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Sensitivity, Proximity and FPT Algorithms for

Exact Matroid Problems

Friedrich Eisenbrand∗ Lars Rohwedder† Karol Węgrzycki‡

Abstract

We consider the problem of finding a basis of a matroid with weight exactly

equal to a given target. Here weights can be discrete values from {−∆, . . . ,∆}
or more generally m-dimensional vectors of such discrete values. We resolve

the parameterized complexity completely, by presenting an FPT algorithm

parameterized by ∆ and m for arbitrary matroids. Prior to our work, no such

algorithms were known even when weights are in {0, 1}, or arbitrary ∆ and

m = 1. Our main technical contributions are new proximity and sensitivity

bounds for matroid problems, independent of the number of elements. These

bounds imply FPT algorithms via matroid intersection.

1 Introduction

Matroids are one of the most fundamental abstractions of combinatorial structures
and capture intricate set systems such as spanning trees and transversals while still
offering tractability for many related problems1. The well known Greedy algorithm
can find a minimum (or maximum) weight basis of a matroid. Inherently more diffi-
cult is the task of finding a basis B with weight w(B) =

∑
b∈B w(b) exactly equal to

some given target β ∈ Z. A straightforward reduction from Subset Sum shows that
the problem is weakly NP-hard even for the most trivial examples of matroids. Pa-
padimitriou and Yannakakis [34] first mention this and observe that for 0, 1 weights
the problem can still be solved efficiently via matroid intersection. They also men-
tion that this generalizes to a fixed number of equality constraints, that is, given
m-dimensional integral weight vectors W (e) ∈ {−∆, . . . ,∆}m for each element e
and a target β ∈ Z

m the goal is to find a basis B with W (B) =
∑

b∈B W (b) = β.
Towards this, one can guess the correct number of elements for each distinct weight
vector in time O(n(2∆+1)m) and then solve matroid intersection in polynomial time
where an additional partition matroid dictates the correct number of elements of
each weight vector. Papadimitriou and Yannakakis also asked whether a pseu-
dopolynomial time algorithm exists for spanning trees. Via an algebraic algorithm
that uses a variant of Kirchhoff’s theorem this is indeed possible [4] and generalizes
to all linear matroids [7]. This leads to an algorithm with running time (n∆)O(m)

in the setting mentioned above. Algebraic methods to solve exact weight problems
were also mentioned by Mulmuley, Vazirani, and Vazirani [32], who credit Lovász for
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1We refer the reader to Section 2 and to [36] for basic definitions and results regarding matroids.
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describing an algorithm for the exact matching problem. In contrast, Doron-Arad,
Kulik, and Shachnai [14] very recently showed that the problem cannot be solved in
pseudopolynomial time for arbitrary matroids (in the standard independence oracle
model).

Similar settings as the above have also been studied extensively in the field of
approximation algorithms. Grandoni and Zenklusen [19] consider a range of multi-
budgeted matroid problems, i.e., imposing linear inequalities with non-negative
weights on different variants. As they observe, the problem of finding any basis
subject to two such constraints is already weakly NP-hard. Thus, their focus is
on finding any independent set and not only bases. For the problem of finding a
maximum profit independent set subject to a fixed number of budget constraints
Grandoni and Zenklusen derive a PTAS. EPTAS or FPTAS algorithms cannot exist
due to a hardness result for 2-dimensional Knapsack [28]. Further, an EPTAS is
known for a single budget constraint [11, 12]. We note that while in some prob-
lems, most famously Knapsack, approximation schemes can easily be derived from
pseudopolynomial time algorithms, this is not true for multibudgeted independent
set.

For the type of problems we mention above, the classical complexity and approx-
imation algorithms are very well understood by now, but the status through the
lens of parameterized algorithms2 is still unsatisfying with answers being unknown
even for the following basic questions:

For 0, 1 weights and graphic matroids, is there an FPT algorithm in
parameter m?

For a single equality constraint, is there an FPT algorithm in parameter
∆ for arbitrary matroids?

We resolve the parameterized complexity completely by providing an FPT algorithm
in parameters ∆ and m for arbitrary matroids. This is an algorithm with a running
time of the form f(∆,m) · poly(n), where f(∆,m) is a function depending on these
parameters ∆ and m only, see, e.g. [10]. In our case, f(∆,m) = (m∆)O(∆)m .

We remark the connection to binary integer linear programming of the form

{x ∈ {0, 1}n : Ax = b}, (1)

where A ∈ {−∆, . . . ,∆}m×n and b ∈ Z
m. This is a very simple example of a

multidimensional exact matroid problem over the uniform matroid with 2n elements
and rank n: elements 1, 2, . . . , n correspond to the variables x1, . . . , xn with weight
vector W (i) = Ai and elements n + 1, . . . , 2n that have a zero weight vector and
are used to ensure a solution is a basis. Despite the simplicity of the matroid, it is
already non-trivial to find FPT algorithms for integer program (1) in parameters ∆
and m. Such results were obtained by Papadimitriou [33], using a slightly stronger
parameterization, and by Eisenbrand and Weismantel [17] with only parameters
∆ and m. The latter work is heavily based on proximity and sensitivity, which
turn out to be the key elements also in our work. Throughout this document,
we use the terms proximity and sensitivity to describe the distance between an
optimal continuous solution and an optimal integer solution and between two integer
solutions with a similar right-hand side. Bounds on these quantities are useful
algorithmically, specifically to reduce the search space, but are also of independent
interest, for example, to understand how severe the effects of uncertainty in data
can be for decision making, see e.g. [22, 38]. The study of general proximity and
sensitivity bounds in integer linear programming goes back to the seminal work by
Cook, Gerards, Schrijver, and Tardos [9].

2We refer to [10] for background on parameterized (FPT) algorithms.
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Figure 1: Schematic overview of proximity, sensitivity and their connection. The
vertices of PB(M) (light gray) are the bases of M . The intersection (dark gray)
of PB(M) with the affine subspace {x ∈ R

E : Wx = β} may contain non-integral
vertices. For such a vertex x∗ by standard rounding there always exists a close by
basis B with W (B) ≈ β. If there is a basis A with W (A) = β and the distance to
B (equivalently, to x∗) is sufficiently large, then by sensitivity there is a closer basis
A′ also with W (A′) = β. This implies proximity.

1.1 Our contribution

Let M = (E, I) be a matroid with (possibly multidimensional) weights W (e) ∈
{−∆, . . . ,∆}m. In the following, we denote by A ⊕ B = (A \ B) ∪ (B \ A) the
symmetric difference of sets A and B. We prove the following sensitivity result.

Theorem 1 (Sensitivity Theorem for Matroids). Let A,B be bases of M . Then
there exists a basis A′ with W (A′) =W (A) and

|A′ ⊕B| ≤ (2m∆)12m · ‖W (B)−W (A)‖1.

Denote by PB(M) ⊆ [0, 1]E the matroid base polytope, that is, the convex hull
of indicator vectors χ(B) of the bases B of M . In particular, there is a one-to-
one correspondence between integral elements of PB(M) and bases of M . For
convenience, we write W ∈ Z

m×n as the matrix with columns W (e) in the order
the elements e appear as dimensions in PB(M). For S ⊆ E we write W (S) =∑

e∈S W (e). We prove the following proximity result, see also Fig. 1.

