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Abstract— Face recognition technology has become an inte-
gral part of modern security systems and user authentication
processes. However, these systems are vulnerable to spoofing
attacks and can easily be circumvented. Most prior research in
face anti-spoofing (FAS) approaches it as a two-class classifica-
tion task where models are trained on real samples and known
spoof attacks and tested for detection performance on unknown
spoof attacks. However, in practice, FAS should be treated as
a one-class classification task where, while training, one cannot
assume any knowledge regarding the spoof samples a priori.
In this paper, we reformulate the face anti-spoofing task from
a one-class perspective and propose a novel hyperbolic one-
class classification framework. To train our network, we use a
pseudo-negative class sampled from the Gaussian distribution
with a weighted running mean and propose two novel loss
functions: (1) Hyp-PC: Hyperbolic Pairwise Confusion loss,
and (2) Hyp-CE: Hyperbolic Cross Entropy loss, which operate
in the hyperbolic space. Additionally, we employ Euclidean
feature clipping and gradient clipping to stabilize the training
in the hyperbolic space. To the best of our knowledge, this is
the first work extending hyperbolic embeddings for face anti-
spoofing in a one-class manner. With extensive experiments
on five benchmark datasets: Rose-Youtu, MSU-MFSD, CASIA-
MFSD, Idiap Replay-Attack, and OULU-NPU, we demonstrate
that our method significantly outperforms the state-of-the-art,
achieving better spoof detection performance.

I. INTRODUCTION

We are in an era where facial recognition is extensively
utilized for authentication and access control. It is used
in diverse sectors, including mobile device security, finan-
cial services, border control, fraud prevention, e-commerce,
healthcare, etc. However, such widespread adoption of facial
recognition technology has made it vulnerable to spoofing
attacks. Malicious actors attempt to deceive the system by
spoofing the identity of an individual using presentation
attack instruments (PAI). They employ various attacks, such
as printed photos, replayed videos, or 3D synthetic masks,
that jeopardize security and endanger face as a biometric
modality. Hence, it is crucial to develop robust face anti-
spoofing (FAS) techniques that can counter this threat.

Why Unimodal FAS ? With the advent of sophisticated
hardware, there was an influx of multimodal FAS tech-
niques [84], [53], [63], [42], [33], [38], [13] that incorporate
auxiliary data like depth map [79], [43], reflection map [82],
infrared images [83], r-PPG signals [24], [40], and additional
sensors [61] to boost the performance. However, relying on
such advanced hardware and sensors is problematic as they’re
expensive and not universally available where FAS systems
are deployed. In this work, we focus on unimodal FAS,
which uses the widespread RGB camera found in nearly
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Fig. 1. Feature representation of real and spoof samples in the Euclidean
and the hyperbolic space. The representation of real samples in the hy-
perbolic space is compact (dotted circle), resulting in a better separating
gyroplane contrary to the Euclidean space in which the representation
is scattered. Hyperbolic embeddings prove to be effective in one-class
classification for face anti-spoofing.

all mobile devices and is easily accessible. It’s not only
affordable but also straightforward to integrate at various
security checkpoints.

Why One Class ? The FAS problem has been approached
in different ways in the literature. Binary classifiers [5], [31],
[70], [81], [19] associate samples with real and spoof labels.
Domain Adaptation methods [35], [71], [73], [57], [85], [86]
utilize target domain data to bridge the gap between source
and target domains. Domain Generalization techniques [62],
[72], [28], [41], [65], [66] focus on minimizing the distri-
bution discrepancies between multiple source domains that
generalize better to unseen domains. However, all these
formulations assume some kind of prior knowledge of spoof
samples while training. In the real world face anti-spoofing
scenario, spoof samples are infinitely variable, which makes
the task of FAS inherently complex. The variations in spoof
attacks are boundless. Whether you consider webcam, masks,
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print, surveillance camera, or phone-based attacks, malicious
actors exploit variations in factors like - light, camera sensor,
printer, paper, and mask to fool the facial recognition system.
The vast spectrum of possibilities highlights the need to
address face anti-spoofing as an anomaly detection or one-
class classification problem where one only have access to
the real samples, as it focuses on identifying genuine samples
while remaining resilient to the ever-expanding range of
spoofing techniques. Some recent works [2], [16], [49], [7],
in agreement with our approach, have formulated FAS as
a one-class classification task, demonstrating its complexity
and practical relevance for real-world applications.

Why Hyperbolic ? Recently, hyperbolic embeddings are
adopted for vision tasks such as image segmentation [4],
instance segmentation [76], few-shot classification [18] and
image retrieval [14]. [48], [30] established that hyperbolic
embeddings can outperform the Euclidean embeddings sig-
nificantly on data with latent hierarchies, both in terms
of representation capacity and generalization ability. In the
FAS scenario, the real and spoof classes have subtle visual
differences and lie close to each other in the feature space.
Therefore, it is challenging to fit a hyperplane for one-class
classification, especially in the absence of a spoof class while
training. Hyperbolic space with a negative curvature allows
for the learning of discriminative features owing to the nature
of exponential growth in volume with respect to its radius.
Consequently, hyperbolic space aids in learning a separating
gyroplane (Section III-A) for effective one-class FAS (See
Figure 1).

In this work, we extend the use of hyperbolic embeddings
for face anti-spoofing. We formulate the FAS problem as a
one-class classification due to its practicality for real-world
deployment and propose two novel loss functions to train
our network. The following are the main contributions of
our research:
• We propose using hyperbolic embeddings for one-class

face anti-spoofing. We show that using hyperbolic space
helps learn a better decision boundary than the Eu-
clidean counterpart, boosting the FAS performance.

