
SLAng: A Language for Defining
Service Level Agreements∗

D.Davide Lamanna, James Skene and Wolfgang Emmerich
Department of Computer Science

University College London
Gower Street, London WC1E 6BT, UK

{D.Lamanna |J.Skene |W.Emmerich }@cs.ucl.ac.uk

Abstract

Application or web services are increasingly being used
across organisational boundaries. Moreover, new services
are being introduced at the network and storage level. Lan-
guages to specify interfaces for such services have been re-
searched and transferred into industrial practice. We in-
vestigate end-to-end quality of service (QoS) and highlight
that QoS provision has multiple facets and requires com-
plex agreements between network services, storage services
and middleware services. We introduce SLAng, a language
for defining Service Level Agreements (SLAs) that accom-
modates these needs. We illustrate how SLAng is used to
specify QoS in a case study that uses a web services speci-
fication to support the processing of images across multiple
domains and we evaluate our language based on it.

1 Introduction

The term ‘electronic business’, or ‘e-business’, refers to
the execution of transactions of commercial significance in
a distributed computing context, involving an organisation,
its clients and its partners.

E-business is impeded by technical integration barri-
ers. Recently, standardisation processes have begun to
catch up with commercial development and functional in-
tegration is being enabled by two forces: Standardisation
of component-based middleware architectures, and stan-
dardisation of communication protocols, particularly those
based on Internet communication protocols and data for-
mats. These technologies are complementary, and when
employed in a client/server situation their use is often
termed Application Service Provision (ASP) or web-service

∗This work is partly funded through the EU IST Project 34069 (TAPAS)
and Kodak.

provision, if HTTP is used as the underlying transport pro-
tocol.

Functional integration may also include the provisioning
of infrastructure by one organisation for another, as in the
case of Internet Service Provisioning (ISP), Storage Service
Provisioning (SSP) and application hosting. This provision-
ing relies on the use of standardized and established archi-
tectures and technologies.

Unfortunately, combining functionality is not the only
requirement for e-business integration. Non-functional,
quality requirements must also be met. Moreover, busi-
nesses must initially meet, negotiate the terms of their col-
laboration, have some confidence that the services that they
purchase will meet their requirements, and that they in turn
can meet their client’s expectations. Efforts have been made
to establish business-to-business marketplaces, in which ap-
plication services can be traded, and we review these in Sec-
tion 2. Our work stands in the context of these efforts, but
addresses the need for description and negotiation of QoS
properties.

The novel contribution of this paper is a reference model
for inter-organisational service provision at storage, net-
work, middleware and application level (Section 3). The
model provides the basis for the definition of SLAng lan-
guage, presented in Section 4. SLAs capture the mutual re-
sponsibilities of the provider of a service and its client with
respect to non-functional properties. SLAng meets multi-
ple objectives: It provides a format for the negotiation of
QoS properties; the means to capture these properties un-
ambiguously for inclusion in contractual agreements; and a
language appropriate as input for automated reasoning sys-
tems or QoS-aware adaptive middleware. We have tried out
the expressiveness of SLAng using a case study (CPXe) that
supports the implementation of web services for image pro-
cessing (Section 5). Section 6 critically evaluates SLAng
and in Section 7, we summarise our contributions and dis-
cuss future directions for our research.

BPSS
ebXML

ebXML

ebXML
CPP

CPA

WSCL

BPEL

Contracts/
agreements

Private
process

Public

process
collaborative

Service
description

description
Endpoint

QoS
definition

SAMLSecurity

WSEL

SLAng

SLAng

WSDL

Figure 1. e-Business automation standards

2 Related work

A large number of industry standards have emerged that
support the construction of distributed systems using web
services and distributed component technologies, such as
the Java 2 Enterprise Edition or the CORBA Component
Model. These include WSDL and SOAP [10] for defining
interfaces to web services, BPEL to define business pro-
cesses and ebXML to define electronic business transac-
tions. Figure 1 shows an overview of these standards [1]
and how our language SLAng for service level agreements
complements them. SLAng goes beyond them as it not only
provides descriptions of quality at the application level, but
also contractual agreements that are necessary when differ-
ent ISO/OSI layers of a deployment are spread across mul-
tiple organizations.

The ISO/ODP trading function [2] and its various incar-
nations, for example the CORBA Trading Service [9] pro-
vide for quality of service definition. However, such traders
define QoS at a single level of abstraction. Conversely,
we allow for appropriate QoS definitions at different levels
of abstraction, including the network level, the middleware
level and the application level.

