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Abstract—In 5G networks, Mobile Edge Computing (MEC)
has been proposed to enable computation and storage capabilities
at the edge of Radio Access Networks. Proactive content caching
in MEC is crucial to guarantee users’ Quality of Experience
thanks to the reduction of traffic latency. Predicting content pop-
ularity plays a key role in the effectiveness of proactive caching.
In this paper, we propose a generic and flexible recommendation
framework which allows recommending suitable learning and
prediction algorithms among available ones, in order to predict
content popularity. The investigated algorithms are categorized
into two main classes: tree-based regressors and recurrent
neural networks. Through the study case of YouTube video
solicitation profiles, our proposed method, called Imputation-
Boosted Collaborative-Filtering based Recommending Prediction
Method (IBCF-RPM) shows its effectiveness in the prediction of
content popularity for various popularity profiles. By running
only 30% of the prediction algorithms, randomly chosen, on a
given content profile, the proposed recommending method is able
to estimate the accuracy of the other predictors and recommend
a well-suited predictor for content popularity.

Index Terms—content popularity prediction, multimedia
caching, YouTube, collaborative filtering, recommendation, ma-
chine learning, RNN, GRU, LSTM, tree-based regressors.

I. INTRODUCTION

The extraordinary increase in data traffic, mainly derived

from mobile multimedia services [1], social networks and

over-the-top applications such as YouTube, has imposed a

huge challenge to 5G networks for dealing with the re-

quirements of more backhaul resources [2]. Mobile Edge

Computing (MEC), currently standardized by ETSI [3], is part

of the effort toward a general solution for 5G-based network

architecture. MEC allows computation and storage capabilities

at the edge of Radio Access Network (RAN) [4], based

on which new tasks such as mobile big data analytics and

context-aware services can be implemented for performance

optimization. Applications and services can be deployed and

popular content items can be cached near end-users. This

can help improve backhaul offloading and users’ Quality of

Experience (QoE) thanks to the reduction of traffic latency.

Video on Demand is the heaviest data-driven among various

multimedia services causing up to 80% of backhaul traffic by

the year 2020 [5]. Thus, predicting the popularity of multi-

media contents for their proactive caching is a crucial issue.

Several previous solutions have been proposed for content

popularity prediction [6], [7], [8]. However, most solutions

are based on a prediction approach which is mainly effective

for a small dataset. For the very large amount of contents,

an effective estimation requires simultaneously the support

of a big data-enabled network architecture and an adaptive

prediction framework. Recent achievements in the use of

machine learning for big data analysis [9] have encouraged

us to aim at a learning-based approach for contents popularity

predictions. YouTube [10], one of the largest video sharing

platform, will be the study case in this paper. The number of

the daily solicitations of a content represents a good indication

of its popularity profile, so it is the mainly considered param-

eter to predict its popularity. The most solicited items will

be cached to the nearby servers/base stations. Because daily

requests evolution of a content is represented as time-series

data, hereafter, we focus on time-series prediction. Predicting

time-series has used various approaches such as exponential

smoothing [7], [11] Auto Regressive Integrated Moving Aver-

age (ARIMA) [8], [12], Neural Network (NN) and Recurrent

Neural Network (RNN) [13], [14], tree-based regressors [6],

etc. The prediction methods may perform differently regarding

the same time-series. Hence, finding the mechanism that

optimally activates the most efficient prediction algorithm

for a given context is a challenge. Combinations of several

forecasters have been proposed in order to keep individual

forecasters’ advantages in a universal predictor [15]. However,

the combinations are mainly based on weighted sum methods,

and adjusting weights is cumbersome. In this paper, we pro-

pose to adopt a recommendation technique [16], for adaptively

and dynamically selecting suitable prediction methods. This

flexible technique can be applied to any time series, but in our

context, it is applied for the prediction of YouTube contents’

popularity.

The remainder of the paper is organized as follows. In Sect.

II, we define the problem of multimedia content popularity

prediction, YouTube dataset, and the methodology. In Sect.

III-A, we focus on a selected set of learning-prediction meth-

ods. In Sect. III-B, we present the recommendation systems

and the collaborative filtering (CF) technique that we use to

propose a new recommendation method IBCF-RPM (Sect.

