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Abstract—We propose an iterative training procedure that ap-
proximates multi-stream MIMO eigenmode transmission between
two transceivers equipped with hybrid digital analog antenna
arrays. The procedure is based on a series of alternate (ping
pong) transmissions between the two devices in order to exploit
the reciprocity of the wireless channel. During the ping pong
iterations, the update of the devices’ digital precoders/combiners
is performed based on a QR decomposition of the received
signal matrix. Concurrently, their analog precoders/combiners
are progressively updated by a novel “multi-beam split and
drop with backtracking” mechanism that tracks the channel’s
main spatial components. As shown throughout the paper, the
proposed algorithm converges with only few iterations, has
minimal computational complexity, and performs very closely
to optimal singular value decomposition based precoding with
sufficiently large signal-to-noise ratio.

I. INTRODUCTION

Upcoming wireless communication networks are expected
to provide service to an unprecendently large number of wire-
less devices with peak data rates in the order of tens of Gbps.
The congestion and fragmentation of the traditional spectral
bands below 6GHz has pushed wireless service providers to
explore vacant spectrum at the millimeter-wave (mmWave)
frequency bands (30–300 GHz) in order to fulfill that goal [1].
Nevertheless, the poor reflectivity and high absorption and free
space propagation losses make communicating wirelessly over
such high frequencies a challenging task [2]. Fortunately, this
frequency range will allow for the use of compact and small
antenna arrays with high number of elements, as the physical
size of the array is proportional to the carrier wavelength. The
large beamforming gains that such large-scale arrays enable
will be used to compensate for the above limitations.

However, the high cost, power consumption and complexity
of the mixed signal hardware at mm-wave make having large
antenna arrays with digitally controlled elements infeasible [3].
This has motivated the wireless communication research com-
munity to look at the hybrid digital-analog antenna array
architectures [4]. In such architectures, the large antenna array
is steered using analog phase shifters and only a few digitally
modulated radio-frequency (RF) chains. An illustration of such
an architecture is shown in Fig. 1.

In addition to their cost and implementation advantages,
hybrid array structures entail their own challenges: the low
SNR resulting from high propagation losses, the large dimen-
sionality of the MIMO channel matrix and the presence of
analog processing complicate the acquisition of the channel
state information (CSI) and the computation of the MIMO
precoders and combiners [1], [3]. Luckily, channel measure-
ment campaigns [2] have shown that mm-wave channels are
sparse in the angular domain, which enables the proposal
of CSI acquisition and precoding/combining algorithms that
exploit such property. An example of these are compressed
sensing based approaches such as [3], [5], [6], which are
generally computationally complex and require a large amount
of channel measurements. An alternative are exhaustive and
hierarchical beam-search techniques, which may entail signif-
icant latency and probability of miss detection [7].

In this work, we focus on a beam training strategy based
on alternating transmissions between two transceivers, which
has been coined ping pong beam training (PPBT). The main
idea behind PPBT is to exploit the reciprocity of the MIMO
channel. With appropriate processing at each device, the alter-
nate transmissions implicitly implement an algebraic power
iteration that leads to approximating the top left and right
singular vectors of the MIMO channel matrix. This idea was
first applied in the digital arrays context for single stream
wireless communications in [8], [9], and was extended to
multi stream setups in [10], to large antenna array and
frequency selective systems in [11] and to noisy MIMO
channels in [12]. More recently, similar approaches have been
proposed in the context of mmWave communications with
hybrid digital-analog antenna arrays, which we review next.
In [13], the basic ping pong beam training method for single-
stream MIMO transmission was adapted to the hybrid array
architecture with the inclusion of a “beam split-and-drop”
procedure for the setting of analog precoders. The subspace
estimation and decomposition method in [14] proposes a ping
pong based algorithm that iteratively estimates the channel’s
right and left eigenvectors using a Krylov subspace estimation
method. This algorithm is based on exhaustive measurements
with a large set of different analog precoders, which are then
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Fig. 1: Structure of the transceivers

linearly combined in order to cancel the effect of the analog
precoders. It therefore requires significant amount of trans-
missions, which imply large signalling overhead and latency.
Lastly, the power iteration based training method introduced
in [15] is a technique that extends the solution proposed
in [10] to the multi stream case, where the digital precoders
are set based on an algebraic power iteration technique, while
the analog precoders update is done based on a compressed
sensing technique called simultaneous orthogonal matching
pursuit [16].

