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Abstract— In dyadic interactions, humans communicate their
intentions and state of mind using verbal and non-verbal cues,
where multiple different facial reactions might be appropriate
in response to a specific speaker behaviour. Then, how to
develop a machine learning (ML) model that can automat-
ically generate multiple appropriate, diverse, realistic and
synchronised human facial reactions from an previously unseen
speaker behaviour is a challenging task. Following the successful
organisation of the first REACT challenge (REACT 2023),
this edition of the challenge (REACT 2024) employs a subset
used by the previous challenge, which contains segmented 30-
secs dyadic interaction clips originally recorded as part of
the NOXI and RECOLA datasets, encouraging participants to
develop and benchmark Machine Learning (ML) models that
can generate multiple appropriate facial reactions (including
facial image sequences and their attributes) given an input
conversational partner’s stimulus under various dyadic video
conference scenarios. This paper presents: (i) the guidelines
of the REACT 2024 challenge; (ii) the dataset utilized in the
challenge; and (iii) the performance of the baseline systems on
the two proposed sub-challenges: Offline Multiple Appropriate
Facial Reaction Generation and Online Multiple Appropriate
Facial Reaction Generation, respectively. The challenge base-
line code is publicly available at https://github.com/
reactmultimodalchallenge/baseline_react2024.

I. INTRODUCTION

Recent years have seen an increasing number of studies
targeting human-human dyadic interaction analysis [4]. Pre-
vious studies [9], [17], [7] have investigated the problem of
automatically generating a specific reaction that resembles
the ground-truth (real) response or reaction for a given
input. Most of these studies proposed deterministic approach
that aims to reproduce the ground-truth reaction without
considering the non-verbal aspects that enrich the message
conveyed. Few studies have looked into the generation of
appropriate reactions as non-verbal behaviours, with a main
focus on generating a single appropriate reaction, e.g., hand
gesture [7], facial reaction [9], [18], [16], [13], [28], or full-
body postures [5].

As discussed in [21], given a human behaviour (called
speaker behaviour), multiple appropriate facial reactions
could be expressed by not only different individuals but also
the same individual under different situations in response
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to it. Consequently, a Multiple Appropriate Facial Reaction
Generation (MAFRG) task has been proposed. The REACT
2024 Challenge is the second competition event aimed
at comparison of machine learning methods for MAFRG
tasks, with all participants competing under strictly the same
conditions. The REACT 2024 Challenge follows the similar
purpose and form as the REACT 2023 challenge [20],
focusing on two MAFRG tasks: offline and online Multiple
Appropriate Facial Reaction Generation (offline and online
MAFRG).

Although the organization of the REACT 2023 challenge
facilitated the creation of several successful solutions [25],
[12], [27], [10], [8], [24], [3] for both online and offline
MAFRG tasks, most of them were not able to provide
realistically generated facial reaction sequences but only
focussed on generating facial attributes of the predicted facial
reactions. Hence, this edition aims to promote the submission
of results that include realistic facial reaction video clips.
To assist in addressing the challenge of generating facial
reaction video clips, this edition focuses specifically on
video-conference settings and therefore includes only the
NoXI [6] and RECOLA [15] datasets, due to the more noisy
data of in-person settings (i.e., a major reason for excluding
the UDIVA dataset [14] in this edition that was used in
REACT 2023 challenge).

The REACT 2024 Challenge adopts the metrics defined
in [21] to evaluate four aspects of the submitted models
in terms of their generated facial reactions, namely: ap-
propriateness, diversity, realism and synchrony. Participants
are required to submit their developed model, checkpoints
and well-explained source code, accompanied by a pa-
per submitted to the REACT 2024 Challenge describing
their proposed methodology and the achieved results. Only
contributions that meet the pre-determined requirements,
terms and conditions 1 are eligible for participation. The
organisers do not engage in active participation themselves,
but instead undertake a re-evaluation of the findings of
the systems submitted to both sub-challenges. Differently
from the previous edition, the ranking of the submitted
models in this challenge depend on two metrics: Appropriate

1https://sites.google.com/cam.ac.uk/react2024/home
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facial reaction correlation (FRCorr) of the generated facial
reaction attributes and facial reaction realism (FRRea) of the
generated facial reaction video clips, for both sub-challenges.
In addition, participants should also report Facial reaction
distance (FRDist), facial reaction diverseness (FRDiv), Facial
reaction variance (FRVar), Diversity among facial reactions
generated from different speaker behaviours (FRDvs) and
Synchrony between generated facial reactions and speaker
behaviours (FRSyn).