• We propose a novel Hyperbolic Pairwise Confusion
Loss (Hyp-PC) that operates in the hyperbolic space. It
induces confusion within the hyperbolic feature space,
effectively stripping away identity information. Such
disruption of features helps to learn better feature rep-
resentations for the FAS task.

• We propose a novel Hyperbolic Cross Entropy loss
(Hyp-CE). It uses hyperbolic softmax logits and penal-
izes the network for every misclassification.

II. RELATED WORK

In this section, we give an overview of previous works in
FAS, with a focus on one-class FAS. In addition, we briefly
review the literature on hyperbolic embeddings.

A. Face Anti-spoofing

Earlier works [36], [12], [32], [54] utilized handcrafted
features for FAS. Some works are based on eye blinking [51],

[27], head movements [74], [6], gaze tracking [1], and remote
physiological signals [80]. Classical handcrafted features
such as LBP [8], SIFT [54], and HOG [32] were leveraged
to extract spoofing patterns. Subsequently, deep learning-
based models [3], [77], [5] are utilized to detect spoofs.
The majority of these methods approach it as a binary
classification problem. However, in practice, FAS should
be considered a one-class classification (OCC) task. [2]
showed that two-class methods can be biased towards spoof
samples in the training set. Following that, several works
were proposed for one-class face anti-spoofing (OC-FAS)
even though the performance was not competitive compared
to binary FAS. An observation is the utilization of classical
one-class classifiers such as OC-SVM, OC-GMM, and MD
for final classification. [49] uses IQM features with one-class
GMM for detecting spoofs. [15] shows identity information
can be used to improve OC-FAS performance. [16] uses an
ensemble of one-class classifiers. [56] uses metric learning,
where a triplet focal loss is used as a regularizer. [44] pro-
posed a Deep Tree Network (DTN) for zero-shot FAS. [20]
uses center loss for a compact representation of the bonafide
class while being away from the embeddings of the attacked
class. [7] samples pseudo-negative samples from Gaussian to
train the OC-FAS classifier. [20] introduces a multi-channel
neural network for learning one-class representations. De-
spite these efforts, the performance of OC-FAS methods still
lags significantly behind that of binary FAS approaches.

B. Hyperbolic Embeddings

Hyperbolic spaces have gained much attention for their
representation capability in a wide range of domains [34],
[59], [78]. It benefits vision applications [10], [39], [45] be-
cause natural images often exhibit hierarchical structure [30],
[46]. [17] proposed several models in the hyperbolic space,
such as Hyperbolic Neural Networks, Multinomial Logis-
tic Regression, Fully-Connected and Recurrent Neural Net-
work. [64] introduces hyperbolic convolutional layers. [22]
performs Euclidean feature clipping to solve the vanishing
gradient problem of hyperbolic networks. Following previous
works [48], [30], we employ the Poincaré Ball model in
which our proposed loss functions operate.

III. PROPOSED WORK

We propose two novel loss functions: (1) Hyp-PC: Hyper-
bolic Pairwise Confusion loss, and (2) Hyp-CE: Hyperbolic
Cross Entropy loss, both of which take advantage of hy-
perbolic space’s capability to efficiently represent data. We
employ a hyperbolic classifier head (Hyp-OC) that performs
hyperbolic softmax-regression and use the resulting hyper-
bolic logits for one-class face anti-spoofing. An overview
of the proposed framework is depicted in Figure 3. The
following section is structured as follows. Initially, we lay
out the required foundational concepts of hyperbolic spaces
in Section III-A. We then explain Hyp-PC loss in Section III-
B and Hyp-CE loss in Section III-C. Lastly, we provide
a comprehensive overview of the training framework and



the strategies we follow to stabilize hyperbolic training in
Section III-D.

A. Preliminaries: Hyperbolic Embeddings

An d-dimensional hyperbolic space Hd is a smooth Rie-
mannian manifold with a constant negative curvature −c(c>
0). There are several isometric models in the hyperbolic
space, however, we operate in the Poincaré model [48] due to
its widespread usage in computer vision. The Poincaré ball
model (Bd

c ,g
Bc) with manifold Bd

c = {x ∈ Rd : c∥x∥< 1,c≥
0} depicted in Figure 2 is an d-dimensional ball equipped
with Riemannian metric:

gBc
x = (λ c

x )
2gE =

2
1− c||x||2

Id , (1)

where λ c
x = 2

1−c∥x∥2 is the conformal factor, gE = Id is
the Euclidean metric tensor and c is the curvature of the
hyperbolic space. In the Euclidean space, the volume of an
object with diameter r increases polynomially, however, in
the hyperbolic space, these volumes grow at an exponential
rate because of λ c

x which approaches infinity near the bound-
ary of the ball. This property allows efficient embedding of
data in low dimensions.