Compared to the above approaches, we propose in this
article a strategy that sets the digital and analog precoders
of the devices in a way to approximate the top NS left and
right singular vectors of the channel matrix, with NS being
the desired number of spatial streams. Our new technique,
which we dub “hybrid ping pong multi beam training“
(Hybrid PPMBT) extends the work done in [13] to the multi
stream case. It adapts the PPBT strategy to hybrid arrays by
progressively choosing the analog precoders at each device
from a predefined hierarchical codebook. After one round-trip
transmission, a novel ”multi beam split and drop strategy with
backtracking” is applied to focus the analog precoders towards
the spatial directions that are most likely containing the
channel’s top NS multipath components. The digital precoders
are updated via an orthogonal decomposition operation on the
received signal as described in [10]. In comparison to the
approaches in [14] and [15], Hybrid PPMBT is much simpler
from a computational complexity aspect and has a low training
overhead as it requires significantly fewer transmissions. Sim-
ulation results show that our proposed scheme performs very
well in retrieving the wanted NS channel’s top eigenmodes
for sufficiently large signal-to-noise ratio, both in terms of
accuracy and convergence speed.

II. SYSTEM MODEL

We consider a system in which two hybrid analog digital
transceivers A and B, equipped with uniform linear arrays
(ULA) composed of NA and NB antenna elements. Such
elements are separated with a distance d = λ/2, where λ is
the wavelength of interest. The two devices control digitally
their arrays with NRF

A and NRF
B RF chains respectively and

exchange data over a reciprocal wireless MIMO channel using
NS parallel data streams. The channel from device A to

device B is considered to be static and narrowband and is
modeled according to the finite scatterer channel model with
L propagation paths [13], [17], as

H =

√
NANB
L

L∑
l=1

αlaB(ΩB,l)a
H
A(ΩA,l), (1)

here, H ∈ CNB×NA , L is the number of multipath com-
ponents (MPC), αl is the complex fading channel gain for
MPC l, ΩA,l = 2π

λ d cosφA,l and ΩB,l = 2π
λ d cosφB,l

are the directional cosines corresponding to the lth MPC
at arrays A and B respectively, where φA,l, φB,l are the
angles of incidence of that same path, and aA and aB
are the array response vectors at device A and B respec-
tively. The αl are modeled as independent, standard com-
plex gaussian variables, the φA,l and φB,l as uniformly dis-
tributed in the range [0, 2π) radians and the array responses
as aA(ΩA,l) = [1, e−jΩA,l , . . . , e−j(NA−1)ΩA,l ]T/

√
NA and

aB(ΩB,l) = [1, e−jΩB,l , . . . , e−j(NB−1)ΩB,l ]T/
√
NB .

In order to establish the wireless link with device B, device
A (we assume, without loss of generality, that device A is
performing the first transmission) transmits T , an NS × NS
orthogonal training sequence i.e TT H = INS

. Upon reception,
device B cancels the training sequence effect by multiplying
its received digital signal by TH . The resulting signal can be
expressed as:

YB = F H
BHFAWA + F H

BNB , (2)
where FA ∈ CNA×NRF

A and FB ∈ CNB×NRF
B contain the

states of the analog precoder and combiner of transceivers
A and B, WA ∈ CNRF

A ×NS denotes the digital precoder of
transceiver A and NB ∈ CNB×NS is a complex, circularly-
symmetric additive white gaussian noise matrix, obtained after
training sequence removal and with i.i.d elements, each with
variance σ2. Transmissions from device B to device A are
modeled analogously as

YA = F H
AH

HFBWB + F H
ANA, (3)

where WB ∈ CNRF
B ×NS and NA ∈ CNA×NS are defined

similar to the above.

III. HYBRID PING PONG MULTI BEAM TRAINING :
HYBRID PPMBT

Given the signal model in (2) and (3), the beamforming task
consists of selecting the set of analog and digital precoders and
combiners that maximize the spectral efficiency over a given
channel matrix H . For transmission from device A to B, and
assuming unit transmit power equally allocated across the NS
streams, the spectral efficiency reads

R = log2 det
(
INS

+
R−1

NB

NS
HeH

H
e

)
, (4)

where RNB
= σ2W H

BF
H
BFBWB is the noise covari-

ance matrix after receive combining at device B, He =
W H

BF
H
BHFAWA is the equivalent channel after precoding

and combining at both devices. An analogous expression
applies for transmission from device B to device A.

