
ar
X

iv
:1

70
4.

04
85

5v
1 

 [
cs

.C
C

] 
 1

7 
A

pr
 2

01
7

Fooling intersections of low-weight halfspaces

Rocco A. Servedio∗

Columbia University

Li-Yang Tan†

Toyota Technological Institute

April 18, 2017

Abstract

A weight-t halfspace is a Boolean function f(x) = sign(w1x1 + · · ·+ wnxn − θ) where each
wi is an integer in {−t, . . . , t}. We give an explicit pseudorandom generator that δ-fools any
intersection of k weight-t halfspaces with seed length poly(logn, log k, t, 1/δ). In particular, our
result gives an explicit PRG that fools any intersection of any quasipoly(n) number of halfspaces
of any polylog(n) weight to any 1/polylog(n) accuracy using seed length polylog(n). Prior to
this work no explicit PRG with non-trivial seed length was known even for fooling intersections
of n weight-1 halfspaces to constant accuracy.

The analysis of our PRG fuses techniques from two different lines of work on unconditional
pseudorandomness for different kinds of Boolean functions. We extend the approach of Harsha,
Klivans and Meka [HKM12] for fooling intersections of regular halfspaces, and combine this
approach with results of Bazzi [Baz07] and Razborov [Raz09] on bounded independence fool-
ing CNF formulas. Our analysis introduces new coupling-based ingredients into the standard
Lindeberg method for establishing quantitative central limit theorems and associated pseudo-
randomness results.
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1 Introduction

A halfspace, or linear threshold function (henceforth abbreviated LTF), over {−1, 1}n is a Boolean
function f that can be expressed as f(x) = sign(w1x1 + · · · + wnxn − θ) for some real values
w1, . . . , wn, θ. LTFs are a natural class of Boolean functions which play a central role in many areas
such as machine learning and voting theory, and have been intensively studied in complexity theory
from many perspectives such as circuit complexity [GHR92, Raz92, H̊as94, SO03], communication
complexity [Nis93, Vio15], Boolean function analysis [Cho61, GL94, Per04, Ser07, O’D14], property
testing [MORS09, MORS10], pseudorandomness [DGJ+10, MZ13, GKM15] and more.

Because of the limited expressiveness of a single LTF (even a parity function over two variables
cannot be expressed as an LTF), it is natural to consider Boolean functions that are obtained
by combining LTFs in various ways. Perhaps the simplest and most natural functions of this
sort are intersections of LTFs, i.e. Boolean functions of the form F1 ∧ · · · ∧ Fk where each Fj is an
LTF. Intersections of LTFs have been studied in many contexts including Boolean function analysis
[Kan14, She13a, She13b], computational learning (both algorithms [BK97, KOS04, KOS08, Vem10]
and hardness results [KS06, KS11]), and pseudorandomness [GOWZ10, HKM12]. We further note
that the set of feasible solutions to an {0, 1}-integer program with k constraints corresponds pre-
cisely to the set of satisfying assignments of an intersection of k LTFs; understanding the structure
of these sets has been the subject of intensive study in computer science, optimization, and combi-
natorics.

This paper continues the study of intersections of LTFs from the perspective of unconditional
pseudorandomness; in particular, we are interested in constructing explicit pseudorandom genera-
tors (PRGs) for intersections of LTFs. Recall the following standard definitions:

Definition 1 (Pseudorandom generator). A function Gen : {−1, 1}r → {−1, 1}n is said to δ-fool
a function F : {−1, 1}n → {−1, 1} with seed length r if

∣∣∣∣ E
U ′←{−1,1}r

[
F (Gen(U ′))

]
− E

U←{−1,1}n

[
F (U)

]∣∣∣∣ ≤ δ.

Such a function Gen is said to be a explicit pseudorandom generator that δ-fools a class F of n-
variable functions if Gen is computable by a deterministic uniform poly(n)-time algorithm and Gen

δ-fools every function F ∈ F .

1.1 Prior work

Before describing our results, we recall relevant prior work on fooling LTFs and intersections of
LTFs.

Fooling a single LTF. In [DGJ+10] Diakonikolas et al. showed that any Õ(1/δ2)-wise independent
distribution over {−1, 1}n suffices to δ-fool any LTF, and thereby gave a PRG for single LTFs with
seed length Õ(1/δ2) · log n. Soon after, [MZ13] gave a more efficient PRG for LTFs with seed length
O(log n + log2(1/δ)). They did this by first developing an alternative Õ(1/δ2) · log n seed length
PRG for regular LTFs; these are LTFs in which no individual weight is large compared to the total
size of all the weights (we give precise definitions later). [MZ13] built on this PRG for regular
LTFs using structural results for LTFs and PRGs for read-once branching programs to obtain their
improved O(log n+log2(1/δ)) seed length for fooling arbitrary LTFs. More recently, [GKM15] gave
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a PRG which δ-fools any LTF over {−1, 1}n using seed length O(log(n/δ)(log log(n/δ))2); this is
the current state-of-the-art for fooling a single LTF.

Since the approach of [MZ13] for fooling regular LTFs is important for our discussion in later
sections, we describe it briefly here. The [MZ13] PRG for regular LTFs employs hashing and other
techniques; its analysis crucially relies on the Berry–Esséen theorem [Ber41, Ess42]. Recall that the
Berry–Esséen theorem is an “invariance principle” for the distribution of linear forms; it (or rather,
a special case of it) says that for w a regular vector, the two random variables w ·U and w ·G, where
U is uniform over {−1, 1}n and G is drawn from the standard n-dimensional Gaussian distribution
N (0, 1)n, are close in CDF distance. Roughly speaking, the [MZ13] PRG analysis for τ -regular
LTFs proceeds by showing that the limited randomness provided by their generator is sufficient to
apply the Berry–Esséen theorem (over a certain set of roughly 1/τ2 independent random variables).
We give a more detailed description of the structure of the [MZ13] PRG in Section 2.

Fooling intersections of regular LTFs. Now we turn to results on fooling intersections of LTFs.
Essentially simultaneously with [MZ13] (in terms of conference publication), [HKM12] gave a PRG
for intersections of regular LTFs. Their PRG Õ((log k)8/5τ1/5)-fools any intersection of k many
τ -regular LTFs with seed length O((log n log k)/τ). As we discuss in in Section 2, the [HKM12]
generator has the same structure as the [MZ13] PRG for regular LTFs, but with different (larger)
parameter settings and a significantly more involved analysis. At the heart of the correctness
proof of the [HKM12] PRG is a new invariance principle that [HKM12] prove for k-tuples (w(1) ·
U , . . . , w(k) ·U) of regular linear forms, generalizing the Berry–Esséen theorem which as described
above applies to a single regular linear form. With this new invariance principle in hand, to
prove their PRG theorem [HKM12] argue (similar in spirit to [MZ13]) that the limited randomness
provided by their generator is sufficient for their new k-dimensional invariance principle.

Note that even the k = 1 case of the invariance principle (the Berry–Esséen theorem) does not
give a meaningful bound for non-regular linear forms. As a simple example, consider the trivial
linear form x1, which is highly non-regular: the two one-dimensional random variables U1 and G1,
where U1 is uniform over {−1, 1} and G1 is distributed according to N (0, 1), have CDF distance ≈
0.341. And indeed the analysis of the [HKM12] PRG only goes through for intersections of LTFs in
which all the LTFs are regular. So while the [HKM12] PRG has an extremely good (polylogarithmic)
dependence on the number of LTFs in the intersection, the regularity requirement means that the
[HKM12] PRG theorem cannot be applied, for example, to fool the class of intersections of LTFs
in which each weight is either 0 or 1.

The PRG of Gopalan, O’Donnell, Wu, and Zuckerman. Around the same time, [GOWZ10]
gave a PRG that δ-fools intersections of k arbitrary LTFs with seed length O((k log(k/δ) + log n) ·
log(k/δ)), and indeed δ-fools any depth-k size-s decision tree that queries LTFs at its internal
nodes with seed length O((k log(ks/δ) + log n) · log(ks/δ)). Their approach builds on the PRG of
[MZ13] for general LTFs; one central ingredient is a generalization of structural results for single
LTFs used in [MZ13] to k-tuples of LTFs. Both this generalization, and the read-once branching
program based techniques from [MZ13] (which are extended in [GOWZ10] to the context of k-tuples
of LTFs), necessitate a seed length which is at least linear in k. So while the [GOWZ10] PRG is is
notable for being able to handle intersections of general LTFs, their seed length’s linear dependence
in k means that their seed length is nΩ(1) whenever k = nΩ(1), and furthermore their result does
not give a non-trivial PRG for intersections of k ≥ n many LTFs.
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1.1.1 A conceptual challenge

We elaborate briefly on an issue related to the linear-in-k dependence of the [GOWZ10] gener-
ator discussed above. A standard approach to analyze non-regular LTFs, both in pseudoran-
domness and in other subfields of complexity theory such as analysis of Boolean functions and
learning theory [DS13, DRST14, DSTW14, DDS16, FGRW09, CSS16], is to reduce the analysis of
non-regular LTFs to that of regular LTFs via a “critical index” argument (see [Ser07]). Indeed,
most previous pseudorandomness results for classes involving non-regular LTFs and PTFs—general
LTFs [DGJ+10, MZ13], functions of LTFs [GOWZ10], degree-d PTFs and functions of such PTFs
[DKN10, MZ13, DDS14, DS14]—make use of such a reduction to the regular case. In working
with functions that involve k LTFs (or PTFs), this analysis (see [DDS14, GOWZ10]) involves
“multi-critical-index” arguments, originating in [GOWZ10], which necessitate an Ω(k) seed length
dependence; indeed, this linear-in-k dependence was highlighed in [HKM12] as a conceptual chal-
lenge to overcome in extending their results to intersections of k non-regular LTFs.