IV) Sect. V, presents the simulation context and performance

results and Sect. VI, concludes the study and mentions its

perspectives.
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Fig. 1: Content profile splitting

II. PROBLEM STATEMENT

We address the problem of selecting the most appropriate

method from a set of well-known methods to predict the

popularity of multimedia contents. A large set of prediction

methods going along with several configurable parameters

lead to a huge number of predictors. Applying all available

predictors to a very large catalog of contents (e.g. YouTube)

in order to select the best one is intractable. We propose

hereafter a recommendation framework able to recommend

a suitable predictor for a given content profile based on

the computed accuracy of a limited number of predictors

and the similarities between different profiles. The predicted

popularity can be used to supply a proactive caching of the

most popular contents close to requesting users, but this issue

is outside the scope of this paper.

A multimedia content popularity profile represents the

number of daily requests for this content and the associated

characteristics (e.g., number of likes). The daily requests

number impacts explicitly the decision of caching it to the

nearby servers in 5G MEC network. Because the number of

daily requests is basically a time-series data, we focus on time

series prediction.

With the complexity of sequences’ dependencies and with-

out any restrictions on the distribution, on the frequency or on

the amplitude of a time-series data, the sequential prediction

is difficult but is an important methodology applied to a wide

range of problems. Therefore, the problem considered in this

paper can be extended to other time-series prediction contexts.

A. YouTube popularity profile dataset

In this study, the dataset is constituted by real traces crawled

from the YouTube site. A trace associated to a multimedia

content includes the content uploading date, the subscribers’

number, the shares’ number and its daily solicitation until the

crawling day. The list of YouTube videos is extracted from

the YouTube-8M dataset [17] composed of approximately 8

million videos. The crawled dataset includes contents having

at least 10000 total solicitations between Nov. 2017 and Dec.

2017. For this study, we randomly selected 200 contents hav-

ing over 1.5 million access and at least 500 solicitations/day.

Each content profile in the selected set is divided into three

periods as shown in Fig.1. The training period, constituted

by several consecutive days, represents the training data. The

testing period of consecutive days follows. The validation

period composed by several consecutive days is separated

from the testing period by a window W of variable length.

The separating window is used to ensure the objectivity of

the validation. This operating mode is usual in any time-series

prediction problems.

B. Methodology

Various individual methods have been adopted for time-

series predictions such as Exponential Smoothing [7], [11],

ARIMA [8], Prophet [18], tree-based regressors [19], [20],

[21], neural networks [13], [22], etc. Depending on the charac-

teristics of the time-series at hand, the prediction performances

could be totally different. In order to dynamically select

the most appropriate prediction methods for different content

popularity profiles, we propose hereafter a recommendation

system framework composed of the following 3 sets. (1) A

collection of time-series type generic data allowing to learn

and predict. In our context, it represents YouTube popularity

profiles. (2) Different prediction methods having multiple

parameters configurations. The details of selected methods

are described in Section III-A. (3) The recommendation

framework which requires to randomly run a limited number

of predictors on each content popularity profiles. Collaborative

Filtering (CF) technique [16], [23], [24] will be used in order

to estimate the similarities between the popularity profiles.

This technique will be detailed in Sections III-B and IV.

C. Metric definition

Performances of prediction methods are evaluated based on

the following error metrics:

• Mean Squared Error: MSE =
1

N

∑N

i=1 (yi − pi)
2

• Mean Absolute Error: MAE =
1

N

∑N

i=1 |yi − pi|

• Mean Absolute Percentage Error:

MAPE =
1

N

N∑

i=1

|yi − pi|

|yi|+ |pi|
× 100%

where N is the total predicted samples, and yi and pi denote

the real value and the predicted one, respectively. MSE and

MAE tend to provide us the accuracy of the output while

MAPE, slightly different, provides us the relative value of

the error, which indicates the quality of the predictor. For

example, with the same MAE = 1, the predictor in yi = 10 has

lower quality than the predictor in yi = 100. To evaluate the

quality of various predictors for the recommendation systems,

we mainly use MAPE through its complements defined by:

• Accuracy: ACC = 100%−MAPE

III. PRELIMINARIES

A. Learning and prediction methods

We select for this study two categories of learning and

prediction methods: tree-based regressors and RNN-based

predictors, which can predict without retraining requirements.

