies
by delaying the compression on blocks that may have higher
ranks. The algorithm is applied during the preprocessing stage
and provides a trade-off between memory and flops. We
show that this solution, while targeting the Minimal Memory
strategy, also improves the Just-In-Time solution in terms of

both memory and time. Moreover, by exploiting the benefits
of the two strategies, the new heuristic allows the user to
tune the fill-in level criterion according to his specific time
and memory needs. Accuracy of the PASTIX block low-rank
factorization has been studied in [4], [12] and is out-of-scope
of this paper. The proposed approach does not impact the
precision, and leads to accuracy results similar to those of
Minimal Memory and Just-In-Time strategies. It is important
to emphasize that the heuristic presented in this paper aims to
improve the number of flops and the time to solution within
the parallel framework of the supernodal sparse direct solver
PASTIX, while keeping the memory usage at a reasonable
level.

Section II sets the basis of this work by giving back-
ground information on the BLR implementation within the
PASTIX solver and its limitations, as well as introducing
the block ILU factorization. Section III presents the related
work. Section IV details the new heuristic, which defines the
non-compressible blocks to exploit the existing compression
strategies in PASTIX. Section V analyses experiments on a
large set of matrices. Finally, Section VI concludes on the
results of this work and its perspectives.

II. BACKGROUND

This section provides background details on the PASTIX
solver and its BLR implementation and recalls the general
idea behind incomplete LU factorization.

A. Sparse supernodal direct solver using BLR compression

Sparse direct solvers generally follow four steps: 1) order
the unknowns to reduce the fill-in that occurs during fac-
torization; 2) perform a block-wise symbolic factorization to
compute the structure of the final factorized matrix; 3) com-
pute the actual numerical factorization based on the structure
resulting from step 2; and 4) solve the triangular systems. In
the remainder of the paper, we will focus only on the numerical
factorization (step 3) and the matrix values initialization. We
consider that steps 1 and 2 already exhibit a structure with
large enough blocks to take advantage of BLAS Level 3 [18]
operations whenever possible. Step 4 is not influenced by the
work presented in this paper, and is thus not further discussed.

m
M

n

N

(a) Non-fully structured update
(LR2FR)

m
M

n

N

(b) Fully structured update
(LR2LR)

Fig. 1: Representation of the updates, C −= AB, for the Just-
In-Time strategy on the left, and Minimal Memory on the right.
A appears in red, B in blue, C in orange, and the impact of
the contribution AB in purple.

BLR compression scheme has been introduced in the sparse
supernodal solver PASTIX in [12], [4]. As already mentioned,
the solver implements two strategies to target either lower
memory cost (Minimal Memory), or lower time to solution
(Just-In-Time). Both strategies differ depending on the update
kernels, C = C − AB, that are involved in the numerical
factorization. Figure 1 describes both options. On the left, the
non-structured updates (LR2FR) lower the cost of the matrix
product AB thanks to the low-rank representation. However,
the updated C matrix is stored in full-rank to be able to
perform a simple addition of the contribution at a cost of order
mn, with m and n the dimensions of this contribution. On
the right, although the low-rank structured update (LR2LR)
is more complex, the C matrix is stored in low-rank to save
memory. Here, while the contribution (AB) is also computed
at a lower cost, the addition step into C requires a more
complex low-rank to low-rank update with padding (zeroes
are added to match the dimension of C). This update has a
complexity of order MN , with M and N the dimensions of
the updated matrix C. A more detailed complexity analysis is
provided in [4].

The Just-In-Time strategy aims only at reducing the time
to solution by exploiting the LR2FR update kernel. Indeed,
LR2FR relies on high performance matrix-matrix multipli-
cation kernels with smaller sizes than the ones of the full-
rank implementation. On the other hand, the Minimal Memory
strategy compresses the matrix at initialization exploiting the
graph of the matrix to speedup the compression. Blocks of the
factorized matrix which do not hold initial information are null
and thus compressed at no cost. Other initial blocks compres-
sion can also be accelerated by automatically removing null
columns and rows from the graph knowledge. This operation
greatly improves the memory peak of the solver as the
factorized matrix structure is never fully allocated. However,
it forces the numerical factorization to rely on the LR2LR
kernel. This kernel in the context of the supernodal method
generates a flop overhead due to the padding operation. As a
consequence, the factorization time may be highly impacted,
unless the matrix is highly compressible. Thus, deciding which
blocks to compress and when to do it is an important problem
for supernodal solvers to reach good level of performance
while benefiting from the lower memory consumption offered
by low-rank techniques. Note that in sparse direct solvers,
only blocks with sufficiently large sizes are considered to be
admissible for low-rank compression. All small blocks are
automatically defined as non-admissible due to their lower
impact.

To decide which blocks to compress, [19] defined the
admissibility condition. More specifically, the study proposes a
strong and a weak admissibility conditions. The strong admis-
sibility condition relies on the problem geometry and the defi-
nition of the diameter of a set of unknowns (diam(σ)), as well
as the distance between two sets (dist(σ, τ)). The interaction
between two sets of unknowns is then considered admissible
if the distance between the sets is sufficiently larger than
both of the diameters of the sets (max(diam(σ), diam(τ)) ≤

η dist(σ, τ)). The least restrictive strong admissibility criterion
considers that blocks are admissible only if their distance is
larger than 0. Thus, all blocks except close neighbors are
compressible. On the other hand, the weak criterion simply
considers that all non-diagonal blocks are compressible, which
is equivalent to the Minimal Memory strategy. This paper
proposes to generalize the distance criterion used in the strong
admissibility condition by computing algebraic distances of
the blocks without any geometry knowledge requirement. The
distance computation is performed similarly to block-wise ILU
factorization.