Theorem 2 (Proximity Theorem for Matroids). Let A be a basis of M and let x∗

be any vertex solution to the polytope

{x ∈ R
n : x ∈ PB(M), Wx =W (A)}.

There exists a basis A′ of M that satisfies W (A′) =W (A) and

‖x∗ − χ(A′)‖1 ≤ (2m∆)13m.

These sensitivity and proximity bounds are in the same order of magnitude
as those known for (1), see e.g. [17]. From the proximity theorem we derive the
following FPT algorithms.

Theorem 3. For target β ∈ Z
m there is an algorithm that finds a basis A of M

with W (A) = β, if one exists, in time

∆O(∆)m · nO(1) .

Furthermore, if M is linear (with a given representation), it can be improved to

(m∆)O(m2) · nO(1)

randomized time.
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Due to its generality, Theorem 3 can be used to obtain FPT algorithms for many
concrete applications. To name a few, it improves an FPT algorithm for Feedback
Edge Set with Budget Vectors due to Marx [31], generalizes a recent algorithm
proposed by Liu and Xu [30] for Group-Constrained Matroid Base to arbitrary
finite groups, and generalizes so-called combinatorial n-fold integer programs [27],
which have a wide range of applications themselves. We refer to Section 6 for details.

There is a simple example based on long even cycles that shows that both
sensitivity and proximity are unbounded for bipartite perfect matching, which is a
special case of matroid intersection, even with a single 0, 1 weight constraint. For
details, see Section 7.

We remark that the proximity bounds in [9, 17] also hold in the optimization
version, i.e., when we measure for some linear optimization direction the distance
between optimal continuous solution and the closest optimal integer solution, and
this optimization direction can have arbitrary real coefficients, i.e., they are not
necessarily discrete as the equality constraints. This is interesting also from a poly-
hedral perspective. It remains open whether the optimization variant also admits
the strong proximity in our setting. While this is not obviously connected to this
question, there are also other disparities between feasibility and optimization in ex-
act matroid problems. Namely, the algebraic techniques, which are the only known
approach to solve exact matroid basis in pseudopolynomial time on linear matroids
(and even graphical matroids), are also not capable of optimization.

1.2 Techniques

Our main technical contribution lies in the sensitivity and proximity bounds. We
will briefly review previous techniques, specifically those by Cook et al. [9] and
by Eisenbrand and Weismantel [17]. Suppose for some solution x to an integer
linear program we want to prove a bound on the distance to the closest solution
z, where the right-hand side is slightly perturbed. One can naturally decompose
the change from z to x into atomic changes that involve the increase or decrease
of a variable by 1. On a high level, Cook et al.’s approach can be summarized as
defining small bundles of atomic changes that do not affect feasibility. In their case
they use Hilbert basis elements of a carefully chosen cone and write x− z as a (not
necessarily integral) conic combination of these bundles. If the distance between z
and x is sufficiently large, one of the bundles is taken at least once and then we
can also apply only this bundle exactly once to z, proving that there is a closer
solution. Crucial to this argument is that each bundle of atomic changes can be
applied to z independently. In an inherently different approach, Eisenbrand and
Weismantel arrange the atomic changes in a careful sequence given by the Steinitz
Lemma and achieve that if the distance between x and z is sufficiently large, by
pigeonhole principle there will be a “cycle” in the sequence, which is an interval of
atomic changes that does not affect feasibility. This cycle is applied to z, which
then also proves that there is a closer solution to x.

In the context of matroids, a natural candidate for an atomic change is the
exchange of a pair of elements. Both of the approaches above are applicable to
restrictive classes of matroids, specifically strongly base-orderable matroids, see [36,
42.6c]. Essentially, this limited class allows any subset of the atomic changes to be
applied to z in isolation. Implementing this approach to general matroids seems to
be elusive.

Our proof is based on a novel structural result on matroids. If two independent
sets A and B are of the same cardinality and are roughly of the same weight,
then there are large unicolor subsets of them of equal cardinality, that can be
mutually exchanged (Lemma 8 and Corollary 9). A set is unicolor if all elements
have the same weight. This is a key notion of this paper. Via identifying several
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such exchanges that nullify the total change of weight, and the theory of matroid
intersection [16, 29], we can then derive the existence of another independent set of
the matroid of equal cardinality that has the same weight as A. Specifically in higher
dimension, we furthermore rely on polyhedral combinatorics like Carathéodory’s
theorem and bounds on the complexity of facets and vertices.

2 Preliminaries

A matroid M = (E, I) is defined by a ground set E = {1, 2, . . . , n} and a collection
I ⊆ 2E of independent sets that satisfy the following properties:

(M1) ∅ ∈ I.

(M2) If X ⊆ Y and Y ∈ I, then X ∈ I.

(M3) If X,Y ∈ I and |X | < |Y |, then there exists e ∈ Y \X such that X ∪{e} ∈ I.

Condition (M3) is the exchange property. We often use the following elementary
consequence.

Lemma 4 (Downsizing). Let I ∈ I be an independent set A ⊆ I and B ⊆ E \ I of
equal cardinality |B| = |A| and suppose that (I \A)∪B ∈ I. Then, for each A′ ⊆ A
there exists B′ ⊆ B with

i) |A′| = |B′| and

ii) (I \A′) ∪B′ ∈ I.

Similarly, for each B′ ⊆ B there exists A′ ⊆ A satisfying i) and ii)

Proof. The set (I \ A′) is an independent set. We can identify |A′| elements of
((I \A) ∪B) \ (I \A′) = B that can be added to this set. Similarly, (I \A) ∪B′ is
an independent set and can be extended to the cardinality of I.

A basis of M is an inclusionwise maximal set of I. All the bases of a matroid have
the same cardinality, denoted by rank(M), the rank of M . For a subset S ⊆ E, its
characteristic vector χ(S) ∈ {0, 1}n is defined as

χ(S)i =

{
1, if i ∈ S,

0 otherwise.

The rank of a subset S ⊆ E is the rank of the matroid (S, I ′), where I ′ = {I∩S : I ∈
I} and we denote it by rank(S). The matroid polytope P (M) ⊆ R

n is the convex hull
of the characteristic vectors χ(A) ∈ {0, 1}n of independent sets A ∈ I. Edmonds [15]
has shown that P (M) is described by the following set of inequalities

∑
e∈S xe ≤ rank(S), S ⊆ E

xe ≥ 0, e ∈ E.
(2)

The convex hull of the characteristic vectors of bases of M is obtained from (2)
by adding the equation

∑
e∈E xe = rank(M) and we denote this base polytope by

PB(M).

An (m-dimensional) weight of a matroid is given by a matrix W ∈ Z
m×n. The

weight of a subset S ⊆ E is defined as W (S) = W · χ(S). A target is an integral
vector β ∈ Z

m. A subset S ⊆ E is exact for W and β, if W (S) = β. We also refer
to the condition W (S) = β as imposing m constraints. The largest absolute value
of an entry of the matrix W ∈ Z

m×n is denoted by ‖W‖∞.
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3 FPT Algorithms

In this section we discuss how the proximity bound in Theorem 2 can be used to
derive the FPT algorithms, thereby proving Theorem 3. Let M = (E, I) be a
matroid, W ∈ {−∆, . . . ,∆}m×n be a matrix and β ∈ Z

m be a target vector. The
goal is to find a basis B ∈ I of the matroid M with

W (B) = β,

or to assert that such a basis does not exist. Here W (B) is the sum of all columns
of the matrix W that correspond to elements of B. Thus W (B) =W ·χ(B), where
χ(B) ∈ {0, 1}n denotes characteristic vector of the basis B.