1) Tree-based regressors: Tree-based learning algorithms

are one of the most widely used supervised learning methods

[19]. Tree-based learning uses predictive models in a tree

form, called a decision tree. Learning a decision tree is essen-

tially the process of splitting a training dataset based on recur-

sive algorithms such as CHAID [25], ID3 [26], C4.5 [21] and

CART[19]. Given a training dataset D = {x(i), y(i)}i=1..m,
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the objective of a prediction problem is to find an estimation

(hypothesis) function h that maps an input X to an output Y.

Learning a decision tree t is to find ht : X → Y based on one

of the above algorithms. Due to their simplicity, decision trees

have high execution speed. But they cannot be generalized for

an arbitrary problem with possible unseen data. For improving

flexibility and diversity, Random Forest [27] uses multiple

decision trees {t}, t = 1, .., τ , called weak learner, con-

structed based on several randomly selected subspaces St of

the training dataset D, i.e., St ⊂ D. After individually training

{ht}t, the output prediction for an input x′ is computed by

a discriminant function given by: Hτ (x
′) = 1

τ

∑
τ

t=1 ht(x
′).

The discriminant function is essentially an average one and

the final predictor generalizes their prediction aggregately.

Boosting algorithms [20], [28] provide us with more com-

plex frameworks for combining weak learners, e.g., decision

trees. AdaBoost [28] applies a weak learner repeatedly over

multiple rounds t = 1..τ . For each round t, the weak

learner ht is trained, predicting error ϵt is computed and

used for updating the weights of inputs for the next round

w
(i)
t+1 and the weight αt of ht. w

(i)
t is initialized equally

but the weights of incorrect learning inputs, i.e., w
(i)
t of x(i)

with ht

(
x(i)

)
̸= y(i), get smaller in each round. Thus, the

weak learner has to concentrate on the ‘hard’ inputs in the

training set. In contrast, the weight αt of ht increases as

predicting error ϵt decreases. The final output is determined

as a weighted voting of weak learners.

Gradient Boosting method [29] is a more general

boosting approach than AdaBoost. With the same in-

put data set D, the goal is to reconstruct the func-

tion H∗(x) = argmin
H

[L(y,H(x))], such that the loss

function L is minimized. Gradient Boosting approximates

H∗(x) by a weighted sum of weak learners ht(x):
H(x) =

∑
τ

t=1 αtht(x). The steepest-descent algorithm is

adapted for finding this approximation.

2) RNN-based predictors: RNN has been adopted in a

wide range of machine learning tasks, particularly with time-

related input or output [22]. Owing to the recurrent structures

in which hidden states depend on both the current input

and the network states at the previous time steps, RNNs are

suitable for capturing the relationships among sequential data.

In detail, the update of the recurrent hidden state of the simple

RNN unit is given by: ht = g (xtWxh + ht−1Whh + bh),
where g is the activation function, xt is the t-th input,

Wxh is the input weight matrix, and Whh is the recurrent

weight matrix, bh is the bias of the simple hidden unit.

The simple unit outputs a distribution of the next element

of the data sequence which is a composition of its previ-

ous state and its current input. Indeed, given a sequence

x = (x1, x2, ..., xT ), the sequence probability is given by:

p(x1, x2, ..., xT ) = p(x1)p(x2|x1)...p(xT |x1, ..., xT−1). The

simple RNN model provides an output which is equivalent

to ht ∼ p(xt|x1, ..., xt−1). Therefore, this model is able to

capture the sequence probability of the input time-series data.

Due to the difficulties of training RNN for capturing long-

term dependencies of time series data when gradients tend to

vanish or explode, alternative units has been proposed. LSTM

[30] and GRU [31] are the most popular ones. LSTM unit is

formulated by the following equations:

it = σ (xtWxi + ht−1Whi + ct−1Wci + bi) (1a)

ft = σ (xtWxf + ht−1Whf + ct−1Wcf + bf ) (1b)

ĉt = tanh (xtWxc + ht−1Whc + bc) (1c)

ct = ftct−1 + itĉt (1d)

ot = σ (xtWxo + ht−1Whi + ctWci + bo) (1e)

ht = ot tanh (ct) (1f)

By introducing input gate it, forget gate ft and output gates
ot, the memory content ct, the output and current state of

LSTM unit ht are controlled. In detail, ot controls the amount

of memory content exposure ct at the output ht in (1f). ft and

it decide the updating amount of the new memory content ĉt
and the forgetting amount of the old one ct−1 on the memory

content ct in (1d).