B. Incomplete LU factorization

The incomplete LU (ILU) factorization is an approximated
version of the LU factorization, where part of the information
is dropped [20]. It has the form A ≈ LU = LU+R. Here, the
matrix R carries the negative values of the dropped elements.
This method is usually used as a preconditioner for iterative
methods [21].

level 1 level 1

4
3
2
1

1 2 3 4 5

5 3 21 4

5 level 3

Fig. 2: An adjacency matrix (on the left) and its associated
graph (on the right). Fill-in entries that may occur during the
numerical factorization are represented in red (level 1) and
black (level 3).

Multiple dropping heuristics have been studied through the
years targeting either parallelism and efficiency of the imple-
mentation or a good numerical accuracy of the preconditioner.
Among the dropping heuristics, there exist non-numerical
solutions: using the position, or the fill-in levels [13], ILU(k),
and numerical solutions: using a threshold [14] value, ILU(τ).
Through the years, their block-based variant have been studied
to improve their efficiency [15], [16], [17]. While we may
consider low-rank solvers as a solution similar to ILU(τ),
we exploit in this paper the block ILU(k) approach to enrich
the block low-rank solver. The ILU method with the fill-in
levels definition as we use is first suggested in 1981 [22]
and improved by a graph-based definition through fill-path
theorem [23] in [24]. Figure 2 illustrates the idea of the fill-in
levels that is strongly related to the ordering of the unknowns.
On the left, the matrix non-zeroes pattern is represented, where
the blue crosses are the original entries. On the right, the
graph associated to this matrix is shown. During the numerical
factorization, some entries may become non-zeroes (fill-in).
On Figure 2, these entries are represented in red and black,
both on the matrix and as new edges on the graph. We can
define the fill-in level as the length of the path connecting
the two unknowns in the original graph. The path connecting
3 and 5 (and 3 and 4) in red goes only through 1 (resp. 2).
Thus, the level of the fill-in between these two unknowns is

1. We can also see that 4 and 5 are connected at a level
3 (the path goes through 1, 3 and 2). As the fill-in level
gets higher, the value of the new entry becomes smaller
as it represents far interactions in the graph. That is, the
fill-in levels can represent the generalized algebraic distance
in the low-rank strong admissibility condition, without any
knowledge of the geometry. Therefore, the ILU factorization
can be implemented by dropping the values which have higher
fill-in levels than a predefined maximum level. Similarly,
this procedure can be applied in a block-wise fashion. Thus,
considering the block fill-in levels as an admissibility criterion
for low-rank compression, we can algebraically decide on
which blocks the compression should be delayed to reduce
the overhead of the fully structured updates.

III. RELATED WORK

Many recent studies have tackled the problem of reducing
the memory consumption of linear solvers with low-rank
compression.

In [19], the adaptation of hierarchical matrix techniques
issued from the dense community to sparse matrices is studied.
Here, by ignoring some structural zeroes, the opportunity for
further memory savings is missed. Although low-rank updates
are performed similarly to the Minimal Memory strategy,
padding is not used as the zeroes are explicitly stored. This
results in more efficient updates at the cost of a larger memory
consumption.

Low-rank updates in the context of sparse supernodal
solvers have already been studied in [9]. In this work, the
authors considered fixed ranks for the blocks which must be
known in advance. They demonstrated interesting memory
savings, but with a slower factorization than the full-rank
version.

The sparse multifrontal BLR solver MUMPS [25], [26]
implements two close solutions: CUFS (Compress, Update,
Factor, Solve) which is similar to our Minimal Memory sce-
nario, and FCSU which is closer to the Just-In-Time scenario.
However, as it is a multifrontal solver, these strategies are
applied with tiled algorithms on the dense matrices of the
fronts that appear during the factorization. Here, the memory
saving is limited as fronts are allocated in full-rank before
being compressed.

In [27], the preselection problem is approached from a
different angle. The authors exploit performance models of
the update kernel to decide whether or not to delay the
compression of some of the blocks. In this work, this decision
is taken at runtime during the numerical factorization and
requires to generate correct models of the problem.

IV. DECIDING THE NON-COMPRESSIBLE BLOCKS

As mentioned in Section II, the Minimal Memory strategy
suffers from the complexity overhead of the LR2LR update
kernel. We propose to exploit ILU fill-in levels to identify,
at low cost, the blocks with large ranks. These blocks will
increase the cost of the update step while providing only a
small memory reduction. Once identified, it is possible to

postpone the compression of these blocks as late as possible
to replace the LR2LR kernels by LR2FR. This comes at the
cost of a controlled memory overhead if the identification is
correct. In Section II-B, we mentioned that as the ILU fill-
in levels get larger, the magnitude of the entries gets smaller.
Thus, blocks with large level values should have small ranks
and should be kept compressed to save memory, while blocks
with small level values should have high ranks.