II. CHALLENGE CORPORA

The REACT 2024 challenge employs two video confer-
ence corpora: NoXi [6] and RECOLA [15]. Specifically, we
first segmented each audio-video clip in two datasets into
a 30-seconds long clip as in [1], [20]. Then, we cleaned
the dataset by selecting only the dyadic interactions with
complete data of both conversational partners (where both
faces were within the frame of the camera). This resulted in
5919 clips of 30 seconds each (71,8 hours of audio-video
clips), specifically: 5870 clips (49 hours) from the NoXi
dataset and 54 clips (0,4 hour) from the RECOLA dataset.
We divided the datasets into training (1,585 video clips from
NoXI and 9 video clips from RECOLA), test (797 video clips
from NOXI and 9 video clips from RECOLA) and validation
(553 from NOXI and 9 from RECOLA) sets. We split the
datasets with a subject-independent strategy (i.e., the same
subject was never included in the training/validation and test
sets). In this challenge, 25 frame-level facial attributes are
provided for each facial frame, namely 15 AUs’ occurrence
(AU1, AU2, AU4, AU6, AU7, AU9, AU10, AU12, AU14,
AU15, AU17, AU23, AU24, AU25 and AU26) predicted
by the state-of-the-art GraphAU model [11], [19], as well
as 2 facial affects (i.e., valence and arousal intensities) and
8 facial expression probabilities (i.e., Neutral, Happy, Sad,
Surprise, Fear, Disgust, Anger and Contempt) predicted by
[22].

III. EVALUATION METRICS

In this challenge, the submitted models are expected to
generate two types of outputs for representing each facial
reaction: (i) 25 facial attribute time-series; and (ii) a 2D facial
image sequence. We followed [21], [20] to comprehensively
evaluate three aspects of the generated facial reaction at-
tributes: (i) Appropriateness based on two metrics, FRCorr:
Concordance Correlation Coefficient (CCC) and FRDist:
Dynamic Time Warping (DTW); (ii) Diversity: FRVar,
FRDiv, and FRDvs; and (iii) Synchrony: the Time Lagged
Cross Correlation (TLCC), called FRSyn in this challenge.
Also, the Realism of the generated facial reaction video
clips is assessed using the Fréchet Inception Distance (FID),
denoted as FRRea.

IV. BASELINE SYSTEMS

Trans-VAE: We re-employ the same Trans-VAE baseline
used in previous challenge [20] to this challenge. This base-
line is inspired by [12], which follows the similar architecture
as the TEACH [2]. As shown in Fig. 1, it is made up
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Fig. 1. Overview of the Trans-VAE baseline.
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Fig. 2. Overview of the BeLFusion baseline.

of (i) a CNN encoder that extract facial reaction-related
features from the input speaker facial image sequence; (ii)
a transformer encoder that combines the learned facial
embeddings and baseline audio embeddings (78-dimnesional
MFCC features) extracted from the speaker audio behaviours
using Torchaudio library [26], based on which an Gaussian
Distribution is predicted to describe multiple appropriate
facial reactions of the input speaker behaviour; and (iii)
a transformer decoder that samples two types of facial
reaction representations from the predicted distribution: 1)
a set of 3D Morphable Model (3DMM) coefficients (i.e.,
52 facial expression coefficients, 3 pose coefficients and 3
translation coefficients defined by [23]) and 2) an multi-
channel facial attribute time-series (i.e., 25-channel time-
series including 15 frame-level AUs’ occurrence, 8 frame-
level facial expression probabilities as well as frame-level
valence and arousal intensities). Please refer to [20] for the
detailed description of applying this baseline for online and
offline MAFRG tasks.

BeLFusion. We also re-use BeLFusion without be-
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havioural disentanglement as our second baseline [3], see
Fig. 2. Its training involves two steps. First, a variational
autoencoder (VAE) learns a lower representation of the
sequence of visual features (e.g., AUs, facial affects, and
expressions) for w frames. A regressor is incorporated after
the VAE’s decoder to transform the decoded reaction into a
sequence of 3DMM coefficients. Second, a latent diffusion
model (LDM) is optimized to, when given the speaker’s
reaction, predict the lower-dimensional representation of the
listener’s appropriate facial reaction. BeLFusion employs
a window-based approach where the T/w reactions are
predicted independently. Afterwards, the w-frames-long T/w
reactions are arranged to construct the complete reaction. As
in [20], the listener’s visual features for the window [t, t+w)
is conditioned on the past speaker’s features at [t − w, t).
Features for the segment [0, w) are all set to zeroes. In the
offline subchallenge, the generation is conditioned on the
speaker’s features within the same time period: [t, t + w).
The LDM’s loss is the average of the latent and reconstructed
MSE losses, and the denoising chain length is set to 10 steps.