Significant research about QoS management and QoS-
aware networks has been carried out by the TEQUILA
project [8]. TEQUILA specifies and implements a set of
service definition and traffic engineering tools to obtain
quantitative end-to-end QoS guarantees at the network layer
through careful planning, dimensioning and dynamic con-
trol of scalable and simple qualitative traffic management
techniques within the Internet, such as differentiated ser-
vices [4]. Their Service Level Specification proposal sub-
mitted to the Internet Engineering Task Force (IETF) is one
of our starting points since we assume an SLS expressed

with the parameters proposed in [8] for SLAs regarding
networking services. The IETF are developing protocols
and mechanisms for negotiating, monitoring and enforc-
ing SLSs, and to ensure that the network can cope with
the contracted SLSs. The efforts of the IETF, though, are
based at the socket level (which only includes communi-
cation resources) rather than at the distributed object level
(which includes communications, processing, and storage
resources). As such, they cannot address end-to-end QoS
issues at higher levels of abstraction.

For QoS-aware middleware, related work has been done
by the Quality Objects (QuO) group ([7], [6]). QuO is a
framework for providing QoS in network-centric distributed
applications, ranging from embedded applications to wide
area network applications. QuO bridges the gap between
the socket-level QoS being specified, researched, and pro-
vided by a number of organizations and the distributed ob-
ject level commonly used to write distributed systems. QuO
has the merit of having raised the level of abstraction for
QoS specification, but it is still not sufficient to allow provi-
sion QoS services given the diversity of distributed hetero-
geneous environments.

HQML (Hierarchical QoS Markup Language) [5], an
XML-based specification language, addresses this issue.
HQML enhances distributed applications on the World
Wide Web with QoS capability. It allows the specifica-
tion of all kinds of application-specific QoS policies and
requirements. A static mapping between application and
resource level QoS parameters can then be performed by
using HQML QoS Compiler.

We believe that it is not feasible to define end-to-end QoS
by just considering one technical domain (e.g., networking,
middleware, ASP or applications). Also, SLAs have so far
largely been ignored for component execution and middle-
ware in general.

3 Reference model

3.1 Approach

We assume the use of components for assembly of dis-
tributed applications or web services and hence assume
the use of component oriented middleware. In particu-
lar, we concentrate on specific, state-of-the-art application
server technologies (J2EE, CORBA Component Model).
Of course not every distributed system can be captured this
way. For example, streaming systems, such as VIC (Video
Conferencing Tool)1 or RAT (Robust Audio Tool)2, are ex-

1VIC is a video conferencing application developed by the Network
Research Group at the Lawrence Berkeley National Laboratory in collab-
oration with the University of California, Berkeley.

2Robust Audio Tool is a an open-source audio conferencing and
streaming application by UCL Network and Multimedia Research Group

cluded by this assumption. The class addressed by com-
ponent middleware is nevertheless extremely important as
application server technologies are extensively employed in
e-Business and are used to host the components that provide
web services.

We associate QoS targets (e.g., performance, availabil-
ity, reliability, etc.) with identifiable Application Service
Provider (ASP) architectural elements, so that the estima-
tion of QoS parameters is informed by the structure of an
application’s deployment.

Another key point is that QoS semantics of our language
do not refer to an ASP model as a whole. They are in-
stead defined according to the diverse domains of the per-
formance properties. For example, the throughput of a
database server and the throughput of a component con-
tainer server are quite different concepts: the former is de-
fined in terms of the query response time varying the num-
ber of active connections, the latter in terms of the round-
trip method invocations per second. They both contribute
to the overall QoS, but one should be able to control each
of them separately and in a different way before composing
the results.

Similarly, QoS syntax can be very different depending
on the reference domain. Performance for an application
using a web service is given by, mean completion time for
the service (sec), mean peak period latency (sec), success-
fully completed transactions (%), whereas for an applica-
tion hosting server using network facilities important pa-
rameters include delay(ms), jitter(ms), packet loss(%), and
bandwidth(Mbyte/sec).

Ultimately, QoS properties are dependent on the level of
abstraction at which the system is being described.

3.2 Service provision reference model

Figure 2 depicts our reference model for a distributed
component architecture. The nodes in the model are ar-
chitectural components. The edges depict opportunities for
service level agreements between two parties.