Algorithm 1 Cholesky-based ILU fill-in levels initialization

1: for all block Aij in A do
2: lvl(Aij) = (Aij 6= 0) ? 0 :∞
3: end for
4: for all column block A∗k in A do
5: for all block Aik in A∗k do
6: for all block Ajk in A∗k (with j > i) do
7: lvl(Aij) = min(lvl(Aij), lvl(Aik) + lvl(Ajk) + 1)

8: end for
9: end for

10: end for

Algorithm 1 presents the main steps to compute the fill-
in levels of the blocks. This algorithm performs the same
loops as the numerical factorization focusing only on the fill-in
level information and the symbolic structure of the factorized
matrix L. Initially, all blocks are considered with level 0,
if they are part of the original matrix A, or ∞ if they are
created by fill-in (lines 1-3). Then, the main loop updates
the levels according to the formula given in [20], which is
adapted to the block-wise algorithm (Line 7). Note that, as
PASTIX uses the symmetric pattern structure of A + AT

even for LU factorization, Cholesky-based algorithms are
presented. For strongly non-symmetric matrices, the fill-in
levels of the blocks in L and U are computed separately
for better identification. This very cheap algorithm is in fact
fully integrated within the parallel matrix initialization to avoid
an extra loop over the structure, and such that its cost is
completely hidden to the user.

Now that the fill-in levels are computed, the numerical
factorization can be adapted to exploit this information. Al-
gorithm 2 presents the proposed algorithm with a generic
parameter maxlevel, which allows to set the new admissibility
criterion. First, lines 1 − 5 compress the admissible blocks
which have a fill-in level larger than maxlevel. These blocks
have the smallest ranks and are compressed before starting the
numerical factorization loop, which is at lines 6-17. Thus, they
will be involved in LR2LR updates and are the most important
ones to compress to reduce the memory footprint. On the other
hand, the non-admissible blocks will be involved in LR2FR
updates to reduce the flops count overhead while inducing a
small memory overhead. These blocks are still compressed
(lines 9-11), just after the factorization of the diagonal block,
to reduce the cost of the following operations: solve and
updates. In the remainder of the paper, we will refer to this
BLR sparse factorization as ILU(k), with k the maximum
level of the admissibility criterion. Note that choosing the right

Algorithm 2 Cholesky BLR factorization with maxlevel
admissibility

1: for all block Aij in A do
2: if lvl(Aij) > maxlevel then
3: Compress(Aij)
4: end if
5: end for
6: for all column block A∗k in A do
7: Factorize(Akk)
8: for all block Aik in A∗k do
9: if lvl(Aik) <= maxlevel then

10: Compress(Aik)
11: end if
12: Solve(Akk, Aik)
13: for all block Ajk in A∗k (with j <= i) do
14: Update(Aik, Ajk, Aij)
15: end for
16: end for
17: end for

k value for a given problem is important. As a matter of fact,
the larger the number of non-admissible blocks, the higher the
memory overhead.

It is important to observe that ILU(−1) is the Minimal
Memory scenario as all the admissible blocks are compressed
during the initialization. On the opposite, ILU(∞) corre-
sponds to the Just-In-Time scenario as all blocks are com-
pressed only after all the updates were accumulated.

V. EXPERIMENTS

All the experiments are performed through the BLR supern-
odal direct solver PASTIX [4], using the miriel nodes of the
Plafrim1 supercomputer. Each miriel node is equipped with
two INTEL Xeon E5-2680v3 12-cores running at 2.50 GHz
and 128 GB of memory. For the multi-threaded experiments,
we use 24 threads, one per core, with the default scheduler of
the PASTIX library. The INTEL MKL 2020 is used for the
BLAS kernels. The minimum block width and height criteria
to allow compression are set to 128 and 20, respectively. In
the experiments, we use only LDLT and LU factorizations
according to the input matrix features. For the SPD matrices,
we avoid LLT factorization as the positive definite property
can be affected by the compression. In the following sections,
all the experiments are run for a set of 31 real case matrices
taken in the SuiteSparse Matrix Collection [28]. Data reported
in the graphs are only related to the numerical factorization.
The solve step is never considered as it is not impacted by
this new algorithm. Interested reader can find an experimental
backward error study on the Minimal Memory and Just-In-
Time strategies in [12] that shows the numerical stability of
the methods. The times shown are the average of 3 runs on
each matrix.

1e−4 1e−8 1e−12

0 1 2 3 4 5 or more 0 1 2 3 4 5 or more 0 1 2 3 4 5 or more

0.0e+00

5.0e+09

1.0e+10

1.5e+10

ILU levels

To
ta

l s
iz

e
of

 th
e

bl
oc

ks

Admissible − Compression saving Admissible − Non compressible part Non admissible

Fig. 3: Potential memory saving based on the tolerance criterion and fill-in levels. The bars report the cumulative memory
of the 31 matrices. Purple represents the memory consumed by blocks below the size criteria, and red the memory of the
admissible blocks for compression. Light red is the portion that can be saved when compressed.

A. Compressibility statistics

We first want to validate the hypothesis that using the fill-
in levels is a good heuristic to classify the blocks based on
their compressibility ratios. Figure 3 reports the accumulated
memory consumption for all the 31 studied matrices in our
experiments with three different tolerance criteria and by fill-
in levels. The purple bars show the memory consumption
of the structurally non-admissible blocks (too small to be
compressed) and is stable for all precisions. The red part cor-
responds to the admissible blocks. The dark red is the memory
footprint when they are compressed. It naturally increases with
a higher precision. The light red shows the amount of memory
that can be saved by compressing the blocks. One can observe
that the lower the precision requirement, the higher the gain.