Reversible Graph Neural Network (REGNN): We also
employ the REGNN-based MAFRG approach [25] as the
second baseline. As illustrated in Fig. 3, it consists of three
main modules: (i) a Perceptual Processor that encodes
the input speaker audio-facial behaviour as a pair of latent
audio and facial representations; (ii) a Cognitive Processor
(Cog) that predicts a Gaussian Mixture Graph Distribution
describing all appropriate facial reactions in response to the
input speaker behaviour; and (iii) an Reversible GNN-based
Motor Processor that samples an appropriate facial reaction
from the predicted appropriate facial reaction distribution.
During the training, the Reversible GNN employed in this
approach encodes all appropriate facial reactions of each
input speaker behaviour as an ground-truth appropriate facial
reaction distribution, enforcing the cognitive processor to
predict the same distribution from the speaker representations
obtained by the perceptual processor. As a result, the one-
to-many mapping training problem is re-formulated as a
one-to-one mapping problem. Please refer to [25] for more
implementation details of its offline MAFRG system.

V. BASELINE RESULTS

It is clear that all three baselines outperformed the
B Random, B Mime, B MeanSeq and B MeanFr, suggesting
that they can predict meaningful appropriate human facial
reactions from different speaker behaviours despite that the
predicted facial reactions performances are not very solid.

Trans-VAE baseline: The Trans-VAE baseline model
serves as a fundamental baseline for comparison purposes.
This baseline demonstrates the capability to generate fa-
cial reactions that exhibit a modest level of diversity, as
measured by metrics such as FRDiv, FRVar, and FRDvs,
alongside a moderate level of appropriateness and compa-
rable synchronization in both offline and online scenarios.
In contrast to random facial reactions (B Random), the
Trans-VAE model achieved higher appropriateness (FRD).
Furthermore, it surpasses in generating more diverse samples

(FRDiv) compared to replicating facial sequences mirroring
the speaker’s facial behaviour. We visualise example facial
reactions generated by this baseline in Fig. 4.

BeLFusion baseline: While BeLFusion shows a perfor-
mance similar to Trans-VAE in terms of accuracy (FRD),
it generates more diverse reactions. The competitive per-
formance of such baseline without access to raw audio
or video data highlights the need for better multimodal
approaches tailored for this application. We also observe
that binarizing the action units predicted greatly improves
the diversity, but penalizes the accuracy and synchrony. The
similar results in both online and offline scenarios suggest
that a window-based approach might be insufficient to exploit
all the information available in the visual features.

Reversible Graph Neural Network (REGNN) baseline:
In the offline task evaluation, REGNN demonstrates clear
advantages over Trans-VAE and BeLFusion baselines in
terms of the appropriateness metrics, as indicated by the
highest FRCorr and lowest FRD. In addition, the facial reac-
tions generated by REGNN are more synchronised with the
speaker behaviour. When it comes to the diversity, REGNN is
less effective in generating diverse facial reactions, compared
to the BeLFusion baseline.

VI. PARTICIPATION AND CONCLUSION

This paper introduced REACT 2024 Challenge in conjunc-
tion with the IEEE International Conference on Automatic
Face and Gesture Recognition (FG) 2024, which focuses on
multiple appropriate facial reaction generation under various
video conference-based dyadic interactions scenarios. A total
of 13 teams from 6 countries registered for this challenge,
with 12 teams participating in the offline MAFRG sub-
challenge and 13 teams participating in the online MAFRG
sub-challenge. Our evaluation protocol strictly will rank
all participant models under the same settings by compre-
hensively considering two aspects of their generated facial
reactions: appropriateness, diversity, realism and synchrony.
We hope that both the challenge data and code, as well as
the systems and results of the competing teams, will serve
as a valuable stepping stone for researchers and practitioners
interested in the area of generative AI and automatic facial
reaction generation. Our future efforts will be directed at
continuing to organize REACT challenges in conjunction
with well-known conferences while introducing new datasets
and new modalities.
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