The optimal precoders maximizing (4) are known to be the
NS top right and left singular vectors of H . However, the
hybrid structure of the antenna array makes the computation



of such precoders challenging. On the one hand, as digital
measurements of the channel are only obtained after analog
precoding and combining, estimating the full channel matrix
H in order to obtain its singular value decomposition requires
a large number of measurements and hence large overhead
and latency [14]. On the other hand, even if the channel
matrix H can be estimated, the precoders have to be built
as the product of the analog precoding matrix FA and the
digital precoding matrix WA. While the elements of WA can
take any complex value due to its digital implementation, the
operation modeled by FA is implemented via phase shifters
and combiners, which restricts the values it can take. In
this work, we restrict the entries of FA to satisfy |(FA)l,i|1
∈ { 1

M
(i)
A

; 0}, where M
(i)
A being the number of activated

array elements in the ith column of FA, and the option
(FA)l,i = 0 accounts for the option of leaving some elements
of the array unused. In addition, a transmit power constraint is
enforced such that ‖FAWA‖F = 1.2 With these constraints,
finding the combination of digital and analog precoders to
best approximate the channel’s singular vectors becomes a
computationally intensive optimization problem [5].

To overcome such difficulties, we propose an iterative multi
beam training scheme based on alternate transmissions be-
tween the two devices, this procedure estimates progressively
and simultaneously the top NS right and left singular vectors
of H and sets the digital and analog precoders so that they
approach those singular vectors. It consists of two parts: 1) a
”backtracking beam split and drop” approach to select the
analog precoders FA and FB from a predefined multi level
codebook, 2) a method to select the digital precoders WA and
WB inspired by the QR decomposition algorithm described
in [10].

We will proceed by reviewing the beam training procedure
for digital antenna arrays proposed in [10], then briefly present
the multi level codebook that is used for the analog precoder
update, and finally explain our multi beam training solution.

A. Ping-Pong Multi Beam Training with Digital Antenna
Arrays: Digital PPMBT

We review the digital PPBT algorithm over a narrowband
reciprocal channel H as described in [10]. We consider two
devices A and B equipped with digitally controlled antenna
arrays with NA and NB elements respectively. At the initial
(0th) iteration, the process starts with a random initialization
of the precoder at device A, W

[0]
A . A uses then this initial

precoder to transmit a training sequence to B. Upon reception
and training sequence removal, device A gets an estimate of
HW

[0]
A , makes a QR-decomposition on it, and uses the Q

part of that decomposition as its precoder W
[0]
B . It then uses

that precoder to transmit a training sequence back to device A,
who will repeat the same operations. This process is reiterated
until convergence, at which, device A gets an estimate of the

1(FA)l,i is the entry of the matrix FA belonging to its lth row and ith
column.

2Obviously, the same constraints apply to the analog precoder of device B.

top NS right singular vectors of H and device B gets an
estimate of the top NS right singular vectors of HH. Further
details on this procedure can be found in [10].

Algorithm 1 Ping Pong Multi Beam Training with Hybrid
Arrays

1: Initialize:

F
[0]
A ←

[
ϕ

(1)
A,0,ϕ

(1)
A,1, . . . ,ϕ

(1)

A,M
(1)
A

−1

]
,

F
[0]
B ←

[
ϕ

(1)
B,0,ϕ

(1)
B,1, . . . ,ϕ

(1)

B,M
(1)
B

−1

]
,

Initialize W
[0]
A to an orthogonal matrix of its size.

for s = 1 : NS do

W
[0]
A (:, s)← W

[0]
A

(:,s)√
NS

∥∥∥F [0]
A

W
[0]
A

(:,s)
∥∥∥
2

end for
{pA,kA, iA} ← {[], [], []}, {pB ,kB , iB} ← {[], [], []}.