These results show that the compression ratio of the ad-
missible blocks increases with the levels. It confirms the
original hypothesis, that fill-in levels can help to better tune
the admissibility criterion in order to save flops for a small
memory overhead. Furthermore, this parameter needs tuning
to adapt to the tolerance. One can see that for a tolerance of
1e−12, only levels greater than 2 offer more than 40% memory
savings, while all levels at 1e−4 reach it. As a consequence,
the fill-in level used to define the admissibility criterion will
need to be adapted to both the tolerance and the maximum
memory overhead defined by the user.

B. Impact of the fill-in level heuristic on the sequential version

This section discusses the sequential experiments. Figure 4
shows the memory peak, factorization flops and factorization
time profiles obtained for different precisions. We study the
impact of the first fill-in levels (0 to 4) with respect to Minimal
Memory (−1) and Just-In-Time (∞). Each curve represents the

1https://www.plafrim.fr

number of matrices within a percentage overhead of the best
solution for each metric and matrix.

First, as expected, the lower the fill-in level chosen for
admissibility, the lower the memory peak of the solver. One
can observe that the impact of the fill-in level increases as the
precision decreases. This confirms the trend already observed
on Figure 3. ILU(∞) consumes up to 6.6 times more memory
at 1e−4, while it drops to 3.4 times at 1e−12. Additionally, at
this high precision, high levels of fill-in are able to reach the
best memory peak. This means that potential flops reduction
is possible without negatively impacting the memory.

Second, when observing the flops count evolution, the
results are naturally reversed. The higher levels of fill-in are
better to generate less flops. One can observe that for low
precision (1e−4), a level of 0 is enough to reach the same
flops count as the Just-In-Time scenario (ILU(∞)). When
increasing the precision, more levels need to be considered
non-admissible to lower the flops count to its minimal value.
Except some corner cases, levels 1 or 2 are enough for 1e−8,
and respectively 3 or 4 for 1e−12.

Finally, the time profiles follow the same trend as the flops
profiles, with larger differences between the ILU(k) methods.
This can be explained by the disparity of the LR2LR and
LR2FR efficiency, as well as their variation in number that
may increase the phenomena already observed on flops. Thus,
one can observe that ILU(0) is the best average solution at
1e−4. It even outperforms the Just-In-Time strategy by a factor
up to 1.4×. To explain this performance, we recall that in
the Just-In-Time strategy, many null-rank blocks are allocated
and later compressed, while in the new ILU(k) heuristic they
may never be allocated. Indeed, they are originally null blocks
and at low precision they may receive only null contributions.
Thanks to these savings, ILU(0) at this tolerance almost dou-

https://www.plafrim.fr

1e-4 1e-8 1e-12
M

em
ory Peak

Flops
Tim

e

2 4 6 8 2 4 6 8 2 4 6 8

0

10

20

30

0

10

20

30

0

10

20

30

Ratio wrt the optimal

N
um

be
r o

f m
at

ric
es

ILU(-1) ILU(0) ILU(1) ILU(2) ILU(3) ILU(4) ILU(∞)

Fig. 4: Memory peak, factorization flops and factorization time profiles with different precisions for sequential runs. Each color
stands for a different ILU(k) level. The x-axis shows percentages with respect to the best method for each metric and matrix,
while y-axis represents the matrix count in accumulated way.

bles the memory footprint in the worst case with respect to the
Minimal Memory strategy, but it remains 0.23× the memory
consumption of the ILU(∞) and the full-rank versions.

The observations in higher precisions are similar to the
lower precision, but with higher fill-in levels. At 1e−8, only the
levels above 1 compete with the Just-In-Time strategy in terms
of time, as well as providing a controlled memory overhead
with respect to the best solution.

At 1e−12, the levels higher than 3 are required to get the
best factorization time, which reduces the gain one can obtain
on the memory footprint. However, solutions with level 1 is
a good compromise at this precision. It is up to 8.5× faster
than ILU(−1), with only up to 1.49× more memory usage.

Figure 5 presents the detailed ratios of the memory peak of
the different levels of admissibility with respect to the full-
rank solution. On the left figure, the matrices are ordered
by families and by increasing memory ratio of ILU(−1) at
a tolerance of 1e−12. As we can observe, the compression
ratio of all matrices varies a lot with the matrices and the
tolerances. It also reflects the fact that increasing the fill-

in level does not necessarily means an extra memory usage
in high precision problems as the dots are merged together.
On the right figure, this trend is summarized with boxplots
representing the average gain. One can observe that the Just-
In-Time (ILU(∞)) strategy has the same memory peak as
the full-rank version, and that the lower the level, the lower
the memory peak. One can also observe that increasing the
level of admissibility at low precision seems to greatly increase
the memory footprint with respect to the best one. However,
the impact remains moderate for high precision and it can be
afforded to highly reduce the time to solution, as observed in
Figure 4.