In this work we give the first analysis that is able to handle an interesting class of functions
involving k non-regular LTFs while avoiding this linear-in-k cost that is inherent to multi-critical-
index based arguments, and in fact achieving a polylogarithmic dependence on k.

1.2 Our main result: fooling intersections of low-weight LTFs

It is easy to see that every LTF f : {−1, 1}n → {−1, 1} has some representation as f(x) =
sign(w · x− θ) where the coefficients w1, . . . , wn are all integers; a standard way of measuring the
“complexity” of an LTF is by the size of its integer weights. It has been known at least since
the 1960s [MTT61, Hon87, Rag88] that every n-variable LTF has an integer representation with
max |wi| ≤ nO(n), and H̊astad has shown [H̊as94] that there are LTFs that in fact require maxwi =
nΩ(n) for any integer representation. However, in many settings, LTFs with small integer weights
are of special interest. Such LTFs are often the relevant ones in contexts such as voting systems or
contexts where, e.g., biological or physical constraints may limit the size of the weights. From a more
theoretical perspective, it is well known that sample complexity bounds for many commonly used
LTF learning methods, such as the Perceptron and Winnow algorithms, are essentially determined
by the size of the integer weights.

We say that f is a weight-t LTF if it can be represented as f(x) = sign(w · x− θ) where each
wi is an integer satisfying |wi| ≤ t. Note that arguably the simplest and most natural LTFs —
unweighted threshold functions, with the majority function as a special case — have weight 1.

Our main result is an efficient PRG for fooling intersections of low-weight LTFs:

Theorem 1 (PRG for intersections of low-weight LTFs). For all values of k, t ∈ N and δ ∈ (0, 1),
there is an explicit pseudorandom generator that δ-fools any intersection of k weight-t LTFs over
{−1, 1}n with seed length poly(log n, log k, t, 1/δ).

Recalling the results of [HKM12, GOWZ10] described in Section 1.1, prior to this work no ex-
plicit PRG with non-trivial seed length was known even for fooling intersections of n weight-1 LTFs
to constant accuracy. (In fact, no 20.99n-time algorithm was known for deterministic approximate
counting of satisfying assignments of such an intersection; since such an algorithm is allowed to in-
spect the intersection of halfspaces which is its input, while a PRG is “input-oblivious”, giving such
an algorithm is an easier problem than constructing a PRG.) In contrast, our result gives an explicit
PRG that fools any intersection of any quasipoly(n) number of LTFs of any polylog(n) weight to
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any 1/polylog(n) accuracy using seed length polylog(n). For any c > 0 our result also gives an
explicit PRG with seed length nc that fools intersections of exp(nΩ(1)) many LTFs of weight nΩ(1)

to accuracy 1/nΩ(1). Recalling the correspondence between intersections of LTFs and {0, 1}-integer
programs, our PRG immediately yields new deterministic algorithms for approximately counting
the number of feasible solutions to broad classes of {0, 1}-integer programs.

Our most general PRG result. We obtain Theorem 1 as an easy consequence of a PRG that fools
a more general class of intersections of LTFs. To describe this class we require some terminology.
We say that a vector w over Rn is s-sparse if at most s coordinates among w1, . . . , wn are nonzero.
We similarly say that a linear threshold function sign(w ·x−θ) is s-sparse if w is s-sparse. Following

[HKM12], we say that a linear form w = (w1, . . . , wn) with norm ‖w‖ :=
(∑n

i=1 w
2
i

)1/2
is τ -regular

if
∑n

i=1 w
4
i ≤ τ2‖w‖2, and we say that a linear threshold function sign(w · x− θ) is τ -regular if the

linear form w is τ -regular. Finally, we say that F : {−1, 1}n → {−1, 1} is a (k, s, τ)-intersection of
LTFs if F = F1 ∧ · · · ∧ Fk where each Fj is an LTF which is either s-sparse or τ -regular.

Our most general PRG result is the following:

Theorem 2 (Our most general PRG, informal statement). For all values of k, s ∈ N and τ ∈ (0, 1),
there is an explicit pseudorandom generator with seed length poly(log n, log k, s, 1/τ) that fools any
(k, s, τ)-intersection of LTFs to accuracy δ = poly(log k, τ).

In Section 4.1 we give the formal statement of Theorem 2 and show how Theorem 1 follows
from Theorem 2.

2 Our approach

As explained in Section 1.1, invariance-based arguments are not directly useful for our task of
fooling intersections of low-weight LTFs, since the invariance principle does not give a non-trivial
bound even for a single low-weight LTF. Nevertheless, we are able to show that a generator with the
same structure as the [MZ13, HKM12] generators (but now with slightly larger parameter settings
than were used in the [HKM12] generator) indeed fools any (k, s, τ)-intersection of LTFs. We do
this via an analysis that brings in ingredients that are novel in the context of fooling intersections of
LTFs; in particular, we use results of Bazzi [Baz07] and Razborov [Raz09] on bounded independence
fooling depth-2 circuits.

How are depth-2 circuits relevant to intersections of LTFs? A starting point for our work is to
re-express a (k, s, τ)-intersection of LTFs using a different representation, in which we replace each
s-sparse LTF by a CNF formula computing the same function over {−1, 1}n. The following is an
immediate consequence of the fact that any s-sparse LTF depends on at most s variables:

Fact 2.1. Let F be a (k, s, τ)-intersection of LTFs. Then F ≡ H ∧G, where

• H is the intersection of at most k many τ -regular LTFs.

• G is a width-s CNF formula with at most k · 2s clauses;

We refer to a function of the form H ∧ G as above as a (k, s, τ)-CnfLtf. We can thus restate
our goal as that of designing a PRG to fool any (k, s, τ)-CnfLtf: with this perspective it is not
surprising that pseudorandomness tools for fooling CNF formulas can be of use.
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2.1 The structure of our PRG

To describe our approach we need to explain the general structure of the PRG which is used in
[MZ13] for regular LTFs, in [HKM12] for intersections of regular LTFs, and in our work for (k, s, τ)-
intersections of LTFs. The construction uses an rhash-wise independent family H of hash functions
h : [n] → [ℓ], and an rbucket-wise independent generator outputting strings in {−1, 1}n, which we
denote G . The overall generator, which we denote Gen, on input (h,X(1), . . . ,X(ℓ)) outputs the
string Gen(h,X(1), . . . ,X(ℓ)) := Y ∈ {−1, 1}n, where Yh−1(b) = G (X(b))h−1(b) for all b ∈ [ℓ]. (Here
and elsewhere, for Y an n-bit string and S ⊆ [n] we write YS to denote the |S|-bit string obtained
by restricting Y to the coordinates in S.)

The [MZ13] PRG for τ -regular LTFs instantiates this construction with

ℓ = 1/τ2, rhash = 2, and rbucket = 4,

while the [HKM12] PRG for intersections of k many τ -regular LTFs takes

ℓ = 1/τ, rhash = 2 log k, and rbucket = 4 log k.

We state the exact parameter settings which we use to fool (k, s, τ)-intersections of LTFs in Section 4
(the specific values are not important for our discussion in this section).

2.2 Sketch of the [MZ13, HKM12] analysis

As our analysis (sketched in Section 2.3) builds on [MZ13, HKM12], in this subsection we sketch
the [MZ13, HKM12] arguments establishing correctness of the PRG Gen for regular LTFs and
intersections of regular LTFs.

A high-level sketch of the [MZ13] analysis showing that Gen fools any regular LTF F (x) =
sign(w · x− θ) is as follows: the hash function h : [n]→ [ℓ] partitions the n coefficients w1, . . . , wn
into ℓ buckets. The pairwise independence of h ← H and the regularity of w are together used
to show that each of the ℓ buckets receives essentially the same amount of “coefficient weight.”
The idea then is to view the sum w · Y , where Y is the output of the generator, as a sum of ℓ
independent random variables (note that the inputs X(1), . . . ,X(ℓ) ∈ {−1, 1}r to Gen are indeed
mutually independent), one for each bucket, and use the Berry–Esséen theorem on that sum.1 The
four-wise independence of G is used to ensure that each of the ℓ summands—the b-th summand
corresponding to wh−1(b)·Yh−1(b), the contribution from the b-th bucket—has the moment properties
that are required to apply the Berry–Esséen theorem. Note that in this analysis the Berry–Esséen
theorem is used as a “black box.”