GRU unit is similar to LSTM unit with the use of gating

blocks for adjusting the flows inside the unit but does not

include memory cells [32]. GRU unit is formulated by the

following equations. In a GRU unit, the update gate ut adjusts

the updates of its content ht via (2d), whereas the reset gate

rt, similar to the forget gate in LSTM unit, decides to what

extent the previous state ht−1 should be memorized in (2c).

rt = σ (xtWxr + ht−1Whr + br) (2a)

ut = σ (xtWxu + ht−1Whu + bz) (2b)

ĥt = σ (xtWxh + rtht−1Whh + bh) (2c)

ht = (1− ut)ht−1 + utĥt (2d)

B. Recommendation framework

A large number of predictors going along with a huge num-

ber of available contents profiles leads to a very large number

of combinations. Testing all predictors for each content or

determining one predictor suitable for all available contents

is impossible. Therefore, the idea is to find a recommenda-

tion framework which automatically recommends a suitable

predictor for each content, while testing a reduced number of

predictors for each content. Accordingly, a recommendation

system (RS) has proven to be a valuable technique that enables

us to handle a large amount of data for estimating the most

appropriate set of suggestions [33]. Multiple recommendation

systems have been proposed including content-based RS,

collaborative filtering (CF)-based RS, and hybrid RS [23].

Among them, CF which enables us to learn from historical

interactions of the original user-item recommendation, could

be adopted to our content-predictor selection problem.

For recommending appropriate items for a user, the similar-

ity between user u and user v is computed based on Pearson

correlation coefficient given by [34]:

sim (u, v) =

∑n

j=1 (ru,j − ru) (rv,j − rv)√∑n

j=1 (ru,j − ru)
2
√∑n

j=1 (rv,j − rv)
2

(3)
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where n is the total number of items, ru,j is the rating of user

u on item j, and ru is the mean of the rating of user u.

Various ways for predicting a user’s rating can be found

in the literature such as the weighted sum of all other

users’ rating, Top-K recommendations, default voting, inverse

user frequency, imputation-boosted CF, and weight majority

prediction [24]. In this study, due to the specificity of our rec-

ommendation problem, we select the Top-K recommendation

approach. The prediction of the rating of user u given to an

item i based on the Top-K recommendation is given by:

pred (u, i) = ru +

∑
v∈Top−K sim (u, v) (rv,i − rv)∑

v∈Top−K sim (u, v)
(4)

where Top-K is the set of the K most similar users to user u.

For improving recommendation performances, we consider

some additional imputation-boosted (IB) approach. The pur-

pose of imputation is used for handling the pervasive problem

of missing data [24], [35]. Then, we propose an IBCF-based

recommending prediction method detailed in the next section.

IV. IBCF-BASED RECOMMENDING PREDICTION METHOD

Typically, for selecting a suitable predictor for a content,

one needs to find out the performances of all predictors,

each one being a couple of a prediction method and a set of

parameters values. To avoid this costly process, we propose to

train and measure, for each content, the prediction accuracy

for a ratio of randomly chosen predictors during the test

period. The accuracies of other predictors are estimated thanks

to CF technique. The traditional recommendation method

recommends for each user a well suited item. In our context,

a user is assimilated to a content and an item to a well suited

predictor. The rating that a user sets to an item is equivalent

to the prediction accuracy that a predictor can provide to a

content.

Table I summarizes our notations.

TABLE I: Notations

N number of available predictors
Pn a predictor n = 1..N
Pr predictors set {Pn=1..N}
T number of content profiles

x
(i)
j solicitation number for the content i during day j

X(i) profile of the content i :
{

x
(i)
j=1..m

}

between days 1 and m

D
(i)
l

training data for content i:
{

x
(i)
j=1,...,l

}

D
(i)
t testing data for content i:

{

x
(i)
j=l,...,m

}

ratio ratio of randomly selected predictors to run on a profile
ACCi,p accuracy value of the predictor p for the content i
ACC accuracy matrix of size TxN

In Eq.(3) and Eq. (4) changes in signification

u, v any two content profiles
sim(u, v) similarity value between contents u and v
ru,i accuracy of the predictor i for the content u : ACCu,i

ru mean accuracy for the content u

A conventional CF-based Recommendation Prediction

Method (CF-RPM) and the proposed Imputation-Boosted CF-

based Recommendation Prediction Method (IBCF-RPM) in-

cludes the following steps:

• S1: Call Alg. 1 to compute the ACC matrix.