Euclidean vector operations are not valid in hyperbolic
spaces, and operations from gyrovector spaces are adopted
to operate in hyperbolic spaces. Some of the basic operations
in hyperbolic spaces using the gyrovector formalism [69],
[68] are:
Möbius Addition. Vector addition of two points u,v ∈ Bd

c is
formulated using Möbius addition as,

u⊕c v =
(1+2c⟨u,v⟩+ c∥v∥2)u+(1− c∥u∥2)v

1+2c⟨u,v⟩+ c2∥u∥2∥v∥2 (2)

where, ⟨·⟩ denotes the Euclidean inner product. limc→0⊕c
converges to standard + in the Euclidean space.
Exponential map. The exponential map expc

x projects vec-
tors from Euclidean space into the Poincarè Ball. Euclidean
space corresponds to the tangent space TxBd

c of the manifold
Bd

c at a reference point x. In our work, we treat the starting
point x in the Poincaré Ball as a parameter and optimize it
using Riemannian gradient [48]. For any point x ∈ Bd

c , the
exponential map expc

x : TxBd
c → Bd

c for u is defined as,

expc
x(u) = x⊕c

(
tanh

(√
c∥u∥
2

)
u√

c∥u∥

)
(3)

As limc→0 expc
x(u)= x+u, i.e. the exponential map converges

to standard translation operation in Euclidean space.
Distance Measure. The distance between two vectors u,v ∈
Bd

c in the Poincaré Ball is the length of the geodesic con-
necting the two vectors, which is the shortest curve between
those points in (Bd

c ,g
Bc) and is defined as:

Dhyp(u,v) =
2√
c

arctanh
(√

c∥−u⊕c v∥
)

(4)

When c → 0, geodesics becomes straight-lines recovering
Euclidean geometry: limc→0 Dhyp(u,v) = 2∥u− v∥.
Hyperbolic Softmax. For p ∈ Bd

c , a ∈TpBd
c\{0}, Ganea et

al. [17] describes the gyroplane, i.e. the hyperplane in the
Poincaré Ball, as:

H̃c
a,p := {x ∈ Bd

c : ⟨−p⊕c x,a⟩= 0}, (5)
where x is a hyperbolic feature vector mapped using Equa-
tion 3. H̃c

a,p can be interpreted as the union of images of

𝑒𝑥𝑝!"(𝑢)

Gyroplane
Geodesic distance
Hyperbolic features
Point on gyroplane
Normal to gyroplane

𝑢 ∈ 𝑇!𝔹"#

𝔹"$

𝑆$%
𝑥

𝑝&

𝐻,'!,)!
"

𝑑"(𝑥, 𝐻,'!,)!
" )

𝑎&

Fig. 2. Visualization of the Poincarè Ball Bd
c . Si

n denotes hyperbolic features
exponentially mapped from TxBd

c . In our work, we use dc(x, H̃c
ak ,pk

) to
compute LHyp−PC and LHyp−CE . H̃c

a,p represents the gyroplane of class k.

all geodesics in Bd
c orthogonal to a and containing p. Given

K classes and k ∈ {1, ...,K}, pk ∈ Bd
c , ak ∈ TpkB

d
c\{0}, the

hyperbolic distance of x to the gyroplane of class k is given
as:

dc(x, H̃c
ak,pk

) =
1√
c

sinh−1

(
2
√

c |⟨−pk⊕c x,ak⟩|
(1− c∥−pk⊕c x∥2)∥ak∥

)
.

The logit of class k for hyperbolic feature vector x is based
on the distance defined in Equation 6 and calculated using
the Reimannian metric described in Equation 1 as:

ζpk(x) = λ
c
pk
∥ak∥dc(x, H̃c

ak,pk
). (6)

As a result, the likelihood is given as:
p(y = k | x) ∝ exp(ζpk(x)). (7)

In our work, we utilize the above likelihood (i.e. Equation 7)
as target class classification probability to calculate the
performance metrics. Additionally, we use the hyperbolic-
softmax logits (Equation 6) to calculate the Hyp-CE loss
described in Section III-C. The trainable parameters of
hyperbolic classifier head are the vectors {pk} and {ak} for
each class k. We refer to this hyperbolic classifier head as
Hyp-OC.

B. Hyp-PC: Hyperbolic Pairwise Confusion loss

In our proposed method, we perform one class training, in
which each iteration consists of n positive samples ∋ 2 | n.
Let Sn = {Si

n | 0 ≤ i < n} be the set of hyperbolic feature
vectors of the positive samples. Using the geodesic distance
formulation given in Equation 4, we introduce a novel loss
function: Hyp-PC which is defined as:

LHyp-PC =
n/2−1

∑
i=0

2√
c

arctanh
(√

c∥−Si
n⊕c Si+n/2

n ∥
)/

n. (8)

Here, ∥ ∥ represents the Euclidean norm, ⊕c is calculated
using Equation 2, and Sn

i are hyperbolic feature vectors
exponentially mapped from TxBd

c to Bd
c using Equation 3.

The Hyp-PC loss is utilized to refine the features of posi-
tive samples by removing identity-related information. This
process declusters the positive class feature representation,
enhancing the model’s ability to generalize. Such an ap-
proach is particularly beneficial for the FAS task, where the
focus is solely on spoof detection rather than recognizing the
individual identities.
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Fig. 3. Overview of the proposed pipeline Hyp-OC (Section III-D). E1(x) extracts the facial features. The facial features are used to estimate the mean
of Gaussian distribution utilized to sample pseudo-negative points. The real features and pseudo-negative features are then concatenated and passed to
E2(x) for dimensionality reduction. The low-dimension features are mapped to Poincaré Ball using exponential map. The training objective is to minimize
the summation of the proposed loss functions LHyp−PC (Section III-B) and LHyp−CE (Section III-C). The result is a separating gyroplane beneficial for
one-class face anti-spoofing. [Best viewed in color]