Since [HKM12] have to prove the k-dimensional invariance principle that they use in place of
the Berry–Esséen theorem, their analysis is necessarily more involved, but at a high level it follows
a similar approach to the [MZ13] analysis sketched above. A sketch of their argument that Gen

fools any intersection F = F1 ∧ · · · ∧ Fk of regular LTFs is as follows:

1. [HKM12] first argue that for any smooth test function ψ : Rk → [0, 1]—replacing the “hard
threshold” function 1(v1 ≤ θ1)·1(v2 ≤ θ2)·· · · 1(vk ≤ θk), which corresponds to k-dimensional

1Note that if the weight vector w is non-regular, then it is in general impossible for any hash function, even a fully
independent one, to spread the coefficient weight out evenly among the ℓ buckets, and consequently the Berry–Esséen
theorem cannot be applied (as, intuitively, it requires that no individual random variable summand is “too heavy”
compared to the “total weight” of the sum). This is why the overall approach requires regularity.
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CDF distance—the pseudorandom distribution output by the generator fools the test function
ψ relative to an N (0, 1)n Gaussian input to ψ. This is done by

(a) first arguing (similar to [MZ13]) that the (2 log k)-wise independent hash function h←H
and the regularity of each LTF Fk together “spread the coefficient weight” of the k LTFs
roughly evenly among the ℓ buckets (we note that this part of the argument has nothing
to do with the function ψ);

(b) then a hybrid argument across the ℓ buckets, using the smoothness of ψ and moment
properties of the random variables corresponding to the ℓ buckets (which now follow
from the (4 log k)-wise independence of G ), is used to bound

∣∣∣∣ E
Y←Gen

[
ψ(w(1) · Y , . . . , w(k) · Y )

]
− E

G←N (0,1)n

[
ψ(w(1) ·G, . . . , w(k) ·G)

]∣∣∣∣ . (1)

(Such a hybrid argument is a central ingredient in the Lindeberg-style “replacement method”
proof of the Berry–Esséen theorem, and is also used in [HKM12]’s proof of their invariance
principle for intersections of k regular LTFs.) We note that multidimensional Taylor’s theorem
plays a crucial role in bounding the difference in expectation between ψ applied to two random
variables, which is done to “bound the distance” at each step of the hybrid.

2. Next [HKM12] use a particular smooth function ψ∗ based on a result of Bentkus [Ben90]
and a Gaussian surface area bound for intersections of k halfspaces due to Nazarov [Naz03]
to pass from fooling the smooth test function ψ∗ to fooling the “hard threshold” function
corresponding to CDF distance. This essentially amounts to using the fact that (1) is small
to show that

∣∣EY←Gen[F (Y )]−EG←N (0,1)n [F (G)]
∣∣ is also small. Given this, the fact that

the generator fools F , i.e. that
∣∣EY←Gen[F (Y )]−EX←{−1,1}n [F (X)]

∣∣ is small, follows from
[HKM12]’s invariance principle, which bounds

∣∣EG←N (0,1)n [F (G)]−EX←{−1,1}n [F (X)]
∣∣. We

note that this second step of [HKM12]’s analysis does not use regularity of the Fj ’s at all
(but their invariance principle does require that each Fj is regular).

2.3 Sketch of our analysis

Here we give an overview of our proof that Gen, with suitable parameters, fools any (k, s, τ)-CnfLtf

F = H ∧ G. Recall that H is an intersection of k many τ -regular LTFs and G is a (k · 2s)-clause
CNF, and that the difference between our task and that of [HKM12] is that we must handle the
CNF G in addition to the intersection of regular LTFs H. While it is not difficult to see, as a
consequence of [Baz07, Raz09], that the [HKM12] generator with suitable parameters (i) fools H,
and (ii) fools G, it is far from clear a priori that it fools H ∧G. We show this via a rather delicate
argument, which involves a novel extension of the Lindeberg method that is at the heart of all
PRGs in this line of work [GOWZ10, MZ13, HKM12]. To surmount the technical challenges that
arise in our setting (which we described next), our analysis features several new ingredients which
are not present in the analyses of [GOWZ10, MZ13, HKM12], or indeed in other Lindeberg-type
proofs of quantitative central limit theorems that we are aware of. The ideas in this new style of
coupling-based analysis, which we outline in Section 2.3.1 below, may be of use elsewhere.
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The standard Lindeberg setup, and a new challenge in our setting. As is standard in
Lindeberg-style proofs, our analysis focuses on a particular smooth test function, which for us
takes k+1 arguments and which we denote ψ∗k+1. This should be thought of as the (k+1)-variable
version of the smooth function of Bentkus [Ben90], which was used by [HKM12] as mentioned in
the preceding subsection. Crucually, while ψ∗k+1 maps all of Rk+1 to [−1, 1], in our arguments this

test function will only ever receive inputs from R
k × {±1}; indeed, its last ((k + 1)-st) coordinate

will always be a Boolean value which is the output of the CNF G.
The heart of our proof lies in showing that for this specific smooth test function ψ∗k+1 (which

should be thought of as a proxy for And(sign(v1− θ), . . . , sign(vk − θk), vk+1))), the pseudorandom
distribution output by the generator fools the test function ψ∗k+1 relative to a uniform random input
drawn from {−1, 1}n. This is done by means of a hybrid argument, the analysis of which (like that
of [GOWZ10, HKM12]) employs a multidimensional version of Taylor’s theorem. However, the fact
that the distinguished last coordinate of ψ∗k+1 always receives a {±1}-valued input—in particular,
an input whose magnitude changes by a large amount (namely 2) when it does change—introduces
significant challenges in using the multidimensional Taylor’s theorem. Recall that Taylor’s theorem
quantifies the following intuition: roughly speaking, if the input to a smooth function ψ is only
changed by a small amount ∆, then the resulting change in its output value, ψ(v + ∆) − ψ(v), is
correspondingly small as well. Naturally, if ∆ is large then Taylor’s theorem does not give useful
bounds.

2.3.1 New ingredients in our approach

Taylor’s theorem is the core ingredient in Lindeberg-style proofs of invariance principles (see
e.g. [Tao10] and Chapter 11 of [O’D14]) and associated pseudorandomness results (see e.g. [GOWZ10,
MZ13, HKM12]), where it is used to bound the distance incurred by a single step of the hybrid
argument. As mentioned above, in order for Taylor’s theorem to give a useful bound when it is
applied to re-express ψ∗k+1(v + ∆) (in terms of ψ∗k+1(v), various derivatives of ψ∗k+1 at v, ∆, and
an error term), the quantity ∆ must be “small.” This is a problem in our context since the distin-
guished last coordinate of ψ∗k+1’s argument (the output of the CNF G) is {±1}-valued, so the last
coordinate of ∆ alone may already be as large as 2. We get around this difficulty by utilizing a
carefully chosen coupling between two adjacent hybrid random variables and decomposing each of
the two relevant arguments to which ψ∗k+1 is applied (each of which is a random variable) in a very

careful way. One of these random variables is expressed as v +∆unif (corresponding to “filling in
the current bucket uniformly at random”) and the other is v +∆pseudo (corresponding to “filling
in the current bucket pseudorandomly”); roughly speaking, in order to succeed our analysis must
show that the magnitude of E[ψ∗k+1(v +∆unif)]−E[ψ∗k+1(v +∆pseudo)] is suitably small. The key
property of the coupling we employ is that it ensures that the last coordinates of both random
variables ∆unif and ∆pseudo are almost always zero; in fact, one of them will actually be always
zero, see Equation (7). (We note that if no coupling is used then the last coordinate of ∆pseudo

can be as large as 2 with constant probability.) The existence of such a favorable coupling follows
from the fact that each bucket of Gen is, by virtue of its bounded independence and the results of
Bazzi [Baz07] and Razborov [Raz09], “sufficiently pseudorandom” to fool CNF formulas.

However, the way that we structure the random variables v,∆unif , and ∆pseudo to ensure
that the last coordinate of each ∆ is almost always small (as discussed above), introduces a new
complication, which is that now the random variables v and ∆unif are not independent (and neither
are v and∆pseudo). This situation does not arise in standard uses of the Lindeberg method, either in
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proving invariance principles or in applications to pseudorandom generators. In all of these previous
proofs, independence is used to show that various first derivative, second derivative, etc. terms in
the Taylor expansions for the two adjacent random variables cancel out perfectly upon subtraction
(using matching moments). To surmount this lack of independence, we exploit the fact that our
coupling lets us re-express the coupled joint distribution (over a pair of vectors in R

k × {±1}) as
a mixture of three joint distributions over pairs of (k + 1)-dimensional vectors in such a way that
one component of the mixture is entirely supported on (Rk × {1}) × (Rk × {1}), one is entirely
supported on (Rk×{−1})×(Rk×{−1}), and the third has a very small mixing weight. Under each
of the first two joint distributions (supported entirely on pairs that agree in the last coordinate), v
and ∆unif will indeed be independent, and so will v and ∆pseudo.

However, performing the hybrid method using these conditional distributions presents another
challenge: while now v and ∆unif are independent (and likewise for v and ∆pseudo), the moments
of these conditional random variables may not match perfectly. We deal with this by exploiting
the fact that each pseudorandom distribution that we consider “filling in a single bucket” can in
fact fool, to very high accuracy, any of poly(n) many new circuits which arise in our analysis of the
multidimensional Taylor expansion (intuitively, these are “slightly augmented” CNFs or DNFs).
This allows us to show that while we do not get perfect cancellation, the relevant moments under the
conditional distributions are adequately close to each other. Finally, our coupling-based perspective
also allows us to bound the (crucial) final error term resulting from Taylor’s theorem by reducing
its analysis to that of the corresponding error term in [HKM12].