Applications are clients that use either components or
web services to deliver end-user services. Web services may
be implemented by invoking components. Components pro-
vide an abstraction of the underlying resources, enriching
their functionalities via middleware support. Containers
host component instances and are responsible for managing
the underlying resource services for communication, persis-
tence, transactions, security and so forth, and for providing
those to components.

In order to make such services QoS enabled, containers
need support for QoS negotiation, establishment and moni-
toring. Container entities are depicted in Figure 2 immedi-
ately under component entities. In a business scenario, the

at University College London.

Underlying
Resources

Application
Tier

Middle Tier

WS

Appl. Appl.

WS

Components

Web Server

Container

Storage

Network

Figure 2. Service provision reference model

role containers are provided by ASPs, called upon to host
(other parties’) application components.

The underlying resource tier includes network and stor-
age service providers. An ASP can hence interact with Stor-
age Service Providers (SSP) and Internet Service Providers
(ISP), and contract specific agreements with them for the
provision of services and their related quality.

3.2.1 Vertical and Horizontal SLAs

This architecture facilitates the definition of different lev-
els of abstraction for compiling SLAs. In addition to tier-
specific differentiation, we adopt another important SLA
classification: Horizontal SLAs govern the interaction be-
tween coordinated peers, whereas Vertical SLAs between
subordinated pairs, within the service provision architec-
ture stack. Intuitively, they are represented in Figure 2 as
horizontal and vertical arcs.

Horizontal SLAs are contracted between different par-
ties providing the same kind of service. For example, two
container providers can collaborate for replicating compo-
nents. Vertical SLAs regulate the support parties get from
their underlying infrastructure. For example, a container
provider can define an agreement with an ISP for network
services. Once again, the resulting types of SLA differ in
terms of their expressiveness, and SLAng defines them sep-
arately.

3.2.2 Crossing organisational boundaries

The SLAng reference model is structured to handle every
possible combination of business interactions. Obviously,
organisational boundaries can include more than one box in
Figure 2, thus resulting in diverse roles included in a single
competence domain.

A Competence Domainis a non-empty set of abstrac-
tions, representing a business party for a particular e-
business collaborative process. The party can sign SLA
contracts with parties providing other competence domains.
Nothing prevents a business party from being represented
by several competence domains for different e-business
agreements, providing flexibility for business-to-business
interaction.

4 SLA definition language (SLAng)

A service level agreement is an arrangement between
a customer and a provider, describing technical and non-
technical characteristics of a service, including QoS re-
quirements and the related set of metrics with which pro-
vision of these requirements is being measured.

In this Section, we analyse the structure of SLAng lan-
guage. The main requirements we had in mind while devel-
oping it were:

Parameterisation Each SLA includes a set of parameters,
the values of which quantitatively describe a service.
Since they are tier- and actors-specific, a set of param-
eters of a particular kind of SLA provides a qualitative
description of a service.

Compositionality A service can be the result of a cooper-
ation between different domain entities. An SLA lan-
guage has to enable such composition.

Validation Before initiating an SLA, contractors have to
be able to validate it, check its syntax and consistency,
further verified as a result of a composition.

Monitoring Ideally, parties should be able to automatically
monitor the extent of which the service levels set forth
in an agreement are actually provided by its providers.

Enforcement Once service levels are agreed, network
routers, database management systems, middleware
and web servers can be extended to enforce service lev-
els in an automated manner by using techniques such
as caching, replication, clustering and farming.

The SLAng syntax is defined using XML Schema. Us-
ing schemas favours the integration with existing service
description languages. For example, SLAng can be com-
bined with WSDL and BPEL (all of which are defined using
XML schemas) to obtain a complete e-Business automation
solution (see Figure 1).

The content of an SLA varies depending on the ser-
vice offered and incorporates the elements and attributes re-
quired for the particular negotiation. In general, it includes:

• An end-point description of the contractors (e.g., infor-
mation on customer/provider location and facilities)

• Contractual statements (e.g., start date, duration of the
agreement, charging clauses)

• Service Level Specification (SLS)s, i.e. the technical
QoS description and the associated metrics.

4.1 Kinds of SLA

SLAng defines seven different types of SLA. They regu-
late the possible agreements between the different types of
parties identified in our reference model, i.e.Application,
Web Service, Component, Container, Storage and Network.
Vertical and Horizontal SLAs can be contracted between
pairs of them.