C. Hyp-CE: Hyperbolic Cross Entropy loss

We propose a novel Hyp-CE – Hyperbolic Cross Entropy
loss based on logits from the hyperbolic space calculated
using Equation 6. Given K classes and k ∈ {1, ...,K}, pk ∈
Bd

c , ak ∈ TpkB
d
c\{0}, let the mini-batch size be 2n, the set

of hyperbolic features obtained after the exponential map
(Equation 3) be S2n = {Si

2n | 0≤ i < 2n}, the target labels for
the mini-batch be Y2n = {Y i

2n | 0≤ i < 2n,dim(Y i
2n) = K} and

the weightage of each sample in the mini-batch be W2n =
{W i

2n | 0 ≤ i < 2n}, the Hyp-CE loss for the minibatch is
defined as:

LHyp-CE =
2n−1

∑
i=0

K

∑
k=1
−W i

2n log
exp(ζpk(S

i
2n))

K
∑

k=1
exp(ζpk(S

i
2n))

·Y i
2n. (9)

In our work, we have two classes and give equal weightage
to all samples. The predicted probability of Si

2n belonging to
class k (k = 0 for real sample and k = 1 for spoof sample)
can be expressed as:

zk=0,1 =
gk

g0 +g1
=

exp(ζpk(S
i
2n))

exp(ζp0(S
i
2n))+ exp(ζp1(S

i
2n))

. (10)

Using Equation 9 and Equation 10 the Hyp-CE loss function
can simply be written as:

LHyp-CE =
2n−1

∑
i=0

yi · log(zi)+(1− yi)(1− zi), (11)

where, yi is the ground truth label and zi is the predicted
probability for the spoof class.

D. Training framework for one-class classification

Our proposed pipeline uses only real samples for train-
ing and can be viewed as a conjunction of an Euclidean
network: E(x), and a hyperbolic classifier head: H(x). The
Euclidean network comprises of two parts: (1) E1(x) -
which is a facial feature extractor and (2) E2(x) which is
a fully-connected neural network used for dimensionality

reduction. The hyperbolic classifier head outputs the final
target class classification probability explained comprehen-
sively in Section III-A. In each batch, given a set of n
training images Xn = {X i

n | 0 ≤ i < n}, we employ E1(x) to
produce a set of d′-dimensional feature set Fn = {F i

n | 0 ≤
i < n,dim(F i

n) = d′}. Inspired from the work of Baweja et
al. [7], we define a Gaussian distribution N (µ,σ I) with
a d′-dimensional adaptive mean to sample pseudo-negative
features in proximity of the real samples’ features. In each
iteration, we sample n pseudo-negative features from the
distribution with mean µ =αµprevious+(1−α)µcurrent, where
µprevious is the mean of real samples’ features of the previous
batch, µcurrent is the mean of real samples’ features of the
current batch and α is a hyper-parameter. We concatenate the
real samples’ features and pseudo-negative features and feed
it to E2(x) for dimensionality reduction. The concatenated
batch of size 2n when given as input to E2(x) outputs a
low-dimensional representation of features G2n = {Gi

2n | 0≤
i < 2n,dim(Gi

2n) = d}. G2n is then mapped to the Poincaré
Ball (Bd

c ,g
Bc) with manifold Bd

c = {x∈Rd : c∥x∥< 1,c≥ 0}
using exponential map. Let the vectors in the hyperbolic
space be represented as a set S2n := {Si

2n | 0 ≤ i < 2n}.
Finally, S2n is given as input to H(x) that returns ζpk(S

i
2n),

for k = 0,1. These hyperbolic-softmax logits are then used
for final prediction.

We use the VGG-16 pretrained on VGGFace [52] as E1(x)
and a neural network with four FC layers as E2(x). The last
three convolution layers and the last FC layer of E1(x) are
updated during the training phase to make the feature repre-
sentations suitable for the FAS task. Additionally, E2(x), the
starting point x on the Poincaré Ball (described in Section III-
A) and {ak}, {pk} vectors of the hyperbolic classifier head
are trainable parameters of the proposed pipeline which are
updated when the loss is backpropagated. The proposed loss



Algorithm 1 Training Framework
1: Input: Training data D = {(Xn,Yn)i}N

i=1, facial feature extrac-
tor E1(x), FCNN E2(x) for dimensionality reduction, Poincaré
Ball (Bd

c ,g
Bc) with manifold Bd

c = {x ∈ Rd : c∥x∥< 1,c≥ 0},
hyperbolic classifier H(x) i.e. H̃c

a,p := {x ∈ Bd
c : ⟨−p⊕c x,a⟩=

0} for p∈Bd
c , a∈TpBd

c\{0}, learning rate γ , Adam optimizer
momentum parameters - β1&β2, hyper-parameter α for adap-
tive mean, Euclidean feature clipping function feat clip(,r),
Gradient clipping function grad clip(, p), Gaussian distribution
N (µ,σ I); µ,σ ∈ Rd′ to sample pseudo-negative points, total
epochs T = N/n ∋ 2 | n.

2: Init: c = 0.1, α = 0.8, β1 = 0.9, β2 = 0.999, r = 2, p = 3,
µ = 0, σ = 1, d = 4096, d = 128

3: for t in 0, 1, ..., T do
4: −−−−−−−−−−E1(x)−−−−−−−−−−
5: Input Data: Xt

n = {X i
n | 0≤ i < n}.