We first assume that the matroid M is implicitly given by an independence
testing oracle [36, Section 40.1]. This means that testing S ∈ I for a subset S ⊆ E
can be done in constant time and no other information on M can be queried. At the
end of this section, we treat the second part of Theorem 3, where a linear matroid
with explicit representation given and faster algorithms can be derived.

With the ellipsoid method, we compute a vertex x∗ of the base polytope PB(M)
intersected with the subspace {x ∈ R

n : Wx = β} in time poly(n + m log |∆|)
using [26, 20]. Recall that the base polytope is the convex hull of incidence vectors
of bases PB(M) = conv{χ(B) : B basis of M}. Theorem 2 implies that, if there
exists a basis A ∈ I of the matroid M with weight W (A) = β, then there exists a
such basis with

‖χ(A)− x∗‖1 ≤ (m∆)O(m). (3)

For α ∈ {−∆, . . . ,∆}m and S ⊆ E, let ℓα(S) ∈ N0 denote the number of elements
of weight α in S. In other words,

ℓα(S) = |{e ∈ E : W (e) = α}|.

The proximity condition (3) implies

∑

e∈E : W (e)=α

x∗e − (m∆)O(m) ≤ ℓα(A)

≤
∑

e∈E : W (e)=α

x∗e + (m∆)O(m).

We can guess the correct value ℓα(A) out of a set of (m∆)O(m) candidates for
each α. Since α ∈ {−∆, . . . ,∆}m this leaves a total number of (m∆)O(m)·O(∆)m =
∆O(∆)m vectors among one encodes the values ℓα(A) for each α. Assume that we
have one such candidate. Observe that the condition

∑

α

ℓα(A) = rank(M)

must be satisfied. We next consider the partition matroid Mp = (E, Ip) with
independent sets

I = {S ⊆ E : ℓα(S) ≤ ℓα,α ∈ {−∆, . . . ,∆}m} .

We are looking for a basis A of M that is also contained in Mp. This is a matroid
intersection problem for M ∩Mp and can be solved in time polynomial in n [16, 29],
see also [36]. All together, this shows that we can find a basis B of weightW (B) = β

or assert that no such basis exists, in time ∆O(∆)mnO(1). This proves the first part
of Theorem 3.
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3.1 Linear matroids

Linear matroids are matroids that can be defined by a matrix A over a field F, such
that the ground set E is the set of columns of A and X is an independent set if
these columns are linearly independent. If a matroid can be defined by a matrix
A over a field F, then we say that the matroid is representable over F. In this
paper, when we consider linear matroids, we always assume that the matrix A that
represents the matroid is also given on the input (along the independence testing
oracle). We assume, that F is either a finite field or the rationals. For a detailed
discussion regarding representation issues and its computational complexity we refer
the reader to [31, Section 3].

Camerini et al. [7] presented a randomized, pseudopolynomial time algorithm
to find a basis B of a linear matroid with weight w(B) exactly β in (∆n)O(1)

time. In our setting, this is the one-dimensional case, i.e., the case m = 1. This
method does not immediately yield an FPT algorithm in m and ∆, but it can be
combined with our proximity bound leading to one and improving on the running
time of the previous method. This uses the pseudopolynomial time algorithm as a
black box and for matroids where a deterministic variant is known, e.g. for graphic
matroids [4], our algorithm is also deterministic. However, for general matroids
given by an independence testing oracle, it is known that a pseudopolynomial time
algorithm cannot exist [14].

We use a variant of a standard method of aggregating all m constraints into one
single constraint w(B) = β, see, e.g. [25], which can be done more efficiently when
the search space is bounded due to proximity. To this end, suppose there is an
algorithm that, for a given matroid M = (E, I) with weights w : E → {−∆, . . . ,∆}
and a target α ∈ N finds a basis B of M with w(B) = α in time (n∆)O(1). We
will show that for the same matroid M , with a multidimensional weight W : E →
{−∆, . . . ,∆}m and a target β ∈ Z

m one can find a basis B with W (B) = β in
time (m∆)O(m2)nO(1). Let x∗ be a vertex to the matroid base polytope PB(M)
intersected with {x ∈ R

E : Wx = β}. Let A be the basis with W (A) = β that is
close to x∗ as guaranteed by Theorem 2. We write ⌊x∗⌉ for the vector derived from
x∗ by rounding each component to the closest integer and set

Γ := ‖χ(A)− ⌊x∗⌉‖1 ≤ 2‖χ(A)− x∗‖1 ≤ (m∆)O(m).

The first inequality follows from the fact that when |χ(A)i−x∗i | < 1/2 then rounding
will decrease the distance in this dimension, and otherwise, it will increase it by at
most 1. Since we do not know A, we also do not know the value of Γ, but we can
obtain it through guessing.

Let B be any basis with ‖χ(B)− ⌊x∗⌉‖1 = Γ and define

λ := (1, (2Γ∆+ 1), (2Γ∆+ 1)2, . . . , (2Γ∆ + 1)m−1) ∈ Z
m.

We argue that W (B) = β if and only if λTW (B) = λTβ. Since the other direction
is trivial, assume that λTW (B) = λTβ. Inductively, one can conclude that also
W (B)i = βi for i = 1, 2, . . . ,m: because all j < i satisfy this equality by induction
and all j > i are multiplied by a higher power of 2Γ∆+1 than constraint i. Hence,
one has

W (B)i ≡ βi mod 2Γ∆+ 1.

Further, W (B)i and βi =W (A)i are both in {W ⌊x∗⌉−Γ∆, . . . ,W ⌊x∗⌉+Γ∆} and
therefore the modulo operator is a bijection and it follows that W (B)i = βi.

It is not enough to run the pseudopolynomial time algorithm with λTW (B) =
λTβ, since we also need to enforce that ‖χ(B) − ⌊x∗⌉‖1 = Γ. Towards this, let
w(e) = w1(e) + (2n+ 1)w2(e) be the one-dimensional weight of element e, where

w1(e) = (1− 2⌊x∗e⌉) and w2(e) = λTW (e).

7



Further, let
α := (Γ− ‖⌊x∗⌉‖1) + (2n+ 1) · λTβ

be the target weight. Let B be a basis. We argue that w(B) = α if and only if
‖χ(A) − ⌊x∗⌉‖1 = Γ and W (B) = β. One has the following connection between
w1(B) and ‖χ(B)− ⌊x∗⌉‖1.

w1(B) + ‖⌊x∗⌉‖1 =
∑

e∈E

χ(B)e · (1 − 2⌊x∗e⌉) + ⌊x∗e⌉

=
∑

e∈E

χ(B)e + ⌊x∗e⌉ − 2χ(B)e⌊x
∗
e⌉

= ‖χ(B)− ⌊x∗e⌉‖1,

where the last inequality follows because a+b−2ab = |a−b| for a, b ∈ {0, 1}. Thus,
‖χ(A) − ⌊x∗⌉‖1 = Γ and W (B) = β implies w(B) = α. For the other direction
assume that w(B) = α. Then

w1(B) ≡ w(B) ≡ β ≡ Γ− ‖⌊x∗⌉‖1 mod 2n+ 1.