The summary on the right of Figure 5 confirms the fact
that the memory consumption increases with the higher fill-in
levels and with the higher precision. The results at 1e−12 for
the new heuristic at levels 1 and 2 show interesting results.
As a matter of fact, they provide in average 25% memory
improvement compared to the full-rank version. Note that, at
this precision, even ILU(∞) does not manage to efficiently

Memory Peak

1e-4
1e-8

1e-12

la
p1

20
Bu

m
p_

29
11

Q
ue

en
_4

14
7

St
oc

F-
14

65
Lo

ng
_C

ou
p_

dt
0

C
ub

e_
C

ou
p_

dt
0

at
m

os
m

od
l

at
m

os
m

od
d

at
m

os
m

od
j

Em
ilia

_9
23

C
ur

lC
ur

l_
4

C
ur

lC
ur

l_
3

Fa
ul

t_
63

9
Tr

an
sp

or
t

Se
re

na
M

L_
G

ee
r

PF
lo

w
_7

42
G

eo
_1

43
8

H
oo

k_
14

98
R

M
07

R
bo

ne
01

0
bo

ne
S1

0
au

di
kw

_1
Fl

an
_1

56
5

fe
m

_h
ifr

eq
_c

irc
ui

t
m

at
r5

di
el

Fi
lte

rV
2c

lx
di

el
Fi

lte
rV

3c
lx

in
lin

e_
1

ld
oo

r
3D

sp
ec

tra
lw

av
e2

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

M
em

or
y(

m
et

ho
d)

 /
M

em
or

y(
FR

)

ILU(-1)

ILU(0)

ILU(1)

ILU(2)

ILU(3)

ILU(4)

ILU(∞)

Memory Peak

1e-4
1e-8

1e-12

ILU(-1) ILU(0) ILU(1) ILU(2) ILU(3) ILU(4) ILU(∞)

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00

0.25

0.50

0.75

1.00M
em

or
y(

m
et

ho
d)

 /
M

em
or

y(
FR

)

Fig. 5: Memory peak ratio of the ILU(k) heuristic with respect to full-rank on the 31 test matrices. On the left, the detailed
information is presented for each matrix and precision. On the right, the information is summarized with boxplots showing
minimum, maximum, median, first quartile and third quartile for each fill-in level.

accelerate the full-rank version on the five right-most cases,
which are poorly compressible. On the other matrices, in
addition to this memory saving, levels 1 and 2 are also faster
than the full-rank version.

To conclude, it is difficult to give a single level as the
optimal solution. However, depending on the problem, as well
as the precision and memory restrictions, the level can be
tuned to provide a solution that outperforms the Minimal
Memory strategy in terms of time, for a small controlled
memory overhead. Moreover, it can even have a speedup
compared to the Just-In-Time strategy, while reducing the
memory footprint.

C. Impact of the fill-in level heuristic on the multi-threaded
version

This section presents the results of the previous experiments
in a multi-threaded environment with 24 threads. Figure 6
shows the time profiles of the multi-threaded numerical fac-
torization on the set of 31 matrices. Memory peak and flops
are not reported as they are identical to the sequential ones.

We can observe that the impact of the new heuristic is even
greater in the multi-threaded environment. The shift in the
memory usage induced by the heuristic improves the memory
bandwidth in the multi-threaded context and allows to get
better performance. The ILU(k) heuristic performs better
respectively with a level of 0, 2 and 4, for tolerances of
1e−4, 1e−8, and 1e−12. The proposed solution outperforms
the Just-In-Time strategy as it can be especially seen at 1e−4.

In this parallel context, the large memory reduction improves
the memory contention of the threads, while it merely degrades
the flops count with respect to the ILU(∞). ILU(0), which
initially stores only the blocks of the original matrix A,
clearly outperforms the other versions at low precisions. When
increasing the precision (1e−8 or 1e−12), the extra flops count
for small values of k degrades the performance. However, one
can observe that ILU(2) and ILU(4) (at 1e−8 and 1e−12,
respectively) are good competitors with ILU(∞) in terms of
time, while they still induce memory savings as opposed to
ILU(∞).

To better highlight the high gain obtained with our new
heuristic, we compare it to the full-rank solver and to the
previous low-rank strategies existing in the PASTIX solver.
Figure 7 presents the time profiles of the multi-threaded
numerical factorization with 24 threads on the left, as well as
the memory peak at 1e−8 precision on the right. On Figure 7a,
ILU(best time) refers to the best factorization time obtained
with the new heuristic, where the fill-in level is taken in the
range ILU(0) to ILU(4) included. Similarly, in Figure 7b the
ILU(bestmemory) stands for the best memory consumption
reachable with a fill-in level in the same range. Note that, on
Figure 7b, the memory consumption of the full-rank solver
and the ILU(∞) are mingled, as they are identical. The left
figure shows that the new heuristics is up to 45 times faster
than the full-rank solver, and is up to almost 2 times faster
than the previous fastest implementation ILU(∞) except for

1e-4 1e-8 1e-12
Tim

e

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5
0

10

20

30

Ratio wrt the optimal

N
um

be
r o

f m
at

ric
es

ILU(-1) ILU(0) ILU(1) ILU(2) ILU(3) ILU(4) ILU(∞)

Fig. 6: Time profiles of the multi-threaded runs for different precisions. Each color shows a different ILU(k) level result.