Algorithm 1: ACC matrix computation

Data: Pr, X(i), D
(i)
l

, D
(i)
t , ratio

for each profile: i = 1..T do
Pi ← SelectRandomSubset(Pr, ratio) ;
for p in Pi do

Training p with D
(i)
l

;

Compute ACCi,p of the trained p with D
(i)
t ;

Result: Sparse ACC matrix with size T ×N

Algorithm 2: Similarity matrix computation

Data: Sparse ACC matrix [ACCi,p]
for u = 1, ..., T do

for v = 1, ..., T do
sim(u, v) based on Eq. (3)

Result: Similarity matrix [simu,v ] with size T × T

Algorithm 3: CF-RPM and IBCF-RPM

Data: Sparse ACC matrix, similarity matrix [simi,i]
for i1 = 1, ..., T do

Top
(i)
K

← The K most similar items from [simi,i];
for p = 1, ..., N do

if IsEmpty(ACCi,p) then

for k in Top
(i)
K

do

rk,p ← ACCk,p ;
if the method is IBCF-RPM then

if IsEmpty(ACCk,p) then
rk,p ← min(ACCi,p∀i = 1, ..., T )

ACCi,p ← pred(p, i) based on Eq. (4)

Result: Complemented ACC matrix [ACCi,p]

• S2: Call Alg. 2 to compute the similarity matrix.

• S3: Call Alg. 3 for both CF-RPM and IBCF-RPM to

compute a complemented ACC matrix

• S4: For a given profile i, recommend the predictor

offering the highest value of ACC referred to the com-

plemented ACC matrix.

Due to the sparsity of the ACC matrix given in S1, empty

ACC data in the set of Top-K similar neighbors can occur.

In CF-RPM, the empty data is ignored.

For handling the pervasive problem of missing data, in [36],

[37], the authors proposed to adopt imputation for collabora-

tive filtering (IBCF). IBCF implements the recommendations

from imputed data instead of the original data. The imputed

data is obtained thanks to machine learning algorithms [36].

However, unlike rating in user-items problems, the predicted

ACC is more sensitive to magnitude. This makes the imputa-

tion task more difficult. Furthermore, adopting Pearson corre-

lation coefficient is equivalent to imputing the missing ACC

with the mean value of ACCs of each prediction method

because of the normalization nature in Eq. 3. Therefore, for

imputation-boosted CF in our problem, we propose to perform

the imputation in S4 instead of S2.

We propose to impute the missing ACC of a given predic-

tion method by the minimum value of ACCs of that method.
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TABLE II: Predictor parameters

RNN-based predictors Tree-based regressors

No. of Unit Max. No. of
Config. Layer 1 Layer 2 depth Estimators
C1 1 0
C2 7 0 Decision Tree 4 1
C3 14 0 AdaBoost 4 20
C4 1 2 GradientBoosting 4 300
C5 7 14 Random Forest 4 300
C6 14 28

The minimum ACC is selected because it represents the worst

accuracy that the predictor could provide a content. Then, the

proposed IBCF can be considered as a maxmin problem if

there are any missing data in the Top-K similar neighbors set.

Without imputation, the predicted ACCs for more missing

data cases and less missing data cases are treated similarly.

The imputation, hence, increases the prediction reliability.

Notice that the processing cost of the imputation is ignorable

because it is just an insertion of a minimum value along with

computational process.

V. PERFORMANCE EVALUATION

In this section, we perform the evaluation for individual

prediction methods presented in Sect. III-A and the proposed

IBCF-RPM described in Sect. IV.

A. Context of simulation

The simulation is based on the YouTube profiles dataset,

presented in Sect. II-A. For predicting daily access number of

YouTube videos, we use the slicing window prediction style.

The number of access to a YouTube video at the consequent

day is predicted based on the historical accessing information

extracted from a look back window of W preceding days.

For example, with W = 3, the predicting output at day t is

estimated based on the real data at day t−3, t−2, and t−1.

In our simulation, the value of W is selected in the set of

{1, 2, 3, 5, 7, 14, 30} day(s).