Since both sides are in {−n, . . . , n}, it follows that w1(B) = Γ−‖⌊x∗⌉‖1 and further
λTW (B) = w2(B) = λTβ, which means that W (B) = β. Thus, it suffices to run
the pseudopolynomial time algorithm with w and α. The maximum weight given to
the algorithm is n · O(∆Γ)m = n · (m∆)O(m2), which leads to the claimed running
time.

4 From sensitivity to proximity

In this section, we show how to obtain the proximity bound in Theorem 2 from
Theorem 1. We assume that W ∈ Z

m×n is a matrix with ‖W‖∞ ≤ ∆. Let A be a
basis of M = (E, I) and β =W (A) ∈ Z

m. Furthermore, let x∗ ∈ R
n be a vertex of

the polytope
PB(M) ∩ {Wx = β}. (4)

The goal is to show that there exists a basis A′ of M with weight W (A′) = β that
is close to x∗.

The next Lemma shows something weaker, namely that there exists a basis close
to x∗ whose weight might violate the target β. But since it is close, it does not
violate this target by much. The lemma essentially follows from the fact that the
characteristic vectors of two bases χ(B1) and χ(B2) of M are neighboring vertices
of PB(M) if and only if |B1 ∩B2| = rank(M)− 1, see, e.g. [36, Theorem 40.6].

Lemma 5. Let x∗ ∈ PB(M) and F ⊆ PB(M) be the unique face of PB(M) of
minimal affine dimension containing x∗. Suppose dim(F ) = d. There exists a basis
B of M with χ(B) ∈ F with

‖χ(B)− x∗‖1 ≤ d.

Proof. The proof is by induction on dim(F ) = d. If d = 0, then x is an integer
vector and therefore the characteristic vector of a basis. Now, we suppose that
d ≥ 1. The face F is defined by setting all inequalities of the base polytope to
equality that are satisfied by x∗ with equality. The point x∗ lies in the relative
interior of F . This means that it satisfies all other inequalities of PB(M) strictly.

The face F contains two different adjacent vertices u, v ∈ F ∩ Z
n of PB(M).

Their difference u−v ∈ {0,±1}n satisfies ‖u−v‖1 = 2, see, e.g. [36, Theorem 40.6].
We can assume that ‖u − x∗‖1 ≤ ‖v − x∗‖1 holds, otherwise swap u and v. For
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λ > 0 small enough, one has x∗ + λ(u − v) ∈ F . Let λ′ > 0 be maximal with
x∗ +λ′(u− v) ∈ F . Since also x∗ −λ′(u− v) ∈ F and F ⊆ [0, 1]n one has λ′ ≤ 1/2.
Furthermore, the point y′ = x∗ + λ′(u − v) lies on a face F ′ ⊂ F of PB(M) of
dimension dim(F ′) ≤ d− 1. By induction, there exists an integer point z ∈ F ′ ∩Z

n

with ‖z − y′‖1 ≤ d − 1. The triangle inequality implies that the basis B with
χ(B) = z satisfies the assertion.

Proof of Theorem 2. Since x∗ is a vertex solution, it must lie on a d dimensional face
of PB(M) with d ≤ m. By Lemma 5 there is an integer point χ(B) ∈ PB(M) ∩ Z

n

with ‖χ(B) − x∗‖1 ≤ d ≤ m. Thus, by Theorem 1 there exists a basis A′ with
W (A′) = W (A) and |A′ ⊕ B| ≤ (2m∆)12m‖W (B) −W (A)‖1 and by the triangle
inequality

‖χ(A′)− x∗‖1 ≤ ‖χ(A′)− χ(B)‖1 + ‖χ(B)− x∗‖1

≤ (2m∆)12m · (m∆) +m

≤ (2m∆)13m

5 Sensitivity

We now show Theorem 1, the main result of this paper. We first show the 1-
dimensional case, m = 1. The case m ≥ 2 builds on the same important structural
theorem on weighted matroids that is laid out in the first part of this section but
also requires some further techniques from convex and polyhedral geometry.

5.1 One constraint

Recall that the elements of the ground set have integer weightsw : E → {−∆, . . . ,∆}.
We first explain how Theorem 1 follows from the following assertion on weighted
matroids.

Theorem 6. Let A,B ∈ I be disjoint with |A| = |B|, and let w : E → {−∆, . . . ,∆}
be integer weights with |w(A) − w(B)| ≤ µ. If |A| = |B| ≥ (2 · ∆ + 1)5 + µ then
there exists A′ ∈ I, A′ 6= A with

w(A′) = w(A) and |A′| = |A|.

Proof of Theorem 1 for m = 1. Given a basesA,B, let µ ∈ N0 with |w(A)−w(B)| ≤
µ and suppose that A has smallest symmetric difference with B among all bases
of weight w(A). Consider A′ = A \ (A ∩ B) and B′ = B \ (A ∩ B) and the minor
M ′ = (A′ ∪B′, I ′), where

I ′ = {I \ (A ∩B) : I ∈ I, (A ∩B) ⊆ I ⊆ (A ∪B)}.

The rank of M ′ is |A \ B|. If |A ⊕ B| ≥ (2 ·∆+ 1)5 + µ, then Theorem 6 implies
that there exists a basis C′ of M ′ different from A′ with weight w(C′) = w(A′).
This yields a basis

C′ ∪ (A ∩B) of weight w(C′ ∪ (A ∩B)) = w(A)

of the matroid M that has more elements in common with B than A. This is a
contradiction to the minimality of the symmetric difference of A and B.

The rest of this section is devoted to a proof of Theorem 6. We begin by showing
a simple observation.
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Proposition 7. Let S be a finite set and w : S → {−∆, . . . ,∆} be integer weights
with

|w(S)| = µ. (5)

Denote the set of non-negative elements by S+ = {s ∈ S : w(s) ≥ 0}. Let S1, . . . , Sℓ

be a partitioning of S into subsets of S. There exists an index i such that

|S+ ∩ Si| ≥
|S| − µ

ℓ · (∆ + 1)
.

Proof. Equation (5) implies

|S+| ≥ (|S| − µ)/(∆ + 1).

By an averaging argument, there exists a set Si that contains at least (|S| − µ)/(ℓ ·
(∆ + 1)) many elements of S+.

Lemma 8. Let A,B ∈ I be disjoint with |A| = |B| = k and let w : E → {−∆, . . . ,∆}
be integer weights with |w(A)−w(B)| ≤ µ. There exist subsets A′ ⊆ A and B′ ⊆ B
of equal cardinality such that

i) A \A′ ∪B′ ∈ I,

ii) |A′| = |B′| ≥ (k − µ)/(2 ·∆+ 1)2 and

iii) w(a) ≥ w(b) for each a ∈ A′ and b ∈ B′.

