
Accelerated reconstruction of a compressively sampled data stream

Pantelis Sopasakis∗, Nikolaos Freris†, and Panagiotis Patrinos‡
∗IMT Institute for Advanced Studies Lucca, Piazza S. Ponziano 6, 55100 Lucca, Italy

†Division of Engineering, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates
‡STADIUS Center for Dynamical Systems, Signal Processing and Data Analytics,

KU Leuven, Department of Electrical Engineering (ESAT), Kasteelpark Arenberg 10, 3001 Leuven, Belgium

Abstract—The traditional compressed sensing approach is
naturally offline, in that it amounts to sparsely sampling and
reconstructing a given dataset. Recently, an online algorithm
for performing compressed sensing on streaming data was
proposed [1]: the scheme uses recursive sampling of the in-
put stream and recursive decompression to accurately estimate
stream entries from the acquired noisy measurements.

In this paper, we develop a novel Newton-type forward-
backward proximal method to recursively solve the regularized
Least-Squares problem (LASSO) online. We establish global con-
vergence of our method as well as a local quadratic convergence
rate. Our simulations show a substantial speed-up over the state
of the art which may render the proposed method suitable for
applications with stringent real-time constraints.

Index Terms—Compressed sensing, operator splitting meth-
ods, recursive algorithms, LASSO, Forward Backward Splitting,
machine learning.

I. INTRODUCTION

In signal processing, continuous signals are typically sam-
pled at discrete instances in order to store, process, and
share. In doing so, signals of interest are assumed sparsely
representable in an appropriately selected orthonormal basis,
i.e., they can be reconstructed by storing few non-zero coef-
ficients in the given basis. For instance, the Fourier basis is
used for bandlimited signals – with prominent applications
in communications – while wavelet bases are suitable for
representing piecewise smooth signals, such as bitmap im-
ages. Traditionally, the celebrated Nyquist-Shannon sampling
theorem suggests a sampling rate that is at least twice the
signal bandwidth; however this rate may be unnecessarily
high compared to the signal’s innovation, i.e., the minimum
number of coefficients sufficient to accurately represent it in
an appropriately selected basis.

Compressed Sensing (CS) [2], [3] is a relatively new sam-
pling paradigm that was introduced for sampling signals based
entirely on their innovation, and has become ever since a major
field of research in signal processing and information theory.
The major contribution of this framework is a lower sampling
rate compared to the classical sampling theory for signals that
have sparse representation in some fixed basis [4], with notable
applications in imaging [5], such as MRI.

A. Compressed Sensing
For a vector x ∈ Rn we define the `0 pseudo-norm as the

cardinality of its support ||x||0:= |supp(x)|, where the support

The work of the first author was supported by the EU-funded H2020
research project DISIRE, grant agreement No. 636834.

is the set of non-zero entries supp(x) := {i : xi 6= 0}. A
vector x is s-sparse if and only if it has at most s non-zero
entries, ||x||0≤ s.

Compression: CS performs linear sampling y = Ax, where
A ∈ Rm×n. Compression is performed by obtaining m � n
measurements. The main result states that any s-sparse vector
x ∈ Rn, can be sampled by a universal1 matrix A with m =
Θ(s log(ns)), and may then be reconstructed perfectly solely
from (noiseless) measurements y [1]. For this purpose, matrix
A needs to satisfy a certain Restricted Isometry Property: there
exists δs ∈ [0, 1) sufficiently small so that:

(1− δs)||x||22≤ ||Ax||22≤ (1 + δs)||x||22
holds for all s-sparse vectors x. For many practical applica-
tions, taking m = 4s works well. The success of CS lies in
that the sampling matrix can be generated very efficiently as a
random matrix, e.g., having i.i.d. Gaussian entries N (0, 1/m)
.Note that in practice measurements are typically noisy, y =
Ax+ w.

Decompression: In order to retrieve the original vector x
from noisy measurements y = Ax+w, one needs to solve the
`1-regularized least squares problem:

minimize 1
2‖Ax− y‖

2
2+λ‖x‖1, (1)

where λ is the regularization parameter that controls the trade-
off between sparsity and reconstruction error. This is best
known as Least Absolute Selection and Shrinkage Operator
(LASSO) in the statistics literature [6]. There are several
results analyzing the reconstruction accuracy of LASSO; for
example [7] states that if w ∼ N (0, σ2I), mini∈supp(x)|xi|>
8σ
√

2 log n, and we choose λ = 4σ
√

2 log n then a solution
x? to (1) has the same support as x, and its non-zero entries
the same sign with their corresponding ones of x, with
high probability. Additionally, the `2 reconstruction error is
proportional to the standard deviation of the noise σ [4].