In this paper, an individual predictor is defined as a couple

of a prediction method and an appropriate set of parameters

values. Without loss of generality, the parameters values for

individual prediction methods are loosely chosen because

we aim at the RS which is able to recommend the most

appropriate method for a content. The selected parameters

given in Table II combined with the 7 above cases of W

form 28 tree-based predictors and 84 RNN-based predictors.

B. Performances of individual predictors

We evaluate the performances of the individual predictors

on the YouTube dataset presented in Sec. II-A. For each

content profile, a predictor is trained on the training period

and then tested on the testing period. Afterward, it is validated

on the validation period.

History and configurations. Figure 2 shows the average

MSE of predictors on the testing period. Because of lack

of space, the average MAE could not be displayed, but we

observed that the trends of MAE and MSE are consistent.

With the same W , LSTM-based and GRU-based predictors

have lower errors than the tree-based predictors. Within the

Fig. 2: MSE-Average testing errors of individual predictors

tree-based predictors, the Random Forest one is the best.

Within the RNN-based predictors, the configuration C3 with

only one layer is better than the configuration C6 with two unit

layers. With the same configuration and W , the predicting er-

rors of LSTM-based predictors and GRU-based predictors are

almost similar. Decision Tree and Random Forest predictors,

which are simpler, have errors increasing with W . AdaBoost

and Gradient Boosting show little differences in error when

W = 1..7 and the error for W = 30 is smaller than the error

for W = 14. For RNN-based predictors, the error for W = 30
is the smallest one.

ACC on training, testing and validation period. Table III

shows that the average ACC of the individual predictors on

the training set is higher than those on testing and validation

sets. For tree-based predictors, the highest ACC corresponds

to W = 30 in the training set, and to W = 1 in both

testing and validation sets, which is obvious. For RNN-based

predictors, the best ACC is obtained when W = 7 in the

validation set, mostly with W = 1 and W = 7 in testing set,

and with W = 7 and W = 30 in training set. In summary,

the ACC of a predictor changes with the set of data. Through

training, a predictor can achieve high ACC but in out-of-

sample predicting (i.e., predicting in testing and training sets),

the ACC is generally lower.

C. Performances of CF-RPM and IBCF-RPM

The performances of CF-RPM and the proposed IBCF-

RPM are compared with the best individual predictors during

testing. After the training phase, all individual predictors were

tested, a full information prediction accuracy matrix was

created. Based on the best value of ACC in this matrix, the set

of the best ACC predictors for each profile was selected. In

Fig. 3 and 4, the ”Best recommend (Full information)” curve

represents the best ACC obtained by the optimal choice of

individual predictors after testing phase.

The graphics in Fig. 3 shows the ACC obtained by different

predictors during testing and validating phase. We can see in

the first graphic of 3 that the proposed IBCF-RPM achieves

almost the best value of ACC, whereas the CF-RPM can

only achieve around the ACC of the best individual predictor.

The highest testing ACCs of individual predictors in each
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TABLE III: Average ACC of individual predictors

Training Testing Validation
W=1 W=3 W=7 W=14 W=30 W=1 W=3 W=7 W=14 W=30 W=1 W=3 W=7 W=14 W=30

DecisionTree 94.97 95.24 95.70 95.87 96.06 88.96 87.92 87.54 86.42 84.64 87.48 86.68 86.46 84.97 81.60
AdaBoost 94.38 95.15 96.07 96.45 96.89 88.06 87.63 87.43 86.34 85.28 86.60 86.37 86.29 84.68 82.43
Grad.Boosting 95.61 96.36 97.07 97.45 97.82 88.47 87.83 87.11 85.82 84.37 86.94 86.41 85.82 83.76 81.28
RandomForest 95.04 95.38 95.93 96.12 96.29 89.35 88.61 88.03 86.91 85.42 87.76 87.26 86.86 85.35 82.55

LSTM C1 90.59 92.40 93.37 93.08 93.42 84.84 87.43 88.82 87.87 88.06 83.65 87.05 89.07 87.65 87.27
LSTM C2 93.47 93.52 93.96 93.94 94.04 90.22 90.06 89.99 89.80 89.31 89.09 89.30 90.41 90.01 88.51
LSTM C3 93.30 93.64 94.05 93.89 93.90 90.03 90.28 90.07 89.57 89.52 88.89 89.60 90.61 90.10 88.76
LSTM C4 91.66 92.41 92.91 92.60 92.86 85.76 87.46 87.69 86.79 85.84 84.18 86.75 87.61 86.24 84.30
LSTM C5 93.13 93.03 93.67 93.57 93.85 89.66 89.32 89.49 88.82 88.71 88.59 88.86 89.50 88.81 87.84
LSTM C6 93.05 92.88 93.66 93.08 93.56 89.58 88.93 89.10 88.71 88.84 88.76 88.70 89.43 89.21 87.75