Proof. Let a1, . . . , ak be an ordering of A such that w(ai) ≥ w(ai+1) for all i.
Furthermore, let Aα = {a ∈ A : w(a) = α} for α = −∆, . . . ,∆. The Aα are
a partitioning of A = A−∆ ∪ · · · ∪ A∆. From this we construct a partitioning
B−∆ ∪ · · · ∪B∆ of B such that, for each j ∈ {−∆, . . . ,∆} one has

Bj ∪Aj+1 ∪ · · · ∪ A∆ ∈ I.

The existence of such a partitioning B−∆ ∪ · · · ∪ B∆ of B is guaranteed by the
exchange property of the matroid, specifically to the sets

Aj+1 ∪ · · · ∪ A∆ ∈ I and B \ (B−∆ ∪ · · · ∪Bj−1) ∈ I. (6)

If B−∆, . . . , Bj−1 have been constructed, then Bj ⊆ B is a subset of cardinality
|Aj | of the right independent set in (6) that can be added to Aj+1 ∪ · · · ∪ A∆.

Now let b1, . . . , bk be any ordering of B such that the elements of Bj come before
the elements of Bj+1 for each j. In the following, we refer to a tuple aibi as an edge.
We apply Proposition 7 to the set of edges S = {aibi : i = 1, . . . , k} and the weight
function w′ : S → {−2 ·∆, . . . , 2 ·∆} defined by the difference of weights

w′(aibi) = w(ai)− w(bi).

The partitioning of S is according to the value of the ai. Formally,

S = S−∆ ∪ · · · ∪ S∆, where Sα = {aibi : w(ai) = α}.

Proposition 7 now shows that there exists an index j ∈ {−∆, . . . ,∆} such that Sj

contains at least
k − µ

(2∆ + 1)2

non-negative edges aibi. Let B′ ⊆ Bj be the corresponding end-nodes of these edges
on the side of B. The following is an independent set

B′ ∪ Aj+1 ∪ · · · ∪ A∆,

10



simply because Bj ∪ Aj+1 ∪ · · · ∪ A∆ ∈ I. Since A is independent, there exists a
subset Ã ⊆ A−∆ ∪ · · · ∪ Aj such that

Ã ∪B′ ∪ Aj+1 ∪ · · · ∪A∆

is an independent set of cardinality |A| = k. Let

A′ = A \ (Ã ∪Aj+1 ∪ · · · ∪ A∆).

Clearly, we have |A′| = |B′| ≥ (k − µ)/(2∆ + 1)2 and

(A \A′) ∪B′ ∈ I.

The crucial observation is that all elements in A′ have weight at least j and all
weights in B′ have weights at most j.

A subset S ⊆ E of the ground set is called unicolor, if w(x) = w(y) for each
x, y ∈ S. The following is a version of Lemma 8 guaranteeing an exchange with
unicolor sets.

Corollary 9. Let A,B ∈ I be disjoint with |A| = |B| = k and let w : E →
{−∆, . . . ,∆} be integer weights with |w(A)−w(B)| ≤ µ. There are unicolor subsets
A′ ⊆ A and B′ ⊆ B of equal cardinality such that

i) A \A′ ∪B′ ∈ I,

ii) |A′| = |B′| ≥ (k − µ)/(2 ·∆+ 1)4,

iii) w(a) ≥ w(b) for each a ∈ A′ and b ∈ B′.

Proof. Let A(1) ⊆ A and B(1) ⊆ B be the sets obtained from Lemma 8, which are
not unicolor, but satisfy all other required properties. Further, |A(1)| = |B(1)| ≥
(k − µ)/(2∆ + 1)2. At least |B(1)|/(2 · ∆ + 1) elements of B(1) have the same
weight. By Lemma 4 we can thus restrict to this unicolor subset B(2) ⊆ B(1) with
a corresponding subset A(2) ⊆ A(1) guaranteeing

|A(2)| = |B(2)| ≥ (k − µ)/(2∆ + 1)3.

Again, by restricting to the largest unicolor subset of A(2) we have A(3) ⊆ A(2) and
B(3) ⊆ B(2) both unicolor and

|A(3)| = |B(3)| ≥ (k − µ)/(2∆ + 1)4.

Proof of Theorem 6. Corollary 9 implies that there exist two unicolor sets A+ ⊆ A
and B+ ⊆ B of equal cardinality at least 2 ·∆ such that

• |A+| = |B+|,

• w(a) ≥ w(b) for each a ∈ A+ and b ∈ B+, and

• (A \A+) ∪B+ ∈ I.

By symmetry, there also exist unicolor setsA− ⊆ A and B− ⊆ B of equal cardinality
at least 2 ·∆ such that

• |A−| = |B−|,

• w(a) ≤ w(b) for each a ∈ A+ and b ∈ B+, and

• (A \A−) ∪B− ∈ I.

11



Let p = w(a+) − w(b+) ∈ {0, . . . ,∆} be the weight of the edges a+b+, a+ ∈ A+,
b+ ∈ B+. Similarly, let q ∈ {0, . . . ,∆} such that −q is the common weight of the
edges a−b−, a− ∈ A−, b− ∈ B−. If p = 0 then one has

w
(
(A \A+) ∪B+

)
= w(A).

This is an independent set of cardinality |A| and weight w(A), which is what we
want. Similarly, when q = 0 then the assertion follows trivially. Hence, assume for
the remainder of the proof that p, q ≥ 1.

Since all four sets are of cardinality at least 2 ·∆, we can assume, by downsizing
(Lemma 4) if necessary, that

|A+| = |B+| = 2q and |A−| = |B−| = 2p.

We next consider the fractional point y∗

y∗ =
1

2
χ
(
(A \A+) ∪B+

)
+

1

2
χ
(
(A \A−) ∪B−

)

= χ(A)−
1

2

(
χ(A+)− χ(B+) + χ(A−)− χ(B−)

)
.

Clearly, y∗ ∈ PB(M) and the weight of y∗ is the same as the weight of A, i.e.,

wTy∗ = w(A) −
1

2
(−p) · 2 · q −

1

2
q · 2 · p

= w(A).

Since A+, B+, A−, B− 6= ∅ one has y∗ 6= χ(A). For α ∈ {−∆, . . . ,∆}, let us denote
the elements of weight α by Eα = {e ∈ E : w(e) = α}. We next argue that the sum
of the components of y∗ corresponding to Eα are integral for each α ∈ {−∆, . . . ,∆}.
This follows from the fact that the sets A+, B+, A− and B− are unicolor and of
even cardinality, implying that

χ(Eα)
T
(
χ(A+)− χ(B+) + χ(A−)− χ(B−)

)

is an even integer. Consequently one has for each α ∈ {−∆, . . . ,∆}

χ(Eα)
Ty∗ ∈ N0.

We next consider the partition matroid Mp = (E, Ip) with

Ip =
{
I ⊆ E : |I ∩ Eα| ≤ χ(Eα)

Ty∗, α ∈ {−∆, . . . ,∆}
}
.

The corresponding matroid polytope P (Mp) is defined by the inequalities
∑

e∈Eα
xe ≤

∑
e∈Eα

y∗e , α ∈ {−∆, . . . ,∆}
xe ≥ 0, e ∈ E.

(7)

The point y∗ satisfies all rank-constraints in (7) with equality. The crucial observa-
tion is now the following.

Each y ∈ PB(M) ∩ PB(Mp) that satisfies the rank constraints in (7)
with equality is of weight w(y) = w(A).