Time

1e-8

1 2 5 10 20 50
0

10

20

30

Ratio wrt the optimal

N
um

be
r o

f m
at

ric
es

ILU(-1) ILU(best time) ILU(∞) Full-Rank

(a) Execution time of ILU(k) heuristic compared to existing
methods, where the level is chosen between 0 and 4 to obtain the
best time.

Memory Peak

1e-8

1 2 3 4 5
0

10

20

30

Ratio wrt the optimal

N
um

be
r o

f m
at

ric
es

ILU(-1) ILU(best memory) ILU(∞) Full-Rank

(b) Memory peak of ILU(k) heuristic compared to existing meth-
ods, where the level is chosen between 0 and 4 to obtain the smallest
memory consumption.

Fig. 7: Best results achievable for time and memory with ILU(k) heuristic, tuning the fill-in level between 0 and 4, at 1e−8

and using 24 threads.

the two CurlCurl matrices which would require higher fill-
in levels to get better performance due to the high ranks of
their contributions.

Overall, the proposed heuristic, if correctly tuned, is the
fastest method for all matrices and outperforms the ILU(∞)
solution while providing an effective memory footprint reduc-
tion. Furthermore, the memory footprint reduction is similar to
the one obtained with the ILU(−1) strategy in two thirds of
the cases (using a fill-in level of 0 in most cases), and reaches
at most a 39% overhead in the last set of matrices. One can
notice that in two cases (the two CurlCurl matrices), the
new heuristic outperforms the ILU(−1) strategy thanks to a
slight change in the order of allocation of the blocks. In these

specific cases, the best memory peak is even obtained with a
fill-in level of 1 that better delayed the workspace allocation
to compress the blocks of the matrix.

D. Study of the Serena matrix in multi-threaded environment

Tolerance ILU(tuned)
1e−4 ILU(0)
1e−6 ILU(2)
1e−8 ILU(2)
1e−10 ILU(4)
1e−12 ILU(4)

TABLE I: Corresponding levels for ILU(tuned) at each
precision.

NbThreads 1e−4 1e−8 1e−12

Full-Rank
ILU(−1) ILU(0) ILU(∞) ILU(−1) ILU(2) ILU(∞) ILU(−1) ILU(4) ILU(∞)

1 26.2 21.1 26.5 330.7 109.7 111.5 1154.9 468.1 446.4 1025.9
4 7.4 (3.5) 6.6 (3.2) 9.7 (2.7) 91.8 (3.6) 32.8 (3.3) 35.7 (3.1) 318.2 (3.6) 129.2 (3.6) 124.7 (3.6) 279.3 (3.7)
6 5.5 (4.8) 4.8 (4.4) 6.8 (3.9) 64.5 (5.1) 24.2 (4.5) 27.6 (4.0) 230.6 (5.0) 92.8 (5.0) 91.7 (4.9) 203.2 (5.0)

12 3.5 (7.5) 2.5 (8.4) 4.7 (5.6) 35.1 (9.4) 13.8 (7.9) 16.7 (6.7) 131.7 (8.8) 52.8 (8.9) 55.4 (8.1) 137.1 (7.5)
24 4.4 (6.0) 2.2 (9.7) 6.4 (4.1) 35.1 (9.4) 11.2 (9.8) 14.4 (7.8) 104.9 (11.0) 37.7 (12.4) 40.3 (11.1) 98.4 (10.4)

TABLE II: Factorization times for the Serena matrix. Speedup with respect to the sequential runs are written inside parentheses.

Serena

1e-41e-61e-81e-101e-12

0

25

50

75

100

Precision

T
im

e
 (

s)

ILU(-1) ILU(tuned) ILU(∞) Full-Rank

Fig. 8: Serena matrix time results of different precisions with
24 threads. The ILU(tuned) corresponds to the smallest level,
which runs faster than ILU(∞).

In this section we focus the study on one of the large
matrices from the collection: the Serena matrix. The size
of the matrix is N = 1391 349 for 32 961 525 of non zeroes
and it requires 28.6 TFlops to be factorized in full-rank,
which makes it a good average test case of the collection.
Figure 8 presents a performance study of different compression
tolerances with 24 threads. The ILU(tuned) corresponds to the
use of levels chosen for each tolerance as reported in Table I.
The full-rank result is shown in the figure as a reference
for the speedup observation. In conclusion, the new heuristic
outperforms the former two solutions on all precisions with
a small fill-in level of 0 to 4, relatively to the precision. As
shown previously, at these levels, this solution even provides
an important memory gain as opposed to the fastest existing
solution ILU(∞).

Table II reports the detailed factorization times of the Serena
matrix with different number of threads and tolerances. The
values inside parentheses present the speedup compared to the
sequential run of each method at the corresponding precision.
The ILU(k) heuristic levels are chosen as in Table I. The level
selection has been limited to the range 0 to 4 to ensure an use-
ful memory saving compared to ILU(∞). That is why, with
a small number of threads at 1e−12, our method cannot run
faster than ILU(∞). However, the ILU(k) heuristic benefits

from a higher scalability, which allows it to quickly outperform
other solutions as the number of threads increases. These
results, while not reported in this article, are similar to the
ones observed on the set of matrices used for the experiments.
To conclude, the ILU(k) heuristic, through correct tuning of
the levels solves the original issue of the flops overhead of
ILU(−1). Furthermore, thanks to its better memory footprint,
it provides a better scalability in parallel environments and
outperforms the original fastest solutions.