The Vertical SLAs are:

Application: between applications/web-services and com-
ponents.

Hosting: between container and component providers.

Persistence:between a container provider and an SSP.

Communication: between container and network
providers.

The Horizontal SLAs are:

Service: between component and web service providers

Container: between container providers

Networking: between network providers

4.2 Responsibilities

A common characteristic of every SLA is the definition
of a relationship of responsibility between a client and a
server, including technical annex.

Either in a business-to-customer (B2C) or in business-
to-business (B2B) interaction, service provision and use are
always involved and, consequently, charges and benefits of
the two parties have to be clearly stated. Some of them over-
lap; in SLAng these are termedMutual Responsibilities.

For each kind of SLA, then, a general structure is de-
fined, including responsibilities of the client of the service
(Client), responsibilities of the service provider (Server)
and mutual responsibilities (Mutual) to be complied by both
of them. This is represented in Figure 3, where, just as an
example, theHostingSLA pattern is shown (such a subdivi-
sion, anyway, is repeated for every kind of SLA). This set of
elements is completed byId, through which we can define
service and SLA identifications, alphanumeric values used
for reference purpose.

Figure 3. Responsibilities of the server in a
HostingSLA

4.3 SLA-specific parameters

Responsibilities are expressed in terms of end-point,
contractual and SLS parameters, which are specific to the
type of SLA. Such parameters are the leaves of the logical
tree representation of SLAng schema.

Figure 3 shows an example with the responsibilities of
the service provider (Server) in a HostingSLA. An analo-
gous list of SLA parameters is provided for client and mu-
tual responsibilities as well, but they could not be included
in the figure for reasons of space.

An analogous pattern is, then, repeated for every kind
of SLA. This can give an idea of the dimensions of SLAng
schema, but the full detail can not be reported in this paper.

The set of parameters, like the one depicted in Figure 3,

Services
Directory

Fulfillment
Access Access

Storage Sharing
Access

Order
Management

Credit
Guarantor

Bind
(SOAP,HTTP)

Any
Device

Kiosk
App

Desktop
App

Web
App

Retail
Counter

App

Minilab
App

Directory Layer

Service Layer

B2C

B2B Fulfillment Storage Locator Identification

Register(Publish)

Find

Application Layer

Figure 4. CPXe Architecture

is represented by simple-type elements (boxes with a mark
in the top left corner), or complex-type elements. The latter
are further specified in terms of an element-specific set of
attributes.

For example,Performanceattributes are mean response
time in milliseconds, mean processing speed in Megabytes
per second, peak time latency in milliseconds, and percent-
age of transactions completed within a given performance
level.

In Section 5, we present an example of SLA that was
written in SLAng

5 Case study: CPXe

The Common Picture eXchange environment (CPXe) is
an I3A3 initiative to develop Internet-based digital photo
services. CPXe is an architecture that links digital devices,
Internet storage and printing, and retail photo finishing to-
gether. It takes advantage of Web Services technologies
such as SOAP, WSDL and UDDI and supports a large num-
ber of scenarios for imaging applications that are distributed
across a number of parties.

As shown in Figure 4, the CPXe architecture enables ser-
vice providers to define, develop and publish their services,
and application providers to look for services and imple-
ment interactions with them.

Typical uses of CPXe are enabling print services from
home, uploading photos from a kiosk (connecting a digital
camera to it) and ordering prints to a particular retailer.

These and other scenarios put in place collaborations
that need to be regulated by SLAs, whenever organisational
boundaries are crossed.

3I3A is the International Imaging Industry Association, setting the stan-
dards for the digital imaging markets.

APP

WS

Storage
Access

Instore Retail
Application

Fulfillment

WS

ISPCPXe
Directory

APP

Web
Application Storage Storage

Storage

Storage

WS

WS

CPXeDir AOL

Photo Point Online Photolab

Fridge.com

eMemories

ASP
Guarantor

Credit

WebApp2Go.com Visa

Figure 5. Picture access and printing

5.1 A possible scenario

Figure 5 presents one of four CPXe scenarios that we
have analysed in detail. We have used our reference model
notation (refer to Section 3.2). SLAs are represented by
arcs connecting two entities; a bullet is placed on theServer
entity side. Entities are differentiated based on their archi-
tectural role, stated by an identifier mark over their box.