The above is a sketch of how we show that Gen fools the smooth test function ψ∗k+1. To
pass from fooling ψ∗k+1 to fooling the “hard threshold” And function, we combine the [HKM12]
invariance principle with a simple relationship, Claim 5.2, which we establish between the anti-
concentration of the (k + 1)-dimensional input to the ψ∗k+1 function (with its distinguished last
coordinate corresponding to outputs of the CNF) and its k-dimensional marginal which excludes
the last coordinate (all coordinates of which correspond to outputs of regular linear forms, i.e. the
setting of [HKM12]).

3 Notation and preliminaries

LTFs and regularity. We recall that a linear threshold function (LTF) is a function of the form
sign(w · x − θ), where sign(z) is 1 if z > 0 and is −1 otherwise. We view −1 as True and 1 as
False throughout the paper.

We write W ∈ R
n×k to denote the matrix whose j-th column is the weight vector of the j-th

LTF in an intersection of k LTFs. We assume that each such LTF has been normalized so that
its weight vector has norm 1. For j ∈ [k] (indexing one of the LTFs) we write W j to denote the
j-th column of W (so ‖W j‖ = 1 for all j), and for B ⊆ [n] (a subset of variables) we write WB

to denote the matrix formed by the rows of W with indices in B. Combining these notations, W j
B

denotes the |B|-element column vector which is obtained from W j by taking those entries given by
the indices in B. Throughout the paper we will write ~θ to denote the k-tuple ~θ = (θ1, . . . , θk) ∈ R

k.
We say that a vector w ∈ R

n is τ -regular if
∑n

i=1 w
4
i ≤ τ2‖w‖2, and that it is s-sparse if it has

at most s non-zero entries. We use the same terminology to refer to an LTF sign(w · x − θ). We
say that a matrix W ∈ R

n×k is τ -regular if each of its columns is τ -regular.
A restriction ρ fixing a subset S ⊆ [n] of n input variables is an element of {0, 1}S ; it corresponds

to setting the variables in S in the obvious way and leaving the variables outside S free. Given an
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n-variable function f and a restriction ρ we write f ↾ ρ to denote the function obtained by setting
some of the input variables as dictated by ρ.

Probability background. We recall some standard definitions of bounded-independence dis-
tributions and hash families. A distribution D over {−1, 1}n is r-wise independent if for every
1 ≤ i1 < · · · < ir ≤ n and every (b1, . . . , br) ∈ {−1, 1}r , we have

Pr
X←D

[
Xi1 = b1 and · · · and Xir = br

]
= 2−r.

We recall the results of [Baz07, Raz09] which state that bounded-independence distributions fool
CNF formulas:

Theorem 3 (Bounded independence fools depth-2 circuits). Let f be any M -clause CNF formula
or M -term DNF formula. Then f is δ-fooled by any O((log(M/δ))2)-wise independent distribution.

A family H of functions from [n] to [ℓ] is said to be an r-wise independent hash family if for
every 1 ≤ i1 < · · · < ir ≤ n and (j1, . . . , jr) ∈ [ℓ]r, we have

Pr
h←H

[
h(i1) = j1 and · · · and h(ir) = jr

]
= ℓ−r.

When S is a set the notations PrX←S [·],EX←S [·] indicate that the relevant probability or expec-
tation is over a uniform draw of X from set S. Throughout the paper we use bold fonts such
as X,U ,h, etc. to indicate random variables. We write N (0, 1) to denote the standard normal
distribution with mean 0 and variance 1.

Calculus. We say that a function ψ : Rk → R is smooth if its first through fourth derivatives are
uniformly bounded. For smooth ψ : Rk → R, v ∈ R

k, and j1, . . . , jr ∈ [k], we write (∂j1,...,jrψ)(x)
to denote ∂j1∂j2 · · · ∂jrψ(x), and for s = 1, 2, . . . we write

‖ψ(s)‖1 to denote sup
v∈Rk





∑

j1,...,js∈[k]

|(∂j1,...,jsψ)(v)|



 .

Given indices j1, . . . , jr ∈ [k], we write (j1, . . . , jr)! to denote s1!s2! · · · sk!, where for each ℓ ∈
[k], sℓ denotes the number of occurrences of ℓ in (j1, . . . , jr). We will use the following form of
multidimensional Taylor’s theorem (see e.g. Fact 4.3 of [HKM12]):

Fact 3.1 (Multidimensional Taylor’s theorem). Let ψ : Rk → R be smooth and let v,∆ ∈ R
k. Then

ψ(v +∆) = ψ(v) +
∑

j∈[k]

(∂jψ)(v)∆j +
∑

j,j′∈[k]

1

(j, j′)!
(∂j,j′ψ)(v)∆j∆j′

+
∑

j,j′,j′′∈[k]

1

(j, j′, j′′)!
(∂j,j′,j′′ψ)(v)∆j∆j′∆j′′ + err(v,∆),

where |err(v,∆)| ≤ ‖ψ(4)‖1 ·maxj∈[k] |∆j|4.

Useful results from [HKM12]. The following notation will be useful: for 0 < λ < 1, k ≥ 1, and
~θ = (θ1, . . . , θk) ∈ R

k, we define

Inner
k,~θ

=
{
v ∈ R

k : vj ≤ θj for all j ∈ [k]
}
, Outer

λ,k,~θ
=
{
v ∈ R

k : vj ≥ θj+λ for some j ∈ [k]
}
,

9



Strip
λ,k,~θ

= R
k \ (Inner

k,~θ
∪Outer

λ,k,~θ
).

We recall the main result of [HKM12]:

Theorem 4 (Invariance principle for polytopes, Theorem 3.1 of [HKM12]). Let W ∈ R
n×k be

τ -regular with each column W j satisfying ‖W j‖ = 1. Then for all ~θ ∈ R
k, we have

∣∣∣∣ Pr
U←{−1,1}n

[
W TU ∈ Innerk,~θ

]
− Pr

G←N (0,1)n

[
W TG ∈ Innerk,~θ

]∣∣∣∣ = O
(
(log k)8/5(τ log(1/τ))1/5

)
.

We will also use the following anti-concentration bound for Gaussian random variables (which
is an easy consequence of the O(

√
log k) Gaussian surface area upper bound of Nazarov [Naz03] for

intersections of k LTFs):

Theorem 5 (Anti-concentration bound for Gaussian random variables landing in a strip, Lemma 3.4
of [HKM12]). For all ~θ ∈ R

k and all 0 < λ < 1, we have

Pr
G←N (0,1)n

[
W TG ∈ Strip

λ,k,~θ

]
= O(λ

√
log k).

4 Our PRG and the statements of our main results

Our PRG for (k, s, τ)-intersections of LTFs is the generator Gen described in Section 2.1, instanti-
ated with the following parameters:

ℓ = 1/τ,

rhash = 2 log k,

rbucket = 4 log k +O((log(M/δCNF))
2

where
M = k · 2s and δCNF = 1/poly(n)

(the exact value for δCNF will be specified later). By standard constructions of rhash-wise inde-
pendent hash families and rbucket-wise independent random variables, the total seed length of our
generator is

O(log(n log ℓ) · rhash + ℓ · (log n) · rbucket) = O

(
1

τ
· log n · (log k + s+ log n)2

)

= poly(log n, log k, s, 1/τ).

4.1 Formal statements of our main results

We begin with our most general PRG result:

Theorem 2. For all values of k, s ∈ N and τ ∈ (0, 1), the pseudorandom generator Gen instantiated
with the parameters above fools the class of (k, s, τ)-intersections of LTFs to accuracy

δ := O((log k)8/5(τ log(1/τ))1/5)) (2)

with seed length poly(log n, log k, s, 1/τ).
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Our PRG for the intersections of low-weight LTFs (Theorem 1) follows as a consequence of
Theorem 2 via the following observation:

Observation 6 (Sparse-or-regular dichotomy). Let F (x) = sign(w ·x−θ) be a weight-t LTF. Then
for any s, either F is s-sparse or F is (t/

√
s+ 1)-regular.

Proof. Suppose that F is not s-sparse; for notational convenience we may suppose that w =
(w1, . . . , ws′ , 0, . . . , 0) where s

′ ≥ s+1 and for 1 ≤ i ≤ s′ each wi is a nonzero integer in {−t, . . . , t}.
Normalize the weights by setting ui = wi/‖w‖ for i = 1, . . . , n. We have F (x) = sign(u ·x− θ/‖w‖)
where ‖u‖ = 1.

To show that F is (t/
√
s+ 1)-regular we must show that

∑s′

i=1 u
4
i ≤ t2/(s+ 1). We have

n∑

i=1

u4i ≤
(

max
1≤j≤s′

u2j

)
·
n∑

i=1

u2i = max
1≤j≤s′

u2j ≤
t2

‖w‖2 ≤
t2

s+ 1
,

where the last inequality holds because (s+ 1)/‖w‖2 ≤ s′/‖w‖2 ≤∑s′

i=1 u
2
i = 1.