VI. CONCLUSION

The behavior of sparse supernodal direct solvers using low-
rank compression highly depends on when the compression
is performed. On one hand, all admissible blocks can be
compressed before the factorization (as it happens with the
Minimal Memory / ILU(−1) strategy). It allows high memory
savings, but in the specific case of supernodal methods, it
induces an expensive flops overhead during the low-rank
updates. On the other hand, admissible blocks can be com-
pressed after they have received all their updates (as for the
Just-In-Time / ILU(∞) strategy). It reduces significantly the
flops count as in dense solvers, and thus the execution time.
However, the memory peak of allocating the matrix L still
exists and it needs to be carefully controlled to delay the
allocation to their first access.

In this paper, we proposed a new heuristic to estimate the
compressibility of each block and constructed an algorithm
that is a compromise between the two strategies mentioned
previously. The new heuristic, named ILU(k), identifies
poorly compressible blocks similarly to the ILU method,
which identifies the most important data. It relies on the block
ILU fill-in levels to define an algebraic distance to compute
low-rank admissibility of the blocks. The purpose of defining
the admissibility is to propose an intermediate solution that
accelerates the Minimal Memory solution, while it slightly
increases the memory consumption. Moreover, it gives the
chance to tune the levels according to the precision, the matrix
properties, and the characteristics of the machine to better
exploit the advantages of both the Minimal Memory and the
Just-In-Time strategies.

The experiments that we conducted on a large set of 31 real
matrices demonstrated that the ILU(k) heuristic manages to
identify efficiently the low-rank blocks. The solution proposed
runs up to 5.2 times faster than Minimal Memory with only
a 1.38 times increase of memory usage for high precision in
both sequential and multi-threaded environments. Moreover,
due to the elimination of the null blocks before the numerical

factorization, the ILU(k) heuristic is also able to run 1.4 times
faster than the Just-In-Time strategy in sequential, with a much
lower memory consumption (0.23 times less). In the multi-
threaded environment, it even goes up to 1.84 times faster and
outperforms it for most of the cases. We showed that through
correctly tuned fill-in levels, the ILU(k) heuristic can be used
as an improved version of the existing strategies. It improves
the numerical factorization in terms of both memory and time,
and it improves the scalability for parallel environments.

Despite the high gain of the ILU(k) heuristic, it remains
difficult to know beforehand which level will provide the best
improvement. Section V has shown that only the first levels are
worth consideration, and that a clear trend appears on the level
to use depending on the tolerance. In future work, we would
like to introduce tuning techniques to automatically infer the
best value of k depending on the given tolerance, as well as
the properties of the machine and the matrix used. An on-
going work study this heuristic in distributed environments
to evaluate its impact on the volume of communication, and
validate the scalability improvement. In addition, we did not
consider GPUs in this paper, as the PASTIX solver does not
provide the adapted GPU kernels for the low-rank updates,
and this will be part of future studies.

ACKNOWLEDGMENTS

This work is supported by the Agence Nationale de la
Recherche, under grant ANR-18-CE46-0006 (SaSHiMi). Ex-
periments presented in this paper were carried out using the
PlaFRIM experimental testbed, supported by Inria, CNRS
(LABRI and IMB), Université de Bordeaux, Bordeaux INP
and Conseil Régional d’Aquitaine (https://www.plafrim.fr/).

REFERENCES

[1] I. S. Duff, A. M. Erisman, and J. K. Reid, “Direct methods for sparse
matrices,” Clarendon Press, 1986.

[2] P. R. Amestoy, C. Ashcraft, O. Boiteau, A. Buttari, J.-Y. L’Excellent, and
C. Weisbecker, “Improving Multifrontal Methods by Means of Block
Low-Rank Representations,” SIAM Journal on Scientific Computing,
vol. 37, no. 3, pp. A1451–A1474, 2015.

[3] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary, “Bridging the
gap between flat and hierarchical low-rank matrix formats: the multilevel
BLR format,” SIAM Journal on Scientific Computing, vol. 41, no. 3, pp.
A1414–A1442, May 2019.

[4] G. Pichon, E. Darve, M. Faverge, P. Ramet, and J. Roman, “Sparse
supernodal solver using block low-rank compression: Design, perfor-
mance and analysis,” International Journal of Computational Science
and Engineering, vol. 27, pp. 255 – 270, Jul. 2018.

[5] W. Hackbusch, “A Sparse Matrix Arithmetic Based on H-Matrices. Part
I: Introduction to H-Matrices,” Computing, vol. 62, no. 2, pp. 89–108,
1999.

[6] B. Lizé, “Résolution directe rapide pour les éléments finis de frontière
en électromagnétisme et acoustique : H-matrices. parallélisme et appli-
cations industrielles.” Ph.D. dissertation, École Doctorale Galilée, Paris,
France, Jun. 2014.

[7] W. Hackbusch and S. Börm, “Data-sparse Approximation by Adaptive
H2-Matrices,” Computing, vol. 69, no. 1, pp. 1–35, 2002.

[8] A. Aminfar and E. Darve, “A fast, memory efficient and robust sparse
preconditioner based on a multifrontal approach with applications to
finite-element matrices,” International Journal for Numerical Methods
in Engineering, vol. 107, no. 6, pp. 520–540, 2016.