Competence domains are delimited by dashed line poly-
gons. Every competence domain contains the abstractions
that a company is responsible for within an SLA. Relation-
ships between entities in the same competence domain, are
represented by a dotted line. Even though they do not have
a legal value, they can help the process of internal service-
composition modeling and external SLA-offering.

Our case-study scenario intends to show that choosing
a business partner can be based on choosing the best ser-
vice level offer.Online Photolabis an application suite in-
tended for use in print shops (Figure 5). The retailer can
connect and let their customers connect to a storage service.
In this way, customers can store images and eventually re-
trieve them while in a print shop.

Photo Point, a web application which lets users discover
CPXe services, findsOnline Photolabin CPXe-Dir. Online
Photolablooks up a suitable storage service and chosese-
Memories, because it ensures an availability rate of 95% and
an incremental backup interval of 24 hours. This is stated
in aServiceSLA.

e-Memoriesrelies onFridge.com, a SSP whose guaran-
teed mean query response-time is 30ms and TTR (Time To
Repair) 1 hour. Between them aPersistenceSLA is stipu-
lated.

Payments can be made using a Web Service provided by
Visa, which authorizes credit card transactions.Visa guar-
antees a transaction success rate of 99.2% and offers a mon-
itoring report frequency of 12 hours.

CPXe-Directory replication at an ASP, We-
bApp2Go.com, is further represented. Between them
there is aHostingSLA. An EJB round-trip method invoca-
tion per second of 53ms and availability rate of 99.6% are

<?xml version="1.0" encoding="UTF-8"?>
<SLAng xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="dave/TAPAS/SLAng0_5/SLAng0_5.xsd">
<Vertical>

<Hosting>
<Id sls_id="49258" service_id="Replication"/>
<Client>

<Name>CPXe-Dir</Name>
<Place>Los Angeles</Place>
<Clients mean_number="24000" maximum_number="40000" arrival_rate="113.2"/>
<Availability>95%</Availability>

</Client>
<Server>

<Name>WebApp2Go.com</Name>
<Place>London</Place>
<Provision disk_space="500" memory_usage="512"/>
<High_availability>99.6%</High_availability>
<Maintenance recovery_time="2" scheduled_outages="20"

routine_maintenances="12"/>
<Performance response_time="2.6" peak_time_latency="4.7"

successful_transactions="98%" processing_speed="843"/>
<Cluster_throughput containers="9" active_clients="310"

method_invocation="53.141"/>
<Security data_protection="true" encryption_method="RSA"

certificate="true" user_authentication="true"
intrusion_detection="false" eavesdrop_prevention="false"/>

<Backup solution="REOBack" complete_backup_interval="24"
incremental_backup_interval="6" data_types="User configuration data"
archiving_form="rar" client_access="true" backup_encryption="false"
individual_client_backup="true"/>

<Monitoring tracking_system="IDX System" report_method="XML"
report_frequency="48" reporting_on_demand="false"/>

</Server>
<Mutual>

<Service_schedule start="2002-12-13" end="2003-12-13"/>
<Failure_clauses compensation="(100%-availability)*4.6"

exclusion_clauses="Client caused outages"/>
</Mutual>

</Hosting>
</Vertical>

</SLAng>

Figure 6. Hosting SLA between a component
provider and an ASP

determined in this SLA.
A business relationship with an ISP,AOL, is also shown.

AOL offers 2 Mbps of bandwidth with 0.01% packet loss.
The SLA betweenAOLandFridge.comis aCommunication
SLA.

5.2 An SLA for the scenario

While presenting the case-study scenario, we discussed
some performance parameters offered by service providers.
We cited one or two of them per SLA, the ones considered
decisive for choosing a certain provider. In this section, a
full SLA of those sketched in Figure 5 is shown to convey
the expressiveness of SLAng.

6 Evaluation

Using an industrial case study, we have convinced our-
selves that SLAng is expressive enough to represent the
QoS parameters required for the complete definition of in-
terfaces in multi-party deployments. We have achieved
this by exploiting the different abstractions that we have
identified in our reference model and by using abstraction-
specific parameters for the necessary interfaces.

We note that the SLAs at these different tiers are pre-
cise and having conducted the case study, we can state that

SLAng meets the requirements outlined earlier in this pa-
per. We also note that SLAng allows for fairly concise SLA
specifications. There is no service level agreement in the
CPXe case study that is longer than 2 KBytes.