Theorem 1. For all k, t ∈ N and δ ∈ (0, 1), there is an explicit pseudorandom generator with seed
length poly(log n, log k, t, 1/δ) that δ-fools any intersection of k weight-t LTFs.

Proof of Theorem 1 assuming Theorem 2. We fix

τ := Θ̃

(
δ5

(log k)8

)

so as to satisfy (2). By Observation 6, we have that every weight-t LTF is either τ -regular or
(s := (t/τ)2)-sparse. By our choice of τ , the parameters ℓ, rhash, and rbucket of the pseudorandom
generator Gen instantiated with our parameters are all bounded by poly(log n, log k, t, 1/δ), and
hence the overall seed length is indeed

O (log(n log ℓ) · rhash + ℓ · (log n) · rbucket) = poly(log n, log k, t, 1/δ)

as claimed.

The remainder of this paper will be devoted to proving Theorem 2.

5 Fooling the smooth test function ψ∗k+1

An intermediate goal, which in fact takes us most of the way to establishing Theorem 2, is to
show that Gen fools a particular smooth test function ψ∗

λ,k+1,(~θ,0)
. In this section we define this

smooth test function, establish some of its basic properties, and formally state our intermediate
goal (Theorem 7 below).

5.1 The smooth test function ψ∗
λ,k+1,(~θ,0)

and its basic properties

As discussed in Section 2.3, our analysis crucially features a particular smooth function ψ∗
λ,k+1,(~θ,0)

:

R
k+1 → [−1, 1], which is essentially the (k + 1)-dimensional version of a function due to Bentkus

[Ben90]. Fact 5.1 below states the key properties of this function.
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Fact 5.1 (Main result of [Ben90], see Theorem 3.5 of [HKM12]). For all positive integers k, 0 <
λ < 1, and ~θ ∈ R

k, there exists a smooth function ψ∗
λ,k,~θ

: Rk → [−1, 1] such that the following

holds: for every s = 1, 2, . . . , we have ‖(ψ∗
λ,k,~θ

)(s)‖1 ≤ C logs−1(k + 1)/λs, and for all v ∈ R
k, we

have

ψ∗
λ,k,~θ

(v) =





−1 if v ∈ Inner
k,~θ

1 if v ∈ Outerλ,k,~θ
∈ [−1, 1] otherwise (i.e. if v ∈ Strip

λ,k,~θ
).

(3)

For intuition, the test function ψ∗
λ,k,~0

: Rk → [−1, 1] may loosely be thought of as a smooth

approximation to the k-variable And function; recall that on input (b1, . . . , bk) ∈ {−1, 1}k , the
And function outputs −1 iff (b1, . . . , bk) = (−1, . . . ,−1). (We note that [HKM12] only require the
s = 4 case of the above theorem (this is their Theorem 3.5), since in their framework they can
obtain perfect cancellation of the first, second and third derivative terms in the relevant difference
of Taylor expansions. In contrast we need to use all of the s = 1, 2, 3, 4 cases.)

As mentioned earlier, in our analysis of ψ∗
λ,k+1,(~θ,0)

the last argument will always receive a

Boolean value from {−1, 1} (corresponding to the output of the CNF G). We will use the following
simple claim to control the behavior of ψ∗

λ,k+1,(~θ,0)
on inputs of this sort:

Claim 5.2. Given 0 < λ < 1, k ≥ 1, and ~θ ∈ R
k, let v ∈ R

k be such that v /∈ Strip
λ,k,~θ

. Then both

vectors (v,−1) ∈ R
k+1 and (v, 1) ∈ R

k+1 lie outside of Strip
λ,k+1,(~θ,0)

.

Proof. If v ∈ Outer
λ,k,~θ

(because of some coordinate vj ≥ θj + λ), then it is clear that (v, 1) and

(v,−1) both lie in Outer
λ,k+1,(~θ,0)

(because of the same coordinate). So suppose that v ∈ Inner
k,~θ
.

The vector (v, 1) lies in Outer
λ,k+1,(~θ,0)

(because of the last coordinate 1 > λ), and the vector

(v,−1) is easily seen to lie in Inner
k+1,(~θ,0)

.

5.2 Towards Theorem 2: fooling the test function ψ∗
λ,k+1,(~θ,0)

As an intermediate step towards Theorem 2 we will first establish the following “pseudorandom
generator” for the smooth function ψ∗

λ,k+1,(~θ,0)
:

Theorem 7 (Gen fools the smooth test function ψ∗
λ,k+1,(~θ,0)

). Let H ∧G be a (k, s, τ)-CnfLtf,

and let W ∈ R
n×k be the matrix of weight vectors (each of norm 1) of the τ -regular LTFs that

comprise H, and ~θ ∈ R
k be the vector of their thresholds (so sign(W j · x − θj) is the j-th LTF).

For 0 < λ < 1, let ψ∗
λ,k+1,(~θ,0)

: Rk+1 → [−1, 1] be as described in Fact 5.1. Then when Gen is

instantiated with the parameters from Section 4,

∣∣∣∣ E
Y←Gen

[
ψ∗
λ,k+1,(~θ,0)

(W TY , G(Y ))
]
− E

U←{−1,1}n

[
ψ∗
λ,k+1,(~θ,0)

(W TU , G(U))
]∣∣∣∣

= O

(
(log k)3

λ4

(
(log k)3 · τ log(1/τ) + 1

τ
· δCNF · n2

)
+

1

τ

(
√
δCNF +

3∑

a=1

na
√
δCNF ·

(log k)a−1

λa

))
.

(4)
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6 Setup for our coupling-based hybrid argument

We begin by defining the sequence of random variables that we will use to hybridize between
Y ← Gen, the n-bit pseudorandom input, and U , the n-bit uniform random input.

Definition 2 (Hybrid random variables). For any index b ∈ {0, 1, . . . , ℓ} and any hash h : [n]→ [ℓ],
we define the hybrid random variable Xh,b over {−1, 1}n as follows: Independently across each
c ∈ [ℓ],

• If c > b, then the coordinates X
h,b
h−1(c)

of Xh,b are distributed according to a uniform random

draw from {−1, 1}n;

• If c ≤ b, then the coordinates X
h,b
h−1(c)

of Xh,b are distributed according to a draw from an

rbucket-wise independent random variable over {−1, 1}n.

Let H be a (2 log k)-wise independent family of hashes h : [n] → [ℓ]. For each b ∈ {0, 1, . . . , ℓ},
the hybrid random variable Xh,b is defined by drawing h←H and then taking Xh,b as above.

Remark 8. Note that Xh,0 is a uniform random variable over {−1, 1}n (indeed Xh,0 is uniform
for every fixed hash h), while Xh,ℓ is distributed according to Gen.

6.1 Coupling adjacent random variables in the hybrid argument

Fix a hash h : [n]→ [ℓ], a bucket b ∈ [ℓ], and a restriction ρ ∈ {−1, 1}[n]\h−1(b) fixing the variables
outside bucket h−1(b). Recall that Xh,b−1 is distributed according to the uniform distribution
within h−1(b), and Xh,b is distributed according to a rbucket-wise independent distribution within
this same bucket h−1(b). For the remainder of this paper, for notational clarity unless otherwise
indicated U denotes a uniformly distributed random variable over {−1, 1}h−1(b) and Z denotes a
rbucket-wise independent random variable over {−1, 1}h−1(b).

Our CNF-fooling-based coupling. By the results of Bazzi and Razborov (Theorem 3) and
the choice of rbucket from Section 4, the random variable Z δCNF-fools G ↾ ρ (which, like G, is an
M -clause CNF). Consequently there exists a coupling (Û , Ẑ) between U and Z such that

Pr
(Û ,Ẑ)

[
(G ↾ ρ)(Û) 6= (G ↾ ρ)(Ẑ)

]
≤ δCNF. (5)

(Note that this coupling depends on G ↾ ρ.)

Consider the following joint distribution over a pair of random variables (X̂h,b−1(ρ), X̂h,b(ρ)),
both supported on {−1, 1}n: First make a draw (Û , Ŷ )← (Û , Ẑ), and output (X̂h,b−1(ρ), X̂h,b(ρ))
where

• X̂h,b−1(ρ) assigns variables according to Û within h−1(b), and according to ρ outside h−1(b).

• X̂h,b(ρ) assigns variables according to Ŷ within h−1(b), and according to ρ outside h−1(b).

Remark 9. Note that for ρ ← X
h,b
[n]\h−1(b)

, we have that X̂h,b−1(ρ) is distributed identically as

Xh,b−1 and likewise X̂h,b(ρ) is distributed identically as Xh,b.

13



7 The hybrid argument: Proof of Theorem 7

Throughout this section for notational clarity we simply write ψ instead of ψ∗
λ,k+1,(~θ,0)

. We also

write Fψ : {−1, 1}n → [−1, 1] to denote the function

Fψ(x) = ψ(W Tx,G(x)).