2: A transmits, B receives: Y [0]
B =(F [0]

B )HHF
[0]
A W

[0]
A +(F [0]

B )HN
[0]
B

3: [Q,R]← qr(Y
[0]
B )

4: for s = 1 : NS do
5: W

[0]
B (:, s)← Q(:, s)

6: W
[0]
B (:, s)← W

[0]
B

(:,s)√
NS

∥∥∥F [0]
B

W
[0]
B

(:,s)
∥∥∥
2

7: end for
8: t← 1
9: loop

10: B transmits,
11: A receives Y [t]

A =(F [t−1]
A )HHHF

[t−1]
B W

[t−1]
B +(F [t−1]

A )HN
[t]
A

12: [Q,R]← qr(Y
[t]
A )

13: for s = 1 : NS do
14: W

[t]
A (:, s)← Q(:, s)

15: W
[t]
A (:, s)← W

[t]
A

(:,s)√
NS

∥∥∥F [t−1]
A

W
[t]
A

(:,s)
∥∥∥
2

16: end for
17: [F

[t]
B , {pB ,kB , iB}] ←

UPD.AN.PR(F
[t−1]
B ,W

[t−1]
B , CB , {pB ,kB , iB})

18: A transmits,
19: B receives: Y [t]

B =(F [t]
B )HHF

[t−1]
A W

[t]
A +(F [t]

B )HN
[t]
B

20: [Q,R]← qr(Y
[t]
B )

21: for s = 1 : NS do
22: W

[t]
B (:, s)← Q(:, s)

23: W
[t]
B (:, s)← W

[t]
B

(:,s)√
NS

∥∥∥F [t]
B

W
[t]
B

(:,s)
∥∥∥
2

24: end for
25: [F

[t]
A , {pA,kA, iA}] ←

UPD.AN.PR(F
[t−1]
A ,W

[t]
A , CA, {pA,kA, iA})

26: t← t+ 1
27: end loop

B. Analog Precoder Multi Level Codebook

We illustrate here the codebook definition for transceiver
A (an analogous codebook is used for the transceiver
B). We consider a codebook CA which is composed
of LA= log2 (NA/N

RF
A )+13 levels. For the kth level,

we define a subcodebook C(k)
A ={ϕ(k)

A,i, i=0, 1, . . . ,M
(k)
A -1}

consisting of M (k)
A =NRF

A 2k-1 column vectors, k=1, 2, . . . , LA.
Each of the elements of the subcodebook is defined as

3For the considered codebook design we constrain NA and NRF
A to be

both integer powers of two.



ϕ
(k)
A,i=

[
1, e-jψ(k)

A,i , . . . , e-j(M(k)
A -1)ψ

(k)
A,i ,0T

NA-M(k)
A

]T

/

√
M

(k)
A ,

where ψ(k)
A,i=π-π(2i+1)/M

(k)
A is the directional cosine of the

ith vector at the kth level (ϕ(k)
A,i steers the array in the direction

θ
(k)
A,i= arccosψ

(k)
A,i/π, with a lobe whose width decreases with

the codebook level k), and 0N is the N -dimensional column
zero vector. Further details about the codebook used here can
be found in [13].

C. Ping Pong Multi Beam Training with Hybrid Antenna
Arrays : Hybrid PPMBT

The proposed algorithm for beam training with hybrid
arrays is described in pseudocode. Algorithm 1 presents the
overall training scheme, while Algorithm 2 describes the
subroutine used to update the analog precoding matrices.

1) Initialization: First, the digital and analog precoders
are initialized. FA and FB are initialized to C(1)

A and C(1)
B

respectively, while WA is initialized to a random unitary
matrix. The columns of WA are then normalized to fulfill the
transmit power constraint of the effective precoder FAWA.
Finally, a set of empty arrays, {pB ,kB , iB}, are created.
Those arrays will store the needed information to perform the
analog precoder updates, as explained below.

2) Ping Pong Iterations: After the initialization phase,
a sequence of alternate pilot transmissions starts between the
two devices. The baseband precoders are updated after each
reception step by means of a QR-decomposition, followed
by a normalization step. These two operations are detailed
in lines 3-7, 12-16 and 20-24 in Algorithm. 1. Immediately
after updating their baseband precoders upon reception of
a transmission, the devices transmit back with the updated
digital precoders and the same analog precoder as used for
reception. Only after the transmission has been made will
the transmitting device update its analog precoders (using
Algorithm 2), such that next reception is done with the updated
setting. This allows for the QR based iteration to converge,
as each reception-transmission cycle is performed over a static
setting of the analog precoders.