The matroid intersection polytope PB(M)∩PB(Mp) is integral [16, 29], see also [36,
Theorem 41.12]. The fractional point y∗ is therefore in the convex hull of at least
two integral vectors that are also tight at the rank inequalities in (7). One of them
corresponds to the characteristic vector χ(A′) of an independent set A′ different
from A. The cardinality of this independent set is equal to the one of A, since the
sum of the right-hand-sides of the rank constraints in (7) is equal to |A| and χ(A′)
satisfies all these constraints with equality.
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Figure 2: Visualization of the proof of Lemma 13

5.2 Several constraints

We start by stating two lemmas on cones generated by small discrete vectors. Recall
that the convex cone generated by a set of vectors X ∈ R

m is defined as

cone(X) =

{
∑

x∈X

λxx : λx ≥ 0, x ∈ X

}
⊆ R

m.

A cone is pointed if 0 is a vertex of the cone and flat otherwise.

Lemma 10. Let X ⊆ {−∆, . . . ,∆}m such that C = cone(X) is pointed. Then
there is a halfspace H = {x ∈ R

m : dTx ≥ 0} with C ∩ H = {0} defined by some
d ∈ Z

m with
‖d‖∞ ≤ ∆mmm/2+1.

Proof. One may assume without loss of generality that C has exactly dim(C) ≤ m
facets. Otherwise, the origin is a vertex of another cone containing C that is defined
by dim(C) facets of C with linearly independent normals. The vector d can then
be taken as the sum of the facet normals of C, each of which is up to scaling fully
defined by being orthogonal to the dim(C)− 1 vectors in X spanning the facet. By
Cramer’s rule and Hadamard’s bound, for each face normal one can take an integer
vector with entries bounded by ∆mmm/2.

Lemma 11. Let X ⊆ {−∆, . . . ,∆}m and x ∈ X such that

−x ∈ cone(X \ {x}).

Then we can write −λxx =
∑

y∈X\{x} λyy for some λ ∈ Z
X
≥0 with at most m + 1

non-zero components and
‖λ‖∞ ≤ ∆mmm/2.

Proof. By a variant of Carathéodory’s Theorem, see [36, Theorem 5.2], we may
assume without loss of generality thatX\{x} are linearly independent, in particular,
|X | ≤ m + 1. The assertion follows immediately from applying Cramer’s rule and
Hadamard’s bound.

In analogy to the one-dimensional case, we call a set S ⊆ E unicolor, ifW (a) =W (b)
for all a, b ∈ S. The following is a multidimensional analogue of Lemma 8.

Lemma 12. Let A,B ∈ I be disjoint with |A| = |B| = k and let W : E →
{−∆, . . . ,∆}m be weight vectors with ‖W (A)−W (B)‖1 ≤ µ. Further, let d ∈ Z

m.
There exist unicolor sets A′ ⊆ A, B′ ⊆ B of equal cardinality such that

i) A \A′ ∪B′ ∈ I,

13



ii) |A′| = |B′| ≥ k−‖d‖1µ
(2‖d‖1∆+1)2(2∆+1)2m , and

iii) dTW (a) ≥ dTW (b) for each a ∈ A′ and b ∈ B′.

Proof. We apply Lemma 8 for the single-dimensional weight function

w(e) = dTW (e), e ∈ E.

Then |w(A)−w(B)| ≤ ‖d‖1 · µ and we obtain sets A(1) ⊆ A and B(1) ⊆ B of equal
cardinality with

1) A \A(1) ∪B(1) ∈ I,

2) |A(1)| = |B(1)| ≥ (k − ‖d‖1µ)/(2‖d‖1∆+ 1)2, and

3) w(a) ≥ w(b) for all a ∈ A(1), b ∈ B(1).

Note that there exists a B(2) ⊆ B(1) with at least |B(1)|/(2∆ + 1)m elements e of
the same weight W (e). Via the downsizing (Lemma 4) we can restrict to B(2) and a
corresponding subset of A(2) ⊆ A(1) while still satisfying properties 1) and 3). Next,
we observe that there exists A(3) ⊆ A(2) with at least |A(2)|/(2∆ + 1)m elements e
of the same weight W (e). Downsizing again, we obtain two unicolor sets A(2), B(2)

that satisfy properties 1) and 3) of cardinality

|A(2)| = |B(2)| ≥
k − ‖d‖1µ

(2‖d‖1∆+ 1)2 · (2∆ + 1)2m
.

Thus, the sets A(2), B(2) satisfy all required properties.

Lemma 13. Let A,B ∈ I be disjoint with |A| = |B| = k, and µ = ‖W (A) −
W (B)‖1. Then there are sets

A0, A1, . . . , Aℓ ⊆ A and B0, B1, . . . , Bℓ ⊆ B, (8)

all unicolor, such that

i) A \Ai ∪Bi ∈ I for all i,

ii) |Ai| = |Bi| ≥ k/(2m∆)10m − µ for all i,

iii) −δ0 ∈ cone({δ1, . . . , δℓ}), where δi =W (a)−W (b) for all a ∈ Ai, b ∈ Bi.

Proof. We construct the sets iteratively. A0 ⊆ A and B0 ⊆ B can be created from
Lemma 12 using d = (0, 0, . . . , 0).

Suppose we already have A0, . . . , Ai and B0, . . . , Bi and that these sets satisfy
i) and ii). If C = cone({δ0, . . . , δi}) is flat then it contains some non-zero x, y with
x+ y = 0. In particular, there exists λ ∈ R

i+1
≥0 with

∑i
j=0 λjδj = 0 and λk > 0 for

some k ∈ {0, 1, . . . , i}. After swapping A0, Ak and B0, Bk in (8), the sequence of
sets also satisfies iii).

Assume now that C is pointed. From Lemma 10 it follows that for some d ∈ Z
m

with ‖d‖∞ ≤ (2∆)mmm/2+1 the halfspace

H = {x ∈ R : dTx ≥ 0}
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intersects C exactly in 0. By applying Lemma 12, we obtain unicolor sets Ai+1, Bi+1

satisfying i) and

|Ai+1| = |Bi+1| ≥
k − µ‖d‖1

(2∆‖d‖1 + 1)2(2∆ + 1)2m

≥
k

(4∆‖d‖1)2(4∆)2m
− µ

≥
k

(4∆(2∆)mmm/2+2)2(4∆)2m
− µ

≥
k

(2∆m)10m
− µ

thus also satisfying iii). Furthermore, if δi+1 = 0, then, after swapping A0, Ai+1

and B0, Bi+1 in (8), the sequence of sets also satisfies iii). Otherwise, δi+1 ∈ H
must be different from δ1, . . . , δi /∈ H . Since there are finitely many values for δi,
the procedure will ultimately terminate and therefore eventually satisfy (iii).

The proof of the multidimensional sensitivity theorem

As in the one-dimensional case, Theorem 1 reduces to the following statement by
repeating the arguments from Section 5.1.

Lemma 14. Let A,B ∈ I disjoint with |A| = |B| and let W : E → {−∆, . . . ,∆}m

be a multidimensional weight function with ‖W (A)−W (B)‖1 ≤ µ , where µ ∈ N+.
If

|A| = |B| ≥ (2m∆)12·mµ

then there exists A′ ∈ I, A′ 6= A with

W (A′) =W (A) and |A′| = |A|.