6: Ft
n = {F i

n | 0≤ i < n,dim(F i
n) = d′}= E1(Xt

n).
7: # Estimating mean of N (µ,σ I)
8: µcurrent = ∑

n
i=0 X i

n.
9: µt = αµt−1 +(1−α)µcurrent.

10: Pt
n: Sample n pseudo-negative points from N (µ,σ I).

11: Xt
2n := Xt

n concat Pt
n

12: −−−−−−−−−−E2(x)−−−−−−−−−−
13: Input Data: Xt

2n = {X
i
2n | 0≤ i < 2n}.

14: Gt
2n = {G

i
2n | 0≤ i < 2n,dim(Gi

2n) = d}
15: = E2(Xt

2n).
16: Gt

2n← feat clip( f ,r) ∀ f ∈Gt
2n.

17: # Mapping Gt
2n to (Bd

c ,g
Bc)

18: Gt
2n

expc
xt

=====⇒
exp map

St
2n; expc

xt : TxtBd
c → Bd

c ; xt ∈ Bd
c .

19: −−−−−−−−−−H(x)−−−−−−−−−−
20: Input Data: St

2n = {S
i
2n | 0≤ i < 2n}.

21: # Calculating hyperbolic-softmax logits
22: ζpk (S

t
2n) = H(St

2n); k = 0,1.
23: −−−−−−−−−−−−−−−−−−−−−−−
24: Loss calculation: L = LHyp-PC +LHyp-CE.
25: # Trainable parameters
26: W t = {W t

E1
, W t

E2
, W t

H}.
27: Model update:
28: for wt ∈W t do
29: if wt ∈ {W t

E1
, W t

E2
} then

30: gt = grad clip(∇wt L ,r)
31: else if wt ∈ {W t

H} then
32: gt = grad clip(∇wt L ,r) · (1−c∥xt∥)2

4
33: end if
34: mt = β1 ·mt−1 +(1−β1) ·gt

35: vt = β2 · vt−1 +(1−β2) ·gt 2

36: m̂t = mt/(1−β t
1)

37: v̂t = vt/(1−β t
2)

38: wt+1 = wt − γ · m̂t

(
√

v̂t+ε)
39: end for
40: end for
blue: comments
orange: euclidean parameter updates
red: hyperbolic parameter updates

functions operate using the hyperbolic features. The Hyp-PC
loss uses Sn and Hyp-CE loss uses ζpk=0,1(S

i
2n) as described

in Equation 8 and Equation 9, respectively. The overall loss
function used to train the pipeline is a combination of the
two losses and is defined as:

L = LHyp-PC +LHyp-CE. (12)
In our approach, we employ a Euclidean optimizer for

training parameters in both Euclidean and hyperbolic spaces.
Although the optimization process for hyperbolic parameters
typically requires Riemannian gradients, when working in
the conformal Poincaré Ball model, Riemannian gradients
are equivalent to the Euclidean gradients with a scaling
factor [48]. This allows for the utilization of standard back-
propagation techniques in our computations. To stabilize the
training of the hyperbolic one-class classifier we perform
feature clipping [22] in the Euclidean space that addresses
the issue of vanishing gradients found in the hyperbolic
space. Furthermore, due to the exponential nature of geodesic
distances near the edges of the Poincaré Ball, we perform
gradient clipping to avoid exploding gradients and regularize
the parameter updates. The complete training framework is
formalized in Algorithm 1.

IV. EXPERIMENTS

This section, describes the datasets and protocols used to
evaluate our proposed pipeline. We give a brief account of the
evaluation metrics and the baseline methods for comparison.
Finally, we detail the implementation steps taken to train our
proposed model.

A. Datasets and Protocols

We evaluate our proposed hyperbolic one-class classifica-
tion framework using three different protocols. The protocols
holistically assess the model for intra-domain and inter-
domain performance and demonstrate the superiority of the
proposed approach. In Protocol 1, we evaluate intra-domain
performance where the network is trained and tested on
the same dataset. We employ widely used FAS datasets:
ROSE-Youtu R [37], MSU-MFSD (M) [75], CASIA-MFSD
(C) [84], Idiap Replay Attack (I) [11], and OULU-NPU
(O) [9]. Some sample images of the employed datasets are
shown in Figure 4. In Protocol 2, we use the MCIO datasets
and follow the leave-one-out setting. In particular, a model
is trained on multiple source domains and tested on a single
target domain. For instance, MCI → O represents that the
model is trained on M,C and I and tested on O. In Protocol
3, we again use M, C, I, and O datasets and follow a single-
source-single-target setting. In particular, a model is trained
using a single source domain and tested on a single target
domain different from the source domain. Protocols 2 and
3 evaluate the inter-domain performance of the model in
two different settings. We only focus on single-modal FAS
datasets for all experiments, as discussed in Section I.

B. Performance Metrics and Baseline Methods

We evaluate the model performance using the standard
metrics for FAS: Attack Presentation Classification Error
Rate (APCER), Bonafide Presentation Classification Error
Rate (BPCER), Half Total Error Rate (HTER), and Area un-
der the ROC curve (AUC). We run experiments for Protocol-
1 and Protocol-3 five times and Protocol-2 three times and
report the mean. We compare our model with seven state-of-
the-art one-class classifiers: OC-SVM [60], OC-GMM [26],
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Fig. 4. Sample images from the datasets used for training: RoseYoutu [37], MSU-MFSD [75], CASIA-MFSD [84], Idiap Replay Attack [11], OULU-
NPU [9].