Our core technical result, which we prove in Section 8, is the following:

Lemma 7.1 (Error incurred in one step of hybrid). For all hashes h : [n] → [ℓ], buckets b ∈ [ℓ],
and restrictions ρ ∈ {−1, 1}[n]\h−1(b), we have that

∣∣E
[
Fψ(X̂

h,b−1(ρ))
]
−E

[
Fψ(X̂

h,b(ρ))
]∣∣ (6)

= O

(
(log k)3

λ4
(
(log k)2 · h(W, b) + δCNF · n2

)
+
√
δCNF +

3∑

a=1

na
√
δCNF ·

(log k)a−1

λa

)
,

where

h(W, b) :=




k∑

j=1

‖W j
h−1(b)

‖4 log k



1/ log k

.

The following corollary follows as an immediate consequence of Lemma 7.1, Remark 9, and the
triangle inequality:

Corollary 7.2 (Averaging Lemma 7.1 over ρ and summing over b ∈ [ℓ]). For all hashes h : [n]→ [ℓ],
we have that

∣∣E
[
Fψ(X

h,0)
]
−E

[
Fψ(X

h,ℓ)
]∣∣ = O((log k)3)

λ4
· (log k)2 ·

ℓ∑

b=1

h(W, b)

+ ℓ ·O
(
(log k)3

λ4
· δCNF · n2 +

√
δCNF +

3∑

a=1

na
√
δCNF ·

(log k)a−1

λa

)
.

Proof. We have that

∣∣E
[
Fψ(X

h,0)
]
−E

[
Fψ(X

h,ℓ)
]∣∣ ≤

ℓ∑

b=1

∣∣E
[
Fψ(X

h,b−1)
]
−E

[
Fψ(X

h,b)
]∣∣ (Triangle inequality)

=
ℓ∑

b=1

∣∣∣∣∣∣
E

ρ←X
h,b

[n]\h−1(b)

[
Fψ(X̂

h,b−1(ρ))
]
− E

ρ←X
h,b

[n]\h−1(b)

[
Fψ(X̂

h,b(ρ))
]
∣∣∣∣∣∣

(Remark 9)

≤
ℓ∑

b=1

E
ρ←X

h,b

[n]\h−1(b)

[∣∣E
[
Fψ(X̂

h,b−1(ρ))
]
−E

[
Fψ(X̂

h,b(ρ))
]∣∣
]
,

which gives the claimed bound via Lemma 7.1.
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We do not have a good bound on the quantity h(W, b) for an arbitrary hash h : [n] → [ℓ] and
bucket b ∈ [ℓ]. Instead, we shall use the following:

Lemma 7.3 (Lemma 4.1 of [HKM12]). For ℓ = 1/τ and H a (2 log k)-wise independent hash
family,

E
h←H

[
ℓ∑

b=1

h(W, b)

]
≤

ℓ∑

b=1


 E

h←H




k∑

j=1

‖W j
h−1(b)

‖4 log k





1/ log k

≤ 4 log k · τ log(1/τ).

(The middle quantity is what [HKM12] denotes by H(W ) and is the quantity they bound; the left
inequality is by the power-mean inequality.)

We are now ready to prove Theorem 7:

Proof of Theorem 7 assuming Lemma 7.1.
∣∣∣∣ E
Y←Gen

[
ψ∗
λ,k+1,(~θ,0)

(W TY , G(Y ))
]
− E

U←{−1,1}n

[
ψ∗
λ,k+1,(~θ,0)

(W TU , G(U))
]∣∣∣∣

=
∣∣E
[
Fψ(X

h,0)
]
−E

[
Fψ(X

h,ℓ)
]∣∣ (Remark 8 and definition of Fψ)

≤ E
h←H

[∣∣E
[
Fψ(X

h,0)
]
−E

[
Fψ(X

h,ℓ)
]∣∣
]

= O

(
(log k)3

λ4

(
(log k)3 · τ log(1/τ) + 1

τ
· δCNF · n2

)
+

1

τ

(
√
δCNF +

3∑

a=1

na
√
δCNF ·

(log k)a−1

λa

))
,

where the final equality is by Corollary 7.2, Lemma 7.3, and recalling that ℓ = 1/τ .

8 A single step of the hybrid argument: Proof of Lemma 7.1

Fix a hash h : [n] → [ℓ], a bucket b ∈ [ℓ], and a restriction ρ ∈ {−1, 1}[n]\h−1(b). As is standard in

applications of the Lindeberg method, we will express Fψ(X̂
h,b−1(ρ)) and Fψ(X̂

h,b(ρ)) as ψ(v +
∆unif) and ψ(v+∆pseudo) respectively, where v is common to both random variables. (Very roughly
speaking, the Lindeberg method employs Taylor’s theorem to show that quantities such as (6) are
small if ∆unif and ∆pseudo are sufficiently “small” and ψ is sufficiently “nice.”). We now describe
the choice of random variables v,∆unif ,∆pseudo ∈ R

k+1 to accomplish this.
We define v : {−1, 1}h−1(b) → R

k+1 as follows:

v(x)j =
∑

i∈[n]\h−1(b)

W j
i ρi for j ∈ [k],

v(x)k+1 = (G ↾ ρ)(x).

Recalling that ρ is a fixed restriction, we observe that only the final coordinate of v depends
on its input x. We further define ∆unif : {−1, 1}h−1(b) → R

k+1 and ∆pseudo : {−1, 1}h−1(b) ×
{−1, 1}h−1(b) → R

k+1 as follows:

∆unif(x)j =
∑

i∈h−1(b)

W j
i xi for j ∈ [k],

∆unif(x)k+1 = 0, (7)
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and

∆pseudo(x, z)j =
∑

i∈h−1(b)

W j
i zi for j ∈ [k],

∆pseudo(x, z)k+1 = (G ↾ ρ)(z)− (G ↾ ρ)(x).

We observe that

Fψ(X̂
h,b−1(ρ)) ≡ ψ(v(U) + ∆unif(U))

Fψ(X̂
h,b(ρ)) ≡ ψ(v(Û ) + ∆pseudo(Û , Ẑ)),

and so the desired quantity (6) of Lemma 7.1 that we wish to upper bound may be re-expressed as

(6) =
∣∣E[Fψ(X̂

h,b−1(ρ))]−E[Fψ(X̂
h,b(ρ))]

∣∣

=
∣∣∣E
U

[
ψ(v(U) + ∆unif(U))

]
− E

(Û ,Ẑ)

[
ψ(v(Û ) + ∆pseudo(Û , Ẑ))

]∣∣∣. (8)

We observe that unlike standard Lindeberg-style proofs of invariance principles and associated
pseudorandomness results, in our setup v(U) and ∆unif(U) are not independent, and likewise
neither are v(Û ) and ∆pseudo(Û , Ẑ). This motivates the definitions of the following subsection.

8.1 Mixtures of conditional distributions

Let U1 denote the distribution U conditioned on outcomes x ∈ {−1, 1}h−1(b) such that (G ↾ ρ)(x) =
1, and similarly U−1. Equivalently, U1 and U−1 are uniform distributions over (G ↾ ρ)−1(1) and
(G ↾ ρ)−1(−1) respectively. We note that U can be expressed as the mixture of U1 and U−1 with
mixing weights

π1 := Pr
U

[
(G ↾ ρ)(U) = 1

]

π−1 := Pr
U

[
(G ↾ ρ)(U) = −1

]
.

We may suppose without loss of generality that PrU [(G ↾ ρ)(U) = −1] ≥ PrZ [(G ↾ ρ)(Z) = −1]
(the other case is entirely similar).

Next, we similarly express the joint distribution (Û , Ẑ) as the mixture of conditional distribu-
tions (Û1, Ẑ1), (Û−1, Ẑ−1), (Û err, Ẑerr), where

• (Û1, Ẑ1) is supported on pairs (x, z) such that (G ↾ ρ)(x) = (G ↾ ρ)(z) = 1

• (Û−1, Ẑ−1) is supported on pairs (x, z) such that (G ↾ ρ)(x) = (G ↾ ρ)(z) = −1

• (Û err, Ẑerr) is supported on pairs (x, z) such that (G ↾ ρ)(x) = −1, (G ↾ ρ)(z) = 1.

The mixing weights are π̃1, π̃−1, and π̃err respectively, where

π̃1 = π1, π̃−1 = π−1 − π̃err, π̃err ≤ δCNF

and the bound π̃err ≤ δCNF follows from (5). We stress that while Û1 is distributed identically as
U1, this is not the case for Û−1 and U−1, because of the small fraction of pairs that do not align
perfectly under the coupling (Û , Ẑ) and are captured by (Û err, Ẑerr).
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Proposition 8.1 (Expressing U and (Û , Ẑ) as mixtures of conditional distributions). For any
function f : {−1, 1}h−1(b) → R,

E
U

[
f(U)

]
= π1 E

U1

[
f(U1)

]
+ π−1 E

U−1

[
f(U−1)

]
.