3) Update of Analog Precoders: The devices invoke
the routine outlined in Algorithm 2 to update their analog
precoder state. This routine bases its update on the current
state of the device’s RF precoder F , its codebook C and on the
update history of its baseband precoder W . Using all previous
updates of W allows for backtracking–i.e, correcting for
wrong RF precoder updates. The routine works as follows:

a) Three sequences of values are generated: kn stores the
level of the codebook of the nth column of F , pn stores
the squared norm of the nth row of W , i.e the aggregate
energy received on it, and in stores the index of the nth
column of F , out of the level of the codebook to which
that column belongs.

b) The sequences generated above will be used to update
three vectors: kn will be appended to k, with k being
an array storing the codebook levels of the columns of
F used over consecutive ping-pong iterations. pn will

be appended to p, with p being an array storing the
received energy over the different spatial directions set
by the analog beamformer F . in will be appended to i
in a similar manner to the above.

c) Once p is updated, it will be sorted in a descending
manner and the resulting sorted indices will be stored
in pI . This newly formed array will be used to find
the entries of p that are most likely to direct the analog
precoders where the MPCs of H are.

d) Two new vectors are built: bI contains the K first indexes
of pI i.e it identifies the beams that are most aligned
with the channel’s MPCs (K is the length of bI , which
can be derived from lines 9-13). bL is a vector that is
made of 1’s and 2’s. The ith entry of bL is set to 2
when the precoder corresponding to the ith entry of bI
is replaced with the two precoders belonging to one step
higher level of the codebook and that have their beams
covering together its same spatial area, otherwise it is
set to 1. Deciding to append 1 or 2 to bL depends on
whether we already consumed all columns of F and on
whether the element of pI in question belong to the last
level of the codebook or not (see lines 17-21). Line 8 of
the algorithm erases the measurement stored over a beam
that is selected to be included in the analog precoding
matrix, either directly or after splitting it into two beams
of the immediately higher level. As new measurements
will be obtained over that beam in the next iteration, the
old measurement is deleted to avoid unnecessarily coming
back to the previous configuration corresponding to that

Algorithm 2 Analog Precoder Update

1: function UPD.AN.PR(F , W , C, {p,k,i})
2: Generate : kn, in, pn, n=1, . . . , NRF , where kn will store

the codebook level to which the F
′s nth column belongs, in

will store its index out of that level and pn will store the norm
of the nth row of W , i.e the aggregate energy received on it.

3: p ← [p, p1, . . . , pNRF ], k ← [k, k1, . . . , kNRF ], i ←
[i, i1, . . . , iNRF ]

4: Sort p in a descending manner and store the result in pS ,
then store the arrangement of the elements of p into pS in pI .

5: bI ← [], bL ← []
6: while n ≤ NRF do
7: bI ← [bI , pI,n], pI,n is the nth element of pI ,
8: ppI,n ← 0, ppI,n is the pI,nth element of p,
9: if kpI,n= log2(

N
NRF )+1 or n=NRF -1 then

10: n← n+ 1, bL ← [bL, 1]
11: else
12: n← n+ 2, bL ← [bL, 2]
13: end if
14: end while
15: for t = 1 : Length(bI) do
16: m← bL,t

17: if m = 2 then
18: F ← [F ,ϕ

(km+1)
2im

,ϕ
(km+1)
2im+1 ]

19: else
20: F ← [F ,ϕ

(km)
im

]
21: end if
22: end for
23: return {F ; {p,k, i}}
24: end function



old measurement.
e) Finally, the RF precoder columns are updated (lines

15-22).
We dub the above procedure for updating the analog precoders
“beam split and drop with backtracking”, owing to the way it
operates. At each iteration, a decision is made as to whether
a given beam is split –i.e replaced by two more directive
beams– or dropped –i.e. removed from the precoding matrix.
The backtracking feature refers to the fact that, via the vector
p, the measurements obtained in prior ping-pong iterations are
kept in memory, allowing for returning to lower level beams
in the codebook in the cases where noise leads to erroneous
decisions in the the split-and-drop procedure.

IV. NUMERICAL RESULTS

In order to assess the effectiveness of the proposed al-
gorithm, we perform Monte Carlo simulations for multiple
configurations of the hybrid arrays at devices A and B. The
channel matrix H follows the model in (1). The average SNR
for the sth stream link between the nth element of the array at
device B and the mth element of the array at A is defined as
ρ=E{|Hnm|2}/E{|Nns|2}=1/σ2, where Nns is the nth entry
of the sth column of the noise matrix N . We assume here for
simplicity that the SNR ρ is the same for all streams. Hnm is
the channel coefficient between device B’s nth array element
and device A’s mth array element, and E{} is the expectation
operator.