SVDD [67], MD [47], OC-CNN [50], Anomaly Detection-
based unknown fPAD [7] and DROCC [21]. These classifiers
have been previously used for FAS and are the closest to
our proposed work. We re-train all the baselines to make
the dataset protocol consistent with our work. We employ
the same feature extractor as Hyp-OC for all the baseline
models.

C. Implementation Details

The input to all the models are RGB images, resized and
center cropped to 224× 224× 3. We normalize the images
with mean [129.186,104.762,93.593] and standard deviation
[1,1,1]. We use VGG-16 pre-trained on VGGFace [52] as our
feature extractor for all models. We employ a fully connected
neural network for dimensionality reduction. The FCNN
consists of 3 hidden layers with 8192, 1000, and 512 neurons,
respectively. The input and output layers have dimensions
4096 and 128, respectively. We perform the exponential
map of Euclidean features to Poincaré Ball model of the
Hyperbolic space of dimension 128. For all the baselines
and proposed method, we perform gradient updates on all
FCNN and Poincaré Ball parameters. We only update the
weights and biases of the last 3 convolution layers and the
last fully connected layer of the VGG-16 feature extractor
for all the models except DROCC. For DROCC [21], we
update all the parameters of the VGG-16 feature extractor,
which gives better results than only updating the last layers
but still falls short compared to the proposed Hyp-OC.

For training of the models, we use Adam optimizer with a
learning rate of 1e-6, momentum parameters as (0.9,0.999),
and weight decay set to 1e-6. We use different batch sizes and
training epochs for each dataset. For R, M, C, I, O, we use a
batch size of 8,8,8,32,32 and train it for 60,100,100,50,60
epochs, respectively. We train the models on 8 NVIDIA
A5000 GPUs, each with 24GB memory. The training steps of
our proposed approach, as shown in Algorithm 1, highlights
that gradients of hyperbolic parameters are scaled versions
of Euclidean parameters [48] and are dependent on the
curvature of the hyperbolic space.

We re-train all the baselines to make the dataset protocol
consistent for a fair comparison. We use the OneClassSVM
implementation from the sklearn library [55] with ‘rbf’
kernel and ν = 0.1. We use the signed distance from the

hyperplane to calculate the performance metrics. We follow
the standard sklearn implementation of OC-GMM [26] with
n components = 1. We take the log-likelihood of a sample
belonging to GMM as the score to calculate performance
metrics. We use SVDD implementation of [29], and chose
the kernel ‘rbf’, C = 0.9, and γ = 0.3. The distance from
the center is used to calculate the metrics. For implementing
MD [47], we again follow the standard implementation of
the sklearn library, using the distance itself to calculate
metrics. For OC-CNN [50], AD-fPAD [7], and DROCC [21],
we follow the official GitHub implementation and use the
probability of a sample belonging to the spoof class as the
score to calculate performance metrics.

V. RESULTS AND ANALYSIS

In this section, we compare our proposed approach with
recent works that utilize one-class classifiers for FAS. Table I
reports the intra-domain testing performance for Protocol 1.
Table III and Table II outline the inter-domain performance
for Protocol 2 and Protocol 3, in leave-one-out setting
and single-source-single-target setting, respectively. Our pro-
posed approach significantly outperforms previous methods.
Specifically, we improve upon the best baseline by an Avg.
HTER of 7.493 in Protocol-1, 4.231 in Protocol-2, and 2.778
in Protocol-3.

A. Protocol 1

Table I presents the results of Protocol 1, illustrating that
Hyp-OC significantly outperforms previous baselines in four
out of five datasets. In particular, it shows enhancements of
7.733 on R, 3.333 on M, 14.518 on C, and 9.506 on I in
terms of HTER. However, it is the second-best performer
on O, 4.777 behind the top baseline. Overall, Hyp-OC
demonstrates superior performance across all datasets with
an Avg. HTER of 28.339, marking a 7.493 increase upon the
best baseline. The AUC scores of Hyp-OC are 0.713, 0.782,
0.784, 0.931, and 0.639 on R, M, C, I, and O, respectively.
The intra-domain testing results establish Hyp-OC as the new
state-of-the-art one-class face anti-spoofing model.

B. Protocol 2

Protocol 2 highlights the capability of Hyp-OC to gen-
eralize over unseen environments. From Table III, it can be
inferred that Hyp-OC performs better than other baselines by



Method ROSEYoutu MSU-MFSD CASIA-MFSD ReplayAttack OULU-NPU Avg.

HTER ↓ AUC ↑ HTER ↓ AUC ↑ HTER ↓ AUC ↑ HTER ↓ AUC ↑ HTER ↓ AUC ↑ HTER ↓

OC-SVM [60] 56.843 0.415 54.375 0.509 47.778 0.582 59.892 0.401 57.323 0.426 55.242
OC-GMM [26] 62.427 0.302 50.000 0.268 62.593 0.324 60.158 0.054 54.948 0.458 58.025
SVDD [67] 41.807 0.625 36.250 0.705 40.648 0.653 24.633 0.838 35.823 0.682 35.832
MD [47] 51.413 0.474 49.583 0.512 57.963 0.362 47.137 0.576 58.010 0.408 52.822
OC-CNN [50] 46.865 0.538 37.292 0.674 44.722 0.584 34.825 0.716 44.302 0.561 41.601
AD-fPAD [7] 43.157 0.569 30.625 0.733 39.537 0.651 24.217 0.824 41.625 0.605 35.832
DROCC [21] 52.865 0.444 48.542 0.499 48.333 0.499 40.592 0.648 41.906 0.608 46.448

Ours 34.074 0.713 27.292 0.782 25.019 0.784 14.711 0.931 40.600 0.639 28.339

TABLE I
RESULTS OF INTRA-DOMAIN PERFORMANCE IN PROTOCOL 1. WE RUN EACH EXPERIMENT FIVE TIMES AND REPORT THE MEAN HTER AND AUC.