Proof. From Lemma 13 we obtain unicolor sets Ai, Bi, i = 0, 1, . . . , ℓ with

1. A \Ai ∪Bi ∈ I,

2. |Ai| = |Bi| ≥ (2m∆)2m − 1,

3. −δ0 ∈ cone({δ1, . . . , δℓ}), where δi =W (b)−W (a) for each b ∈ Bi and a ∈ Ai.

Due to Lemma 11 we may assume that ℓ ≤ m and there exists λ ∈ Z
ℓ+1
≥0 \ {0}

with
∑ℓ

i=0 λiδi = 0 and ‖λ‖∞ ≤ (2∆)mmm/2. Apply downsizing (Lemma 4) to
each Ai, Bi, to obtain an arbitrary A′

i ⊆ Ai, |A′
i| = (ℓ + 1)λi and a corresponding

B′
i ⊆ Bi with |B′

i| = |A′
i| and A \ A′

i ∪ Bi ∈ I. We proceed as in the case with a
single equality constraint and refer the reader to it for details. It holds that

y∗ =

ℓ∑

i=0

1

ℓ+ 1
χ(A \A′

i ∪B
′
i)

is in PB(M), satisfies
∑

e∈E y
∗
e = rank(M), Wy∗ = W (A) and has an integral

number of elements of each weight vector. Thus, y∗ must be a convex combination
of bases of M , all of which have weight W (A) and since y∗ 6= χ(A) not all of them
can be equal to A.
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6 Applications

In this section we give specific examples of problems that can be cast as finding a
basis of a matroid subject to m constraints, each of which have one of the following
forms.

• Equality constraint: given w : E → {−∆, . . . ,∆} and β ∈ Z, require w(B) =
β.

• Inequality constraint: given w : E → {−∆, . . . ,∆} and β ∈ Z, require w(B) ≤
β, or alternatively w(B) ≥ β.

• Congruence constraints: given p ∈ {1, 2, . . . ,∆}, w : E → {0, 1, . . . , p − 1},
and β ∈ {0, 1, . . . , p− 1}, require w(B) ≡ β mod p.

While we proved our FPT algorithm only for the first type, it is easy to reduce the
other two to it. This follows from standard constructions similar to slack variables.
To this end, consider a matroid M = (E, I). Suppose for a given weight function
w : E → {−∆, . . . ,∆} and β ∈ Z, we are searching for a basis B with w(B) ≤ β
and possibly other linear constraints (with one of the three types from above). We
define M ′ as the direct sum of M and a rank n uniform matroid with 2n∆ elements.
The weight function w is extended by setting an arbitrary half of the elements in
the uniform matroid to weight zero and the other half to weight 1. Any other linear
constraint is extended with zero coefficients for the new elements, which means that
they do not affect it. It follows easily that a basis B of the original matroid M can
be extended to a basis B′ of M ′ that satisfies w(B′) = β if and only if w(B) ≤ β.

Now suppose we are given p ∈ {1, 2, . . . ,∆}, w : E → {0, 1, . . . , p − 1}, and
β ∈ {0, 1, . . . , p − 1} and are searching for a basis B with w(B) ≡ β mod p and
possibly other constraints. Similar to before, we obtain M ′ as the direct sum of
M with a uniform matroid of rank n over 2n elements. The weight function w is
extended such that n many new elements have weight −p and 0 each. Again, any
other linear constraint is extended with zero coefficients for the new elements. Then
a basis B of M is extendible to a basis B′ of M ′ that satisfies w(B′) = β if and
only if w(B) ≡ β mod p.

Very recently, matroid problems with labels from an abelian group have gained
some attention. Liu and Xu [30] study the following problem.

Group-Constrained Matroid Base
Input: Matroid M = (E, I), a labelling ψ : E → Γ for an abelian group (Γ,⊙),
and g ∈ Γ.
Task: Find base B of M with g = ψ(B) :=

⊙
b∈B ψ(b)

Liu and Xu prove that if Γ = Zm and m is either product of two primes or
a prime power, then the problem can be solved in FPT time in m. Our result
generalizes this to all finite abelian groups.

Corollary 15. If (Γ,⊙) is a finite abelian group then Group-Constrained Matroid
Base can be solved in f(m) · nO(1) time, for m = |Γ|.

Proof. Every finite abelian group is isomorphic to the direct product of cyclic
groups. Thus, we may assume without loss of generality that Γ = Zm1

× Zm2
×

· · · × Zmℓ
, where m = m1 · . . . ·mℓ for prime powers m1,m2, . . . ,mℓ ≤ m. We can

therefore model the problem using ℓ ≤ log2m congruency constraints with entries
bounded by m.

Similar to our results, Liu and Xu’s techniques are based on proximity state-
ments. However, their techniques rely on specific groups. More precisely, Liu and
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Xu [30] prove that their techniques would work if a certain conjecture in additive
combinatorics is true. The conjecture is proven when m is either product of two
primes or a prime power, which allows them to obtain the result. In that matter,
our techniques allow us to circumvent this issue.

Motivated by Liu and Xu’s work, Hörsch et al. [21] considered the problem
in the setting of non-finite groups. Among other problems, they show an FPT
algorithm for the Group-Constrained Matroid Problem with g = 0 parameterized
by |Γ| in a special case when the matroid is GF(q)-representable for a prime power
q. Similarly, to [30] their techniques also rely on an additive combinatorics result
of Schrijver and Seymour [37], which prohibits their techniques from working in
general finite abelian groups.

Budgeted matroid problems, in which one has to find an independent set subject
to one or more budget constraints and possibly maximizing a profit function, have
been studied with a great extend towards approximation schemes, see e.g. [19, 12,
13]. Finding bases is generally at least as hard as finding independent sets, since
one can always fix the cardinality of the solution therefore reducing to bases. In the
area of FPT algorithms, Marx [31] devised an algorithm for these type of problems,
specifically motivated by the problem of finding a feedback edge set. Given a graph
G(V,E) a feedback edge set is a subset X of edges such that G(V,E \X) is acyclic.

Feedback Edge Set with Budget Vectors
Input: A graph G = (V,E), a vector W (e) ∈ Z

m
≥0 for each e ∈ E, a budget

b ∈ Z
m
≥0.

Task: Find a minimum cardinality feedback edge set X such that W (X) ≤ b.

Note that for m = 1, this is a weighted variant of Feedback Edge Set which can
be solved in polynomial time by a Greedy algorithm [31], however, for unbounded m
and ∆ = ‖W‖∞ the problem is NP-hard. Marx [31] presented a randomized FPT
algorithm in the parameters m, ∆, and |X |. A direct application of our theorem is
that a weaker parameterization that depends on just m and ∆ suffices.

Corollary 16. Feedback Edge Set with Budget Vectors can be solved in (m∆)O(m2) ·
nO(1) randomized time.

Proof. The problem is equivalent to finding a spanning forest F with W (F ) ≥
W (E)− b, which can be solved in the mentioned time using Theorem 3.

Fairness considerations have inspired new variants of many problems, where
elements belong to different groups and each group needs to be represented in the
solution to some level [6, 8, 5, 3, 2, 23]. For example Abdulkadiroğlu and Sönmez [1]
address the assignment of students to schools, where fairness constraints are selected
to achieve racial, ethnic, and gender balance. For similar models see also [24, 35].