We measure the performance with the av-
erage spectral efficiency per bits/s/Hz, ex-

pressed with log2

( ∣∣∣INS
+R−1

N

NS
HeH

H
e

∣∣∣ ), where

He=(F
[n−1]
B W

[n−1]
B )HHF

[n−1]
A W

[n]
A and

RN=σ2(F
[n−1]
B W

[n−1]
B )HF

[n−1]
B W

[n−1]
B for integer it-

eration n, and He=(F
[n]
B W

[n]
B )HHF

[n−1]
A W

[n]
A and

RN=σ2(F
[n]
B W

[n]
B )HF

[n]
B W

[n]
B for half iteration n+0.5.

We benchmark the performance of the hybrid PPMBT
against the performance of the digital ping pong multi stream
beam training method (digital PPMBT) described in [10], for
which the spectral efficiency is calculated in a similar manner
to that of the hybrid PPMBT. We compare it also with the
optimal unconstrained SVD based precoder, which maximize
the spectral efficiency and which is obtained by using the top
NS left and right singular vectors of H . Note that the SVD
based precoder derivation requires full channel knowledge at
both devices, an information that is hard to get when hybrid
architectures are used as explained earlier, and which our
proposed scheme does not need at the start, but rather learns
while setting the precoders.

We start our evaluation in the high SNR regime (ρ=30dB),
in which the training process will not be impaired too much by
noise. This allows assessing how the arrays size, the number
RF chains and the number of spatial streams really affect the
algorithm’s performance.

Fig. 2 depicts the algorithm’s performance over a channel
with 8 multipath components, when the two devices are
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Fig. 2: Spectral Efficiency (bits/s/Hz) attained by the algorithm
over PP Iterations. Devices A and B are equipped with a
hybrid array. NRF

A =NRF
B = 8, NS=4, L=8, ρ=30dB.

equipped with identical arrays made of NA=NB=32, 128 or
1024 elements and a fixed number of RF chains NRF

A =NRF
B =8

and try to establish an NS=4 streams MIMO communication.
We see that the algorithm reaches, in very few iterations, for
small, medium and large sized arrays, to about 1 to 2 bits/s/Hz
of the digital PPMBT and SVD based precoding schemes
performances. We also see that the convergence speed (in
terms of PP iterations) scales inversely to the codebook depth
for each of the topologies: the convergence is slower when
large arrays are used because, in such cases, the codebook has
more levels and its few last levels contain a high number of
beamformers with very narrow beams. The selection of such
directive beams is more prone to error than those in codebooks
with lower resolution. Although the backtracking mechanism
can correct for the errors made, this comes at the expense of a
larger number of iterations needed for convergence. Note that
the number of PP iterations needed for convergence for all
topologies is still much below what is needed for exhaustive
search: this latter requires as an example, for NA=NB=1024
with NRF

A =NRF
B =8, NA/NRF

A =NB/NRF
B =128 PP iterations

to find the best beams, compared with only 16 for our
algorithm.

Fig. 3 shows the algorithm’s performance over the same
channel as the one used in Fig. 2, but with the number of
MIMO streams, NS , taking different values (4, 6 and 8) and
the two devices being equipped with identical arrays made of
NA=NB=128 elements and use 8 RF chains each. The purpose
of these simulations is to investigate how does the ratio of
the number of MIMO streams to the number of RF chains
NS/NRF affect the algorithm’s performance. We can clearly
see that the algorithm behaves in three different ways depend-
ing on the aforementioned ratio: 1) When NS ≤ NRF /2, the
convergence is very quick and no backtracking is performed.
2) When NRF /2 < NS < NRF , the algorithm’s convergence
is slowed down and one observes some irregularity of the
convergence behavior over iterations which is due to the
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Fig. 3: Spectral Efficiency (bits/s/Hz) attained by the al-
gorithm over PP Iterations for different NS values. De-
vices A and B are equipped with a hybrid array.
NA=NB=128, NRF

A =NRF
B =8, L=8, ρ=30dB.

backtracking mechanism. 3) When NRF = NS , the algorithm
fails to provide acceptable performance.