Method C → I C → M C → O I → C I → M I → O M → C M → I M → O O → C O → I O → M Avg.

OC-SVM [60] 36.033 34.167 41.583 51.667 37.500 43.917 45.648 45.696 55.865 55.093 53.354 45.000 45.460
OC-GMM [26] 50.000 50.625 50.000 53.426 61.667 51.792 50.000 50.000 50.000 50.463 50.888 65.000 52.822
SVDD [67] 35.225 33.958 40.729 41.944 37.500 45.031 44.630 50.013 37.469 45.926 46.967 32.292 40.974
MD [47] 47.246 56.042 58.427 58.148 54.792 58.552 58.426 47.175 56.781 58.611 46.929 54.167 54.608
OC-CNN [50] 49.363 49.375 39.344 48.519 48.750 42.552 49.722 56.067 49.469 47.130 44.767 45.833 47.574
AD-fPAD [7] 50.192 47.917 35.208 40.278 44.792 45.667 48.796 48.408 48.531 50.463 54.017 45.625 46.658
DROCC [21] 47.542 70.000 52.958 41.667 53.750 46.177 47.778 50.483 40.875 45.000 35.129 47.292 48.221

Ours 29.672 35.667 45.217 32.278 36.833 46.254 33.093 35.790 41.229 36.000 51.360 34.958 38.196

TABLE II
RESULTS OF INTER-DOMAIN PERFORMANCE (SINGLE-SOURCE-SINGLE-TARGET SETTING) IN PROTOCOL 3. THE DOMAINS USED ARE MSU-MFSD

(M), CASIA-MFSD (C), IDIAP REPLAY ATTACK (I) AND OULU-NPU (O). WE RUN EACH EXPERIMENT FIVE TIMES AND REPORT THE MEAN

HTER.

Method OCI → M OMI → C OCM → I ICM → O Avg.

OC-SVM [60] 43.333 54.352 52.433 42.167 48.071
OC-GMM [26] 67.083 50.185 50.250 56.083 55.900
SVDD [67] 32.292 43.981 48.250 36.125 40.162
MD [47] 54.167 58.611 47.058 58.500 54.584
OC-CNN [50] 44.375 49.722 38.471 48.365 45.233
AD-fPAD [7] 36.250 38.025 34.650 44.087 38.253
DROCC [21] 37.917 42.037 43.250 45.656 42.215

Ours 31.875 30.278 30.778 43.156 34.022

TABLE III
RESULTS OF INTER-DOMAIN PERFORMANCE (LEAVE-ONE-OUT

SETTING) IN PROTOCOL 2. THE DOMAINS USED ARE MSU-MFSD (M),
CASIA-MFSD (C), IDIAP REPLAY ATTACK (I) AND OULU-NPU (O).

WE RUN EACH EXPERIMENT THRICE AND REPORT THE MEAN HTER.

a huge margin. Hyp-OC exhibits remarkable proficiency in
modeling the real class of different domains irrespective of
the diverse changes in environmental factors such as lighting,
camera angles, and backgrounds of each domain. When
compared to previous baselines in terms of HTER, Hyp-
OC achieves better results in three out of the four evaluated
target domains. The performance improvement on OCI →
M, OMI → C and OCM → I are 0.417, 7.747 and 3.872
respectively. Hyp-OC achieves an overall performance gain
of 4.231 upon the best baseline.

C. Protocol 3

Table II summarizes the findings for Protocol 3, an inter-
domain protocol that assesses a model’s performance across
multiple domains while being trained on a single domain.
This protocol serves to highlight the generalizability of the
learned features. Hyp-OC outperforms previous baselines in

six out of twelve single-domain-single-target experiments.
For target domain C, a huge improvement in HTER is ob-
served, with gains of 12.555, 9.000, and 8.000, respectively.
We observe that SVDD [67] performs better than Hyp-OC on
the target domain M. Also, Hyp-OC doesn’t perform as good
on target domain O, and is exceeded by AD-fPAD [7] on C
→ O, OC-CNN [50] on I→ O and SVDD [67] on M→ O.
The overall Avg. HTER of Hyp-OC across all experiments
is 38.196, which surpasses all baselines.

D. Ablation and Analysis

In the ablation study, we analyze the influence of each
component of the proposed pipeline on the performance.
Furthermore, we discuss the effect of different values for
the Euclidean feature clipping and different curvature values
of the hyperbolic space on the FAS performance. In the end,
we analyze the use of Hyp-OC with other feature extractors.
Proposed One-class classifier for FAS: The effect of
different components in the proposed pipeline is shown in
Table IV. There are two major components that stand out and
impact the performance - Adaptive mean (Table IV row-1)
and Hyp-OC (Table IV row-2). The absence of adaptive
mean from the pipeline results in a drop of 14.885 in
HTER. Adaptive mean helps to estimate the mean of the
Gaussian distribution used to sample pseudo-negative points.
In FAS, the spoof samples lie close to the real samples in
the feature space. The adaptive mean strategy pushes the
mean of Gaussian distribution towards the cluster of real
samples, thus helping to accurately sample pseudo-negative
points. This helps improve the overall performance of the



Adaptive
mean

Euclidean
feature clipping Hyp-OC Hyp-PC Avg.