Matching with Group Fairness Constraints
Input: A bipartite graph G = (A ∪ B,E), where each b ∈ B belongs to
a set of groups G(b) ⊆ {1, 2, . . . ,m}, and a quote qi ∈ Z≥0 for each group
i = 1, 2, . . . ,m.
Task: Find a matching containing at least qi many elements b ∈ B with i ∈
G(b) for i = 1, 2, . . . ,m.

To the best of our knowledge, FPT algorithms have not been considered for this
problem before.

Corollary 17. Matching with Group Fairness Constraints can be solved in (m∆)O(m2)·
nO(1) randomized time.
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Figure 3: Example of high proximity and sensitivity in exact matroid intersection

Proof. Consider a transversal matroid defined on G with elements B. For each
b ∈ B let W (b) be the indicator vector of G(b) and β = q.

Partition matroids subject to equality constraints have been studied in the con-
text of block structure integer linear programming, albeit without an explicit ref-
erence to matroids. Specifically, this variant was studied under the name combina-
torial n-fold [27]. This has led to exponential improvements in the running time
of FPT algorithms for problems in computational social choice, in string problems
and more, see [27] for an overview. One concrete problem, that is captured by a
partition matroid with equality constraints is the Closest String Problem. In this
problem, one is given m strings, and the goal is to compute a string that minimizes
the maximum Hamming distance to any of the input strings. Gramm et al. [18]
design an FPT algorithm parameterized by m (see also [27]). Using our result, we
can obtain an FPT algorithm for the following more general problem.

Closest Base
Input: A matroid M = (E, I) with n elements and a subset of bases S :=
{B1, . . . , Bm}.
Task: Find the basis B (not necessarily in S) that minimizes maxi |B ⊕Bi|.

Corollary 18. Closest Base on representable matroids can be solved in mO(m2)nO(1)

randomized time.

This running time matches the best known running time for the Closest String
problem [27].

Proof. It is equivalent to minimize H = maxi |B \ Bi| = 1/2 · maxi |B ⊕ Bi|. We
start by guessing H . Note that H ≤ |E|/2, so only polynomially many guesses
are required. The weight vector W (e) ∈ {0, 1}m is defined as W (e)i = 0 if e ∈ Bi

and 1 otherwise. Further, we define the target vector β = (H,H, . . . , H). We then
use Theorem 3 to find a basis B with W (B) ≤ β.

7 Lower bound for matroid intersection

In this section, we remark that low proximity and sensitivity do not generalize to
matroid intersection, even for m = 1 and ∆ = 1. Our examples are based on
matchings in a bipartite graph G = (A ∪ B,E). Although matching in a bipartite
graph does not form an independent set in a single matroid, it can be represented
as a matroid intersection of two partition matroids, where one partition matroid
restricts the degree of each vertex in A to be at most one and the other does the
same for B.

We start with the example of a high sensitivity for matroid intersection.

Theorem 19. For infinitely many n ∈ N there exist matroids M = (I, E),M ′ =
(I ′, E) over the same set of elements and a weight function w : E → {0, 1}, such that
there exist exactly two two common bases B and B′ of both matroids that satisfy:

1. w(B) = 0 and w(B′) = 1,
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2. B ∩B′ = ∅ and |B| = |B′| = n/2.

Proof. For n even, we create an instance of bipartite matching consisting of a cycle
of length n that has a single edge of weight 1 and all others of weight 0, see also
left cycle in Figure 3. There are exactly two perfect matchings, which correspond
to the common bases of the two matroids and trivially satisfy the properties stated
in the theorem.

Next, we show an example of a high proximity for matroid intersection.

Theorem 20. For infinitely many n ∈ N there exist matroids M = (I, E),M ′ =
(I ′, E) and a weight function w : E → {0, 1} with a vertex solution x∗ to the
continuous relaxation x ∈ PB(M) ∩ PB(M

′), wTx = 1 such that there is a unique
common basis B of both M and M ′ with w(B) = 1 and B satisfies ‖x∗ −χ(B)‖1 =
3/4 · n.

Proof. For n a multiple of 4, consider an instance of bipartite matching similar to
the proof of Theorem 19, but now on a graph with two disjoint cycles of length n/2
each, each of which we can think of as the union of two perfect matchings. The first
cycle has a single edge of weight 1 and the second cycle has two edges of weight 1,
which appear in the same perfect matching. All other edges have weight zero, see
also Figure 3. Now suppose we want to find a perfect matching with total weight
equal to 1. The only such perfect matching, i.e., the only common basis of both
matroids, takes the perfect matching with the weight 1 edge in the first cycle and
the all-zero perfect matching in the second cycle. This is also a vertex solution for
the continuous relaxation, but there is a second vertex solution that takes each edge
of the second cycle 1/2 times and the all-zero perfect matching of the first cycle.
The distance between the two solutions is 3/4 · n.
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[27] Dušan Knop, Martin Kouteckỳ, and Matthias Mnich. Combinatorial n-fold
integer programming and applications. Mathematical Programming, 184(1):1–
34, 2020.

[28] Ariel Kulik and Hadas Shachnai. There is No EPTAS for Two-dimensional
Knapsack. Information Processing Letters, 110(16):707–710, 2010.

[29] Eugene L. Lawler. Matroid intersection algorithms. Mathematical program-
ming, 9(1):31–56, 1975.

[30] Siyue Liu and Chao Xu. On the congruency-constrained matroid base. In
Proceedings of IPCO, pages 280–293, 2024.

[31] Dániel Marx. A parameterized view on matroid optimization problems. The-
oretical Computer Science, 410(44):4471–4479, 2009.

[32] Ketan Mulmuley, Umesh V. Vazirani, and Vijay V. Vazirani. Matching is as
easy as matrix inversion. Combinatorica, 7(1):105–113, 1987.

[33] Christos H. Papadimitriou. On the Complexity of Integer Programming. Jour-
nal of the ACM (JACM), 28(4):765–768, 1981.

[34] Christos H. Papadimitriou and Mihalis Yannakakis. The Complexity of Re-
stricted Spanning Tree Problems. Journal of the ACM (JACM), 29(2):285–309,
1982.

[35] G.S. Sankar, A. Louis, M. Nasre, and P. Nimbhorkar. Matchings with Group
Fairness Constraints: Online and Offline Algorithms. In Proceedings of IJCAI,
pages 377–383, 2021.

[36] Alexander Schrijver. Combinatorial Optimization: Polyhedra and Efficiency,
volume 24. Springer, 2003.

[37] Alexander Schrijver and Paul D. Seymour. Spanning Trees of Different Weights.
Polyhedral combinatorics, 1:281–288, 1990.

[38] Evangelos Triantaphyllou and Alfonso Sánchez. A Sensitivity Analysis Ap-
proach for some Deterministic Multi-Criteria Decision-Making Methods. De-
cision sciences, 28(1):151–194, 1997.

21


	Introduction
	Our contribution
	Techniques

	Preliminaries
	FPT Algorithms
	Linear matroids

	From sensitivity to proximity
	Sensitivity
	One constraint
	Several constraints

	Applications
	Lower bound for matroid intersection