GRU C1 91.63 92.69 93.22 92.96 93.36 86.20 88.36 88.93 88.06 88.35 84.95 87.97 89.17 88.00 87.68
GRU C2 93.51 93.61 94.00 93.66 94.08 90.55 90.31 90.19 89.45 89.50 89.61 89.77 90.90 90.07 88.86
GRU C3 93.30 93.53 93.95 93.42 93.76 89.98 90.10 90.35 89.12 89.34 88.99 89.67 90.91 89.84 88.50
GRU C4 92.95 92.69 93.15 92.91 93.03 88.81 88.42 88.75 87.87 87.71 87.86 88.01 89.24 88.29 86.87
GRU C5 93.17 93.21 93.44 93.16 93.52 90.28 89.92 89.45 88.65 89.15 89.23 89.56 89.94 88.93 88.40
GRU C6 92.74 92.94 93.12 93.10 93.31 89.53 89.31 89.27 88.63 89.21 88.59 88.92 89.78 88.68 88.38

Fig. 3: Accuracy vs. Top-K with running ratio=0.3

prediction type are shown for comparison. For example,

the GRU-based predictor has the highest testing ACC in

configuration C2 for W = 1. This value can be also found

in Table III. The trend of prediction accuracy of the proposed

IBCF-RPM is almost stable for K > 6. For K = 1, the

ACCs of IBCF-RPM and CF-RPM are similar because the

imputation is not effective in this case.

The ACC obtained during validation phase is also depicted

in the second graphic in Fig. 3. It should be noted that for

these graphics, we selected only 30% of the defined predictors

to compute their accuracy. The accuracy of the remaining 70%

is estimated and the well-suited predictor is selected based on

estimated or real accuracy of the Top-K most similar contents.

The depicted curves of the second graphics of 3 indicate

the effectiveness of the predictors selection during validation

phase, based on the prediction performances during the testing

phase. Above all, our proposed method achieves almost an

ACC as high as that of the best recommendation with full

information.

Figure 4 confirms the efficiency of the proposed method.

The selection ratio represents the percent of randomly selected

predictors to be executed for a given content, the accuracy

of the remaining predictors being estimated based on the

accuracy of similar contents. For all of the investigated values

of implementing ratio, ranging from 0.1 to 0.75, IBCF-RPM

Fig. 4: Accuracy vs. running ratio with Top-K=10

Fig. 5: Simulation time vs. running ratio

always approaches the value of the best recommendation

with full information, when the implementing ratio equals to

1. In addition, IBCF-RPM is better than CF-RPM and any

individual predictors in both testing and validating set.

Figure 5 shows the time efficiency of the proposed IBCF-

RPM. Compared to the best recommendation, where training

and testing are required for all predictors, our method has

very close performances while running only a small ratio of

available predictors.
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VI. CONCLUSION

In this paper, we have addressed the problem of predicting

content popularity based on the study of YouTube contents.

We have proposed a recommendation framework which allows

recommending appropriate predictors for each content solici-

tation profile. The framework is based on the proposed IBCF

technique. Our method, IBCF-RPM, is applicable to a large

set of contents and prediction methods. We considered tree-

based regressors (Decision Tree, Random Forest, Gradient

Boosting and AdaBoost) and Recurrent Neural Network-based

prediction methods (LSTM-based, GRU-based) as individual

predictors. IBCF-RPM recommends a well-suited predictor

for a given content while testing the accuracy of a small ratio

of the available predictors, randomly chosen. The method is

based on the evaluation of the similarities between contents

to estimate the accuracy of untested methods. For a running

ratio of 30%, based on similarities with a quite low number

(Top-K=6) of other contents, IBCF-RPM gives performances

close to the full implementation case.

For future work, the effectiveness of the popularity pre-

diction for proactive caching in MEC should be further

investigated and evaluated.
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