HTER

✗ ✓ ✓ ✓ 43.224
✓ ✗ ✗ ✗ 35.832
✓ ✗ ✓ ✓ 32.046
✓ ✓ ✓ ✗ 30.908
✓ ✓ ✓ ✓ 28.339

TABLE IV
IMPACT OF VARIOUS COMPONENTS OF THE PROPOSED PIPELINE ON

PERFORMANCE. WE REPORT AVG. HTER FOR PROTOCOL 1.
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Fig. 5. (Left) HTER performance w.r.t different curvatures of the Poincaré
Ball. In our work, we fix the curvature of Poincaré Ball to 0.1 (orange).
(Right) HTER performance w.r.t different Euclidean feature clipping values.
In our work, we set the Euclidean feature clipping value to 2 (orange).

pipeline. The absence of Hyp-OC results in a noticeable
decline in performance, with HTER dropping by 7.493.
This shows that the Poincarè Ball model effectively embeds
feature representations for FAS task. Hyp-OC allows for
better fitting of separating gyroplane for one-class classifica-
tion. The geodesic distance increases exponentially near the
boundary of the Poincarè Ball. Euclidean feature clipping
helps to cut down the effective radius of the Poincaré Ball
and solves the problem of vanishing gradients persistent in
Hyperbolic space. The clipping stabilizes the training and
acts as a regularizer. This is validated by the performance
drop (Table IV row-3) of 3.707 in HTER when Euclidean
feature clipping is removed from the pipeline. Lastly, the
proposed loss function Hyp-PC disrupts the feature space by
creating confusion. It removes the identity information by un-
clustering the feature representations, making it better suited
for FAS task. Additionally, it improves the mean estimation
for the pseudo-negative Gaussian distribution. The absence of
Hyp-PC loss results in a performance drop (Table IV row-4)
of 2.569 in HTER, signifying its importance in the pipeline.
Curvature of the Hyperbolic space: We perform exper-
iments for different curvatures of the Poincaré Ball and
compare the Avg. HTER as shown in Figure 5 (left). We
can see that the performance is better at lower curvature
values. Moreover, we observe that the difference between
APCER and BPCER is less at low curvature values than
when the curvature is high. It indicates that the training
is more stable at lower curvatures of hyperbolic spaces.
In our implementation, following previous works [14], [4],
we choose the curvature of the hyperbolic space to be
0.1. Euclidean feature clipping value: We implemented

Method R M C I O Avg.

ResNet50 [23] 27.898 31.250 32.222 24.313 52.094 33.555
SeNet50 [25] 38.049 35.833 36.019 35.904 43.771 37.915
CLIP ViT [58] 40.756 36.042 32.778 51.979 35.969 39.505

VGGFace [52] 34.074 27.292 25.019 14.711 40.600 28.339

TABLE V
COMPARISON OF AVG. HTER PERFORMANCE USING DIFFERENT

FEATURE EXTRACTORS. WE REPORT THE RESULTS FOR PROTOCOL 1.

Euclidean feature clipping [22] to regularize our training
in the hyperbolic space. The clipping value directly relates
to the effective radius of the Poincaré Ball. We perform
experiments for different clipping values and observe that
the performance initially increases and then decreases slowly,
as shown in Figure 5 (right). This is in agreement with
[22], which shows that the effective radius increases from
0→≈ 0.8 when we increase the clipping value from 0→ 1
and limclipping value→∞ effective radius = 1. In our work, we
choose the clipping radius to be 2, which gives the best
performance.
Feature extractor: To support our choice of VGGFace [52]
as a feature extractor, we perform experiments with different
feature extractors and compare the Avg. HTER. We use
ResNet50 [23] , SeNet50 [25] and CLIP ViT [58] for
comparison and achieve Avg. HTER of 33.555, 37.915 and
39.505, respectively. We observe that VGGFace performs
better in three out of five datasets. However, ResNet50 per-
forms better on R, and CLIP ViT performs better on O. The
results indicate that VGGFace is a better choice of feature
extractor for one-class FAS using hyperbolic embeddings.

VI. CONCLUSION AND FUTURE WORK

In this research, we redefine FAS as a one-class classi-
fication task. We discuss our motivation and showcase the
significance of - the “Why One-Class?” approach, empha-
sizing its practicality in real-world applications. We show
the benefits of employing a hyperbolic classifier head (Hyp-
OC) to develop a one-class classifier and demonstrate its
effectiveness for FAS using three protocols. For training, we
introduce two novel loss functions, Hyp-PC and Hyp-CE,
that operate in the hyperbolic space. Our proposed pipeline
outperforms previous baselines and sets a new benchmark
for one-class FAS.

Despite our advancements over previous one-class FAS
baselines, we recognize that the performance of Hyp-OC still
lags behind that of binary classifiers. However, in real-world
deployment, the distribution of spoof samples is considerably
more complex than that of real samples. This complexity
arises from the infinite variability in presentation attack
instruments, which motivates our pursuit of OC-FAS. We
advocate for the development of one-class classifiers using
only real samples as a step towards creating truly generalized
models that can detect a wide variety of spoof attacks. In the
future, we plan to explore other ways to leverage hyperbolic
embeddings to enhance FAS performance.
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