[9] J. N. Chadwick and D. S. Bindel, “An Efficient Solver for Sparse Linear
Systems Based on Rank-Structured Cholesky Factorization,” CoRR, vol.
abs/1507.05593, 2015.

[10] P. Ghysels, X. S. Li, F.-H. Rouet, S. Williams, and A. Napov, “An
Efficient Multicore Implementation of a Novel HSS-Structured Multi-
frontal Solver Using Randomized Sampling,” SIAM Journal on Scientific
Computing, vol. 38, no. 5, pp. S358–S384, 2016.

[11] J. L. Xia, “Randomized sparse direct solvers,” SIAM Journal on Matrix
Analysis and Applications, vol. 34, no. 1, pp. 197–227, 2013.

[12] G. Pichon, “On the use of low-rank arithmetic to reduce the complexity
of parallel sparse linear solvers based on direct factorization technique,”
Ph.D. dissertation, Universite de Bordeaux, Bordeaux, France, 2018.

[13] T. A. Davis and I. S. Duff, “An unsymmetric-pattern multifrontal method
for sparse LU factorization,” SIAM Journal on Matrix Analysis and
Applications, vol. 18, no. 1, pp. 140–158, 1997.

[14] G. Karypis and V. Kumar, “Parallel threshold-based ilu factorization,”
proceedings of the IEEE/ACM SC97 Conference, 1997.

[15] A. Gupta, “Enhancing Performance and Robustness of ILU
Preconditioners by Blocking and Selective Transposition,” SIAM
Journal on Scientific Computing, vol. 39, no. 1, pp. A303–A332, 2017.
[Online]. Available: https://doi.org/10.1137/15M1053256

[16] M. Bollhöfer, O. Schenk, and F. Verbosio, “A high performance level-
block approximate LU factorization preconditioner algorithm,” Applied
Numerical Mathematics, vol. 162, 01 2021.

[17] H. Anzt, T. Ribizel, G. Flegar, E. Chow, and J. Dongarra, “ParILUT - a
parallel threshold ILU for GPUs,” in 2019 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). IEEE, 2019, pp. 231–
241.

[18] J. Dongarra, J. Du Croz, S. Hammarling, and I. S. Duff, “A set of level
3 basic linear algebra subprograms,” ACM Trans. Math. Softw., vol. 16,
no. 1, pp. 1–17, 1990.

[19] W. Hackbusch, Hierarchical Matrices: Algorithms and Analysis.
Springer, 12 2015, vol. 49.

[20] Y. Saad, Iterative Methods for Sparse Linear Systems, 2nd ed. USA:
Society for Industrial and Applied Mathematics, 2003.

[21] P. Hénon, P. Ramet, and J. Roman, “On finding approximate supernodes
for an efficient block-ILU(k) factorization,” Parallel Computing, vol. 34,
no. 6, pp. 345–362, 2008, parallel Matrix Algorithms and Applications.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/
S0167819107001330

[22] J. W. Watts, “A conjugate gradient truncated direct method for the
iterative solution of the reservoir simulation pressure equation,” Society
of Petroleum Engineers Journal, vol. 21, pp. 345–353, 1981.

[23] D. J. Rose and R. E. Tarjan, “Algorithmic aspects of vertex elimination
on directed graphs,” SIAM J. Appl. Math., vol. 34, no. 1, pp. 176–197,
Jan. 1978.

[24] D. Hysom and A. Pothen, “A scalable parallel algorithm for incomplete
factor preconditioning,” SIAM J. Sci. Comput., vol. 22, pp. 2194–2215,
2001.

[25] P. R. Amestoy, A. Buttari, J.-Y. L’Excellent, and T. Mary, “On the
complexity of the block low-rank multifrontal factorization,” SIAM
Journal on Scientific Computing, vol. 39, no. 4, pp. 1710–1740, 2017.
[Online]. Available: https://oatao.univ-toulouse.fr/19066/

[26] T. Mary, “Block Low-Rank multifrontal solvers: complexity, per-
formance, and scalability,” Ph.D. dissertation, Toulouse University,
Toulouse, France, Nov. 2017.

[27] L. Marchal, T. Marette, G. Pichon, and F. Vivien, “Trading Performance
for Memory in Sparse Direct Solvers using Low-rank Compression,”
INRIA, Research Report RR-9368, Oct. 2020. [Online]. Available:
https://hal.inria.fr/hal-02976233

[28] T. A. Davis and Y. Hu, “The University of Florida sparse matrix
collection,” ACM Trans. Math. Softw., vol. 38, no. 1, pp. 1:1–1:25, Dec.
2011.

https://www.plafrim.fr/
https://doi.org/10.1137/15M1053256
https://www.sciencedirect.com/science/article/pii/S0167819107001330
https://www.sciencedirect.com/science/article/pii/S0167819107001330
https://oatao.univ-toulouse.fr/19066/
https://hal.inria.fr/hal-02976233

	Introduction
	Background
	Sparse supernodal direct solver using BLR compression
	Incomplete LU factorization

	Related work
	Deciding the Non-Compressible Blocks
	Experiments
	Compressibility statistics
	Impact of the fill-in level heuristic on the sequential version
	Impact of the fill-in level heuristic on the multi-threaded version
	Study of the Serena matrix in multi-threaded environment

	Conclusion
	References