Similarly, for any function f : {−1, 1}h−1(b) × {−1, 1}h−1(b) → R,

E
(Û ,Ẑ)

[
f(Û , Ẑ)

]

= π̃1 E
(Û1,Ẑ1)

[
f(Û1, Ẑ1)

]
+ π̃−1 E

(Û−1,Ẑ−1)

[
f(Û−1, Ẑ−1)

]
+ π̃err E

(Ûerr,Ẑerr)

[
f(Û err, Ẑerr)

]

= π1 E
(Û1,Ẑ1)

[
f(Û1, Ẑ1)

]
+ (π−1 − π̃err) E

(Û−1,Ẑ−1)

[
f(Û−1, Ẑ−1)

]
+ π̃err E

(Ûerr,Ẑerr)

[
f(Û err, Ẑerr)

]

= π1 E
(Û1,Ẑ1)

[
f(Û1, Ẑ1)

]
+ π−1 E

(Û−1,Ẑ−1)

[
f(Û−1, Ẑ−1)

]
± 2 δCNF · ‖f‖∞.

These conditional distributions are useful because of the following two simple but crucial ob-
servations:

Observation 10 (v becomes constant). Fix c ∈ {−1, 1}. For all x ∈ supp(U c) we have that v(x)
is the same fixed vector v∗ ∈ R

k+1 given by

v∗j =
∑

i∈[n]\h−1(b)

W j
i ρi for j ∈ [k],

v∗k+1 = (G ↾ ρ)(x) = c.

The same is true for Û c: for all x ∈ supp(Û c) we have v(x) = v∗.

Note that as a consequence of Observation 10, the random variables v(U c) and ∆unif(U c) are
independent for c ∈ {−1, 1}, and likewise v(Û c) and ∆pseudo(Û c, Ẑc) are independent as well; cf. our
remark following Equation (8). The next observation further motivates our couplings (Û1, Ẑ1) and
(Û−1, Ẑ−1):

Observation 11 (∆pseudo
k+1 = 0). Fix c ∈ {−1, 1}. For all (Û , Ẑ) ∈ supp(Û c, Ẑc), we have

∆pseudo
k+1 (Û , Ẑ) = (G ↾ ρ)(Ẑ)− (G ↾ ρ)(Û) = 0.
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8.1.1 Massaging our goal (8)

Applying Proposition 8.1, we can rewrite the RHS of (8) as:
∣∣∣E
U

[
ψ(v(U) + ∆unif(U))

]
− E

(Û ,Ẑ)

[
ψ(v(Û ) + ∆pseudo(Û , Ẑ))

]∣∣∣

=

∣∣∣∣
(
π1 E

U1

[
ψ(v(U1) + ∆unif(U1))

]
+ π−1 E

U−1

[
ψ(v(U−1) + ∆unif(U−1))

])

−
(
π1 E

(Û1,Ẑ1)

[
ψ(v(Û1) + ∆pseudo(Û1, Ẑ1))

]
+ π−1 E

(Û−1,Ẑ−1)

[
ψ(v(Û−1) + ∆pseudo(Û−1, Ẑ−1))

])∣∣∣∣

± 2 δCNF · ‖ψ‖∞

≤ π1 ·
∣∣∣∣ E
U1

[
ψ(v(U1) + ∆unif(U1))

]
− E

(Û1,Ẑ1)

[
ψ(v(Û1) + ∆pseudo(Û1, Ẑ1))

]∣∣∣∣

+ π−1 ·
∣∣∣∣ E
U−1

[
ψ(v(U−1) + ∆unif(U−1))

]
− E

(Û−1,Ẑ−1)

[
ψ(v(Û−1) + ∆pseudo(Û−1, Ẑ−1))

]]∣∣∣∣

+ 2 δCNF,

where the final inequality uses the fact that ψ has range [−1, 1].
We note that for c ∈ {−1, 1},

πc ·
∣∣∣∣ EUc

[
ψ(v(U c) + ∆unif(U c))

]
− E

(Ûc,Ẑc)

[
ψ(v(Û c) + ∆pseudo(Û c, Ẑc))

]∣∣∣∣ ≤ 2πc · ‖ψ‖∞ = 2πc,

which is at most 2
√
δCNF if πc ≤

√
δCNF (this is the O(

√
δCNF) on the RHS of (6)). We subsequently

assume that πc ≥
√
δCNF, and proceed to bound

∑

c∈{−1,1}

πc ·
∣∣∣∣ EUc

[
ψ(v(U c) + ∆unif(U c))

]
− E

(Ûc,Ẑc)

[
ψ(v(Û c) + ∆pseudo(Û c, Ẑc))

]∣∣∣∣.

8.2 Applying Taylor’s theorem

We proceed to analyze

E
Uc

[
ψ(v(U c) + ∆unif(U c))

]
− E

(Ûc,Ẑc)

[
ψ(v(Û c) + ∆pseudo(Û c, Ẑc))

]

for c ∈ {−1, 1}. We will do so by analyzing the Taylor expansion of ψ(v +∆) (Fact 3.1):

ψ(v +∆) = ψ(v) (Zeroth-order term)

+
∑

j∈[k+1]

(∂jψ)(v)∆j (First-order terms)

+
∑

j,j′∈[k+1]

1

(j, j′)!
(∂j,j′ψ)(v)∆j∆j′ (Second-order terms)

+
∑

j,j′,j′′∈[k+1]

1

(j, j′, j′′)!
(∂j,j′,j′′ψ)(v)∆j∆j′∆j′′ (Third-order terms)

± ‖ψ(4)‖1 · max
j∈[k+1]

|∆j |4. (Error term)
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Let us consider each of the five terms in the Taylor expansion, starting with the easiest one:

Proposition 8.2 (Expected difference of zeroth-order terms).

E
Uc

[
ψ(v(U c))

]
− E

(Ûc,Ẑc)

[
ψ(v(Û c))

]
= 0.

Proof. Recalling Observation 10, we have that

v(x) = v(x′) = v∗

for all x ∈ supp(U c) and x′ ∈ supp(Û c), where v∗ is a fixed vector in R
k+1. In order words, the

random variables v(U c) and v(Û c) are both supported entirely on the same constant v∗.

8.2.1 Expected difference of third-order terms

In this section we bound the expected difference of the third-order terms:

πc ·
∣∣∣∣ EUc

[ ∑

j,j′,j′′∈[k+1]

(∂j,j′,j′′ψ)(v(U
c))∆unif(U c)j∆

unif(U c)j′∆
unif(U c)j′′

]

− E
(Ûc,Ẑc)

[ ∑

j,j′,j′′∈[k+1]

(∂j,j′,j′′ψ)(v(Û
c))∆pseudo(Û c, Ẑc)j∆

pseudo(Û c, Ẑc)j′∆
pseudo(Û c, Ẑc)j′′

]∣∣∣∣.

(9)

We observe that in standard applications of the Lindeberg method the quantity analogous to the
above quantity would be exactly zero due to matching moments (see the parenthetical following
Equation (11) below). Since our setting requires that we perform the hybrid argument over the
conditional distributions U c and (Û c, Ẑc) (rather than the global distributions U and (Û , Ẑ)) we
no longer have matching moments, but our analysis in this section shows that the error incurred by
the mismatch is acceptably small. More precisely, we will prove that (9) is at most O(n3

√
δCNF ·

(log k)2/λ3). An identical argument shows that the analogous quantities for the first- and second-
order terms are at most O(n2

√
δCNF · (log k)/λ2) and O(n

√
δCNF/λ) respectively.

We begin by noting that

(9) = πc ·
∣∣∣∣∣

∑

j,j′,j′′∈[k+1]

(∂j,j′,j′′ψ)(v
∗)

(
E
Uc

[ ∏

ξ∈{j,j′,j′′}

∆unif(U c)ξ

]
− E

(Ûc,Ẑc)

[ ∏

ξ∈{j,j′,j′′}

∆pseudo(Û c, Ẑc)ξ

])

︸ ︷︷ ︸
Φ(j,j′,j′′)

∣∣∣∣∣ (10)

where (as in Proposition 8.2) we have again used Observation 10 to get that v(U c) ≡ v(Û c) ≡ v∗

for a fixed vector v∗ ∈ R
k+1.

Observation 12 (Difference is zero if j = k + 1 participates). If k + 1 ∈ {j, j′, j′′} then Φ(j, j′, j′′) =
0.
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Proof. This is because ∆unif
k+1 is the identically 0 function (by definition; recall Equation (7)), and

∆pseudo
k+1 (Û c, Ẑc) = 0 for all (Û c, Ẑc) ∈ supp(Û c, Ẑc) (Observation 11).

Therefore it suffices to reason about Φ(j, j′, j′′) for triples j, j′, j′′ ∈ [k]. Fix any such triple.