We also note that the fact that these SLAs are determined
in an XML language has turned out to have a number of ad-
vantages. Tools such as XML Spy or ECLIPSE are avail-
able to edit and validate SLAs against the language specifi-
cation. Moreover, we can easily translate SLAs into other
representations using XSLT style sheets [3]. We have been
able to transform SLAs into a more readable format that is
more suitable for inclusion in a service contract. Likewise
some of these SLAs could be transformed using XSLT style
sheets into deployment descriptors for web servers or appli-
cation servers.

While conducting the CPXe case study we also noted,
however, that further work is necessary on the definition of
the semantics of SLAng. Right now, the semantics are de-
fined informally, which has turned out to be a weakness.
Instead, it will be necessary to underpin at least some of the
definitions, such as latency or throughput of SLA parame-
ters with a more formal semantic model.

7 Conclusion and Further Work

SLAng can specify tier-specific horizontal and vertical
SLAs between service users and providers. It is easily
extensible to increase expressiveness and combinable with
flourishing e-Business automation technologies. It allows
engineers to integrate the specification of non-functional
features (service levels) of contracts between independent
parties with the functional design of a distributed compo-
nent system for service provisioning.

We will continue to use SLAng to model and reason
about SLA composition, analysing its implications. Using
an XML-based representation of SLAs provides the possi-
bility of using specialised UML tools for software perfor-
mance engineering design.

On our agenda there is a study of the benefits of insert-
ing SLAng instances into standard XML-based deployment
descriptors, to make components hosting QoS-aware. We
also intend to test the effectiveness of SLAng for monitor-
ing compliance to SLAs.

Future work includes also the development of a toolkit
for service composition and analysis to assist ASPs in de-
termining what SLAs they can undertake to meet. Model
checking techniques could be prove appropriate in this con-
text [11].

References

[1] S. Aissi, P. Malu, and K. Srinivasan. E-business Pro-
cess Modeling: The Next Big Step.Computer, 35(5),

May 2002. Innovative technologies for computer pro-
fessionals.

[2] M. Bearman. ODP-Trader. InProc. of the IFIP
TC6/WG6.1 Int. Conf. on Open Distributed Process-
ing, Berlin, Germany, pages 341–352. North-Holland,
1993.

[3] J. Clark. XSL Transformations (XSLT). Technical
Report http://www.w3.org/TR/xslt, World Wide Web
Consortium, November 1999.

[4] R. Gibbens, S. Sargood, F. Kelly, M. Azmoodeh,
R. Macfadyen, and N. Macfadyen. An approach to
service level agreements for IP networks with differ-
entiated services. Technical report, Statistical labora-
tory, University of Cambridge, January 2000.

[5] X. Gu, K. Nahrstedt, W. Yuan, D. Wichadakul, and
D. Xu. An XML-based Quality of Service Enabling
Language for the Web. Technical report, University of
Illinois, April 2001.

[6] Y. Krishnamurthy, V. Kachroo, D. A. Karr, C. Ro-
drigues, J. P. Loyall, R. E. Schantz, and D. C. Schmidt.
Integration of QoS-Enabled Distributed Object Com-
puting Middleware for Developing Next-Generation
Distributed Applications. InProceedings of the ACM
SIGPLAN Workshop on Optimization of Middleware
and Distributed Systems, Snowboard, Utah. (OM
2001), June 2001.

[7] J. P. Loyall, R. E. Schantz, J. A. Zinky, and D. E.
Bakken. Specifying and Measuring Quality of Ser-
vice in Distributed Object Systems. InProceed-
ings of the First International Symposium on Object-
Oriented Real-Time Distributed Computing. (ISORC
’98), April 1998. Kyoto, Japan.

[8] G. Memenios, G. Pavlou, D. Griffin, and L. Geor-
giadis. Service Level Specification Semantics and
Parameters. Internet Draft, tequila-sls-02, February
2002.

[9] Object Management Group.CORBAservices: Com-
mon Object Services Specification, Revised Edition.
492 Old Connecticut Path, Framingham, MA 01701,
USA, December 1998.

[10] S. Seely.SOAP: Cross Platform Web Service Devel-
opment Using XML. Prentice Hall PTR, 2002. ISBN:
0-13-090763-4.

[11] J. Skene and W. Emmerich. Model Driven Perfor-
mance Analysis of Enterprise Computing Systems.
Research note, UCL Dept. of Computer Science, De-
cember 2002. Submitted for publication.