Next, in Fig. 4, we fix the size of antenna arrays and
number of RF chains used at both devices to NA=NB=64
and NRF

A =NRF
B =8, and evaluate the algorithm’s performance

over a channel with L = 7 multipath components at different
SNR values. In Fig. 4a, we show the algorithm’s performance
against SNR after training convergence for different NS val-
ues. The results show that the number of streams that the
training algorithm can handle efficiently grows with SNR,
as is to be expected. At low SNR regimes (−15 to 0 dB)
the algorithm works better when it attempts to estimate only
the dominant singular vector of the channel; if more singular
vectors are estimated, the large estimation error degrades the
overall spectral efficiency of the system. As the SNR grows,
an increasing number of singular vectors can be accurately
estimated by the algorithm and, hence, increasing the number
of streams provides significant spectral efficiency gains. For
all cases, we observe that the performance of the Hybrid
PPMBT is very close to that of the fully-digital counterpart,
and approaches the SVD precoding performance as the SNR
grows. In Fig. 4b the convergence behavior of the training
algorithm with different NS settings is evaluated at their re-
spective SNR values of interest. We observe that the method’s
spectral efficiency tends to saturate at around 10 ping pong
iterations for moderate and high SNR. Convergence for lower
SNR values is, however, slower. We attribute this effect to
the fact that the large noise power induces numerous incorrect
beam selection errors in the updates of the analog precoder;
although the backtracking feature of the algorithm can help
correct some of them, the price to pay is a longer training
time. In any case, we remark that the algorithm reaches about
70% of the spectral efficiency obtained at convergence within
the first 6 iterations, regardless of the SNR value and number
of spatial streams.
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Fig. 4: Spectral Efficiency (bits/s/Hz) attained by the al-
gorithm over PP Iterations for different NS values. De-
vices A and B are equipped with a hybrid array.
NA=NB=64, NRF

A =NRF
B =8, L=7. (a):Spectral Efficiency over

SNR, (b): Spectral Efficiency over PP Iterations

To conclude, we evaluate our proposed training procedure in
a system in which only one of the devices is equipped with a
large, hybrid array (NA=256, NRF

A =16), while the other has
a digitally-controlled array of moderate size (NB=4). Such
topologies can be seen as massive MIMO systems operating
at microwave frequencies. In addition, to reflect the richer
scattering experienced in such frequency bands [18], we adopt
the following channel model:

H=
√
NANB
L

ABΛAH
A (5)

where AA contains in its columns the steering vectors
aA(ΩA,p), p=1, 2, . . . , P , AB is defined analogously, L is
again the number of multipath components, and Λ is a L×L
matrix with i.i.d. standard complex Gaussian entries. This
setting will allow to test the validity of our approach in
channels with richer scattering and its robustness against the
sparse assumption of the channel.
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Fig. 5: Spectral Efficiency (bits/s/Hz) attained by the al-
gorithm over PP Iterations. Device A is equipped with a
hybrid array and device B has a full digital architecture.
NA=128, NB=4, NRF

A =16, NS=4, L=40.

Fig. 5 shows the algorithm’s performance over a rich scat-
tering channel (L=40) when NA=128, NRF

A =16, NB=NS=4.
It can be seen that the proposed scheme performs remarkably
well and very close to the full digital and optimal SVD based
precoder solutions at low, mid and high SNRs. These results
show that, although the algorithm was originally designed to
exploit the sparse nature of mmWave channels, it is robust to
channels with richer scattering.

V. CONCLUSION

We proposed a method to derive precoders and combin-
ers for multi-stream MIMO transmission between two de-
vices equipped with hybrid digital-analog antenna arrays.
The method relies on a low-complexity “multi-beam split
and drop with backtracking” procedure to update the analog
precoders, while digital precoders are computed with the QR-
decomposition based method in [10]. For sufficiently large
SNR, the resulting precoders approximate well the uncon-
strained SVD-based precoders, as our numerical assessment
shows. We envision that the proposed algorithm can be espe-
cially useful in mmWave communication systems.

Compared to the state-of-art methods, our approach offers
the advantage of computational simplicity while achieving
high-spectral efficiency with moderate training overhead. The
numerical results show that the method achieves conver-
gence within NRF (log2(N/NRF )+1) ping pong iterations
in the low SNR regime and log2(N/NRF )+1 iterations in
the mid and high SNR regime, assuming both transceivers
are equipped with arrays made of N elements and NRF

RF chains. Although the method was developed with sparse
channels in mind, the performance assessment shows that it is
robust against this assumption and also performs well in rich
scattering channels.

Also, in order to further reduce the training overhead, the
proposed scheme can be interleaved with transmission of

payload with increasing data-rate. This, the extension to multi-
user environments and to time varying channels will be the
subject of our future work.
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