Recalling the definitions of ∆unif
j and ∆pseudo

j for j ∈ [k]:

∆unif(x)j =
∑

i∈h−1(b)

W j
i xi, ∆pseudo(x, z)j =

∑

i∈h−1(b)

W j
i zi

and applying linearity of expectation, we have that

Φ(j, j′, j′′) =
∑

i,i′,i′′∈h−1(b)

W j
iW

j′

i′ W
j′′

i′′

(
E
Uc

[
U c
i U

c
i′ U

c
i′′
]
− E

(Ûc,Ẑc)

[
Ẑc
i Ẑ

c
i′ Ẑ

c
i′′
])
. (11)

(Note that E
[
UiUi′Ui′′

]
− E

[
ẐiẐi′Ẑi′′

]
= 0 since U and Z have matching moments. However,

since we are working with the conditional distributions Û c and (Û c, Ẑc) this is no longer the case;
nevertheless, we will now show that this difference is adequately small.) The first expectation on
the RHS can be expressed as 2punif − 1 where

punif = Pr
Uc

[
U c
i U

c
i′ U

c
i′′ = 1

]
=

PrU
[
UiUi′ Ui′′ = 1, (G ↾ ρ)(U) = c

]

PrU
[
(G ↾ ρ)(U) = c

] , (12)

and likewise the second expectation can be expressed as 2ppseudo − 1 where

ppseudo = Pr
(Ûc,Ẑc)

[
Ẑc
i Ẑ

c
i′ Ẑ

c
i′′ = 1

]

=
Pr

(Û ,Ẑ)

[
Ẑi Ẑi′ Ẑi′′ = 1, (G ↾ ρ)(Û ) = (G ↾ ρ)(Ẑ) = c

]

Pr(Û ,Ẑ)

[
(G ↾ ρ)(Û ) = (G ↾ ρ)(Ẑ) = c

] . (13)

Note that the numerator of (13) is

Pr
Z

[
ZiZi′ Zi′′ = 1, (G ↾ ρ)(Z) = c

]
− Pr

(Û ,Ẑ)

[
Ẑi, Ẑi′ Ẑi′′ = 1, (G ↾ ρ)(Û ) = −c, (G ↾ ρ)(Ẑ) = c

]

≥ Pr
Z

[
ZiZi′ Zi′′ = 1, (G ↾ ρ)(Z) = c

]
− Pr

(Û ,Ẑ)

[
(G ↾ ρ)(Û ) = −c, (G ↾ ρ)(Ẑ) = c

]

= Pr
Z

[
ZiZi′ Zi′′ = 1, (G ↾ ρ)(Z) = c

]
−O(δCNF). (by (5))

Likewise, the denominator of (13) is PrZ
[
(G ↾ ρ)(Z) = c

]
− O(δCNF), again by (5). Therefore,

we have that

ppseudo =
PrZ

[
ZiZi′ Zi′′ = 1, (G ↾ ρ)(Z) = c

]
−O(δCNF)

PrZ
[
(G ↾ ρ)(Z) = c

]
−O(δCNF)

.

Next, we note that Z δCNF-fools the function (G ↾ ρ)(x) ⊕ β as well as the function ((G ↾

ρ)(x)⊕ β)∧ (¬ (xi ⊕ xi′ ⊕ xi′′)) for i, i′, i′′ ∈ h−1(b), β ∈ {−1, 1}. The former is true by Theorem 3
and the fact that rbucket ≥ O((log(M/δCNF))

2), and the latter is true because rbucket ≥ 4 log k +
O((log(M/δCNF))

2 ≥ 3+O((log(M/δCNF))
2). (Observe that if a function f(x) and all its restrictions
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are κ-fooled by r-wise independence, then f(x)∧J(x), where J is any 3-junta, is κ-fooled by (r+3)-
wise independence.) Hence we have

ppseudo =
PrU

[
UiUi′ Ui′′ = 1, (G ↾ ρ)(U) = c

]
±O(δCNF)

PrU
[
(G ↾ ρ)(U) = c

]
±O(δCNF)

.

Since by assumption πc = PrU
[
(G ↾ ρ)(U) = c

]
≥ √δCNF, it follows from the above and (12)

that
ppseudo = punif ±O(

√
δCNF).

Recalling (11), we have shown that

|Φ(j, j′, j′′)| =
∑

i,i′,i′′∈h−1(b)

W j
iW

j′

i′ W
j′′

i′′ · O(
√
δCNF) = O(n3

√
δCNF),

where the final equality uses the trivial bounds of |W j
i | ≤ 1 for all j ∈ [k] and i ∈ h−1(b), and

|h−1(b)| ≤ n. We conclude that the expected difference of the third-order terms is at most

(10) = πc ·
∣∣∣∣

∑

j,j′,j′′∈[k+1]

(∂j,j′,j′′ψ)(v
∗) · Φ(j, j′, j′′)

∣∣∣∣

= O(n3
√
δCNF) ·

∣∣∣∣
∑

j,j′,j′′∈[k+1]

(∂j,j′,j′′ψ)(v
∗)

∣∣∣∣

= O(n3
√
δCNF) ·

(log k)2

λ3
,

where the final equality uses the bound on ‖ψ(3)‖1 given by Fact 5.1.

8.2.2 Error term

Finally we bound the contribution from the error terms. This is at most

∑

c∈{−1,1}

(
πc E

Uc

[
‖ψ(4)‖1 max

j∈[k+1]

∣∣∆unif(U c)j
∣∣4
]
+ πc E

(Ûc,Ẑc)

[
‖ψ(4)‖1 max

j∈[k+1]

∣∣∆pseudo(Û c, Ẑc)j
∣∣4
])

= ‖ψ(4)‖1
∑

c∈{−1,1}

(
πc E

Uc

[
max
j∈[k]

∣∣∆unif(U c)j
∣∣4
]
+ πc E

(Ûc,Ẑc)

[
max
j∈[k]

∣∣∆pseudo(Û c, Ẑc)j
∣∣4
])
,

where this equality again uses the fact that ∆unif
k+1 is the constant 0 function (by definition; recall

Equation (7)) and ∆pseudo(Û c, Ẑc)k+1 = 0 for all (Û c, Ẑc) ∈ supp(Û c, Ẑc) (Observation 11) to get
that the max’s can be taken over j ∈ [k] rather than j ∈ [k + 1]. Applying both statements of
Proposition 8.1, we get that the above is

‖ψ(4)‖1
(
E
U

[
max
j∈[k]

∣∣∆unif(U)j
∣∣4
]
+ E

(Û ,Ẑ)

[
max
j∈[k]

∣∣∆pseudo(Û , Ẑ)j
∣∣4
]
± 2 δCNF ·

∥∥∥max
j∈[k]

∣∣∆pseudo(·, ·)j
∣∣4
∥∥∥
∞

)

=
O((log k)3)

λ4

(
E
U

[
max
j∈[k]

∣∣∆unif(U)j
∣∣4
]
+ E

(Û ,Ẑ)

[
max
j∈[k]

∣∣∆pseudo(Û , Ẑ)j
∣∣4
]
+ δCNF(

√
n)4
)
,
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where we have used Fact 5.1 and the easy bound ‖∆pseudo
j ‖∞ ≤

√
n for j ∈ [k] (recalling that each

weight vector W j has ‖W j‖2 equal to 1). Since rbucket ≥ 4 log k, by the same hypercontractivity-
based calculations as in the proof of Claim 4.4 of [HKM12] (starting at the bottom of page 15),
each of the two expectations is at most O((log k)2) · h(W, b). (We refer the reader to Section 6.2 of
[HKM12] for a justification of why the rbucket-wise independence of the distribution Ẑ suffices for
the analysis of the second expectation.) This concludes the proof of Lemma 7.1.

9 Proving Theorem 2 using Theorem 7

In this section we relate what we have shown so far, a bound on
∣∣∣ E
U←{−1,1}n

[
Fψ∗

λ,k+1,(~θ,0)
(U)

]
− E

Y←Gen

[
Fψ∗

λ,k+1,(~θ,0)
(Y )

]∣∣∣, (14)

to the relevant quantity for Theorem 2,
∣∣∣ E
U←{−1,1}n

[
F (U)

]
− E

Y←Gen

[
F (Y )

]∣∣∣. (15)

By [HKM12]’s Lemma 3.3, the quantity (15) is at most

O(1) · ((14) +Pr
[
(W TU , G(U)) ∈ Strip

λ,k+1,(~θ,0)

]
).

We bound this probability as follows:

Pr
[
(W TU , G(U)) ∈ Strip

λ,k+1,(~θ,0)

]
≤ Pr

[
W TU ∈ Strip

λ,k,~θ

]
(Claim 5.2)

≤ Pr
[
W TG ∈ Strip

λ,k,~θ

]
+O((log k)8/5(τ log(1/τ))1/5)

([HKM12]’s invariance principle, Theorem 4)

= O(λ
√

log k) +O((log k)8/5(τ log(1/τ))1/5). (Theorem 5)

Therefore, it follows that

(15) = O

(
(log k)3

λ4

(
(log k)3 · τ log(1/τ) + 1

τ
· δCNF · n2

)
+

1

τ

(
√
δCNF +

3∑

a=1

na
√
δCNF ·

(log k)a−1

λa

))

+O(λ
√

log k) +O((log k)8/5(τ log(1/τ))1/5).

As in [HKM12], we choose λ = (log k)11/10(τ log(1/τ))1/5, which makes

λ
√

log k = Θ

(
(log k)3

λ4
·
(
(log k)3 · τ log(1/τ)

))
= Θ((log k)8/5(τ log(1/τ))1/5)).

Since k ≤ 2n and τ ≥ 1/
√
n, a suitable choice of δCNF = 1/poly(n) makes the remaining quantity,

1

τ

(
(log k)3

λ4
· δCNF · n2 +

√
δCNF +

3∑

a=1

na
√
δCNF ·

(log k)a−1

λa

)
,

at most O((log k)8/5(τ log(1/τ))1/5)), so we get that (15) is O((log k)8/5(τ log(1/τ))1/5) as desired.
This concludes the proof of Theorem 2.
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