Remark 1 (Algorithms for LASSO). LASSO can easily be
recast as a quadratic program which can be handled by inte-
rior point methods [8]. Additionally, iterative algorithms have
been developed specifically for LASSO; all these are inspired
by proximal methods [9] for non-smooth convex optimiza-
tion: FISTA [10] and SpaRSA [11] are accelerated proximal
gradient methods [9], SALSA [12] is an application of the

1The matrix A is universal in the sense it may be used to sample any vector
with no more than s non-zeroes, regardless of their positions.

ar
X

iv
:1

60
5.

02
34

1v
1

 [
m

at
h.

O
C

]
 8

 M
ay

 2
01

6

alternative direction method of multipliers (ADMM). These
methods are first-order methods, in essence generalizations of
the gradient method and feature sublinear convergence. In the
current paper, we devise a proximal Newton-type method with
substantial speedup exploiting the fact that its convergence
rate is locally quadratic (i.e., goes to zero roughly like e−ct

2

at the vicinity of an optimal solution).

II. RECURSIVE COMPRESSED SENSING

A. Problem statement

The traditional CS framework is naturally offline and re-
quires compressing and decompressing an entire given dataset
at one shot. The Recursive Compressed Sensing [1], [13] was
developed as a new method for performing CS on an infinite
data stream. The method consists in successively sampling the
data stream via applying traditional CS to sliding overlapping
windows in a recursive manner. Consider an infinite sequence,
{xi}i=0,1,.... Let

S := lim sup
j→∞

j−1|supp({xi}i=0,...,j−1)|∈ [0, 1]

be the average sparsity. We define successive windows of
length n:

x(i) :=
[
xi xi+1 . . . xi+n−1

]>
(2)

and take s = Sn the average sparsity parameter for a window
of length n. The sampling matrix A ∈ Rm×n (where we may
take m = Θ(s log(ns))) is only generated once. Each window
is compressively sampled given a matrix A(i):

y(i) = A(i)x(i) + w(i).

The sampling matrix A(i) is recursively computed by A(0) =
A and A(i) = A(i−1)P, where P is a permutation matrix
which when right-multiplying a matrix cyclically rotates its
columns to the left. This gives rise to an efficient recursive
sampling mechanism for the input stream, where measure-
ments for each window are taken via a rank-1 update [1].

For decompression, we need to solve the LASSO for each
separate window:

minimize 1
2‖A

(i)x(i) − y(i)‖22+λ‖x(i)‖1. (3)

Note that the windows overlap, hence for a given stream
entry, multiple estimates (one per each window that contains it)
may be obtained. These estimates are then combined to boost
estimation accuracy using non-linear support detection, least-
squares debiasing and averaging with provable performance
amelioration [1].

The overlap in sampling can further be exploited to speed-
up the stream reconstruction: we use the estimate from a
previously decompressed window to warm-start the numerical
solver for LASSO in the next one. This simple idea provides
a mechanism for efficient recursive estimation.

Formally, let x(i) = [x̂
(i)
0 . . . x̂

(i)
n−1]> denote the optimal

estimate obtained by LASSO in the i-th window, where we
use x̂(i)j to denote the j-th entry of the i−th window (which

according to our definitions corresponds to the (i+j)-th stream
entry). In order to solve LASSO to obtain x̂(i+1) we may use:

x̂
(i)
[0] =

[
x̂
(i−1)
1 x̂

(i−1)
2 . . . x̂

(i−1)
n−1 0

]>
,

as the starting point in the iterative optimization solver for
LASSO in the (i + 1)−th window, where x̂

(i−1)
j , for j =

1, . . . , n − 1, is the portion of the optimal solution based on
the previous window. The last entry x̂(i)n−1 is set to 0, since we
are considering sparse streams with most entries being zero.

B. Our contribution

We devise a new numerical algorithm for solving LASSO
based on the recently developed idea of proximal en-
velopes [14], [15]. The new method demonstrates favorable
convergence properties when compared to first order methods
(FISTA, SpaRSA, SALSA, L1LS [8]); in particular it has
local quadratic convergence. Furthermore, this scheme is very
efficient as each iteration boils down to solving a linear
system of low dimension. Using this solver in RCS along
with warm-starting leads to substantive acceleration of stream
decompression. We verify this with a rich experimental setup.
Unfortunately, due to length constraints, we do not provide a
complete convergence analysis, but rather some hints on global
convergence and local quadratic rate.

III. ALGORITHM

A. Forward Backward Newton Algorithm

Let f(x) = 1
2‖Ax−y‖

2
2, g(x) = λ‖x‖1. Then x? is optimal

for
minimize ϕ(x) = f(x) + g(x) (4)

if and only if it satisfies

−∇f(x?) ∈ ∂g(x?) (5)

where ∂g(x) is the subdifferential of g at x, defined by:

∂g(x)=
{
v ∈ IRn | g(w) ≥ g(x)+v>(w−x),∀w∈IRn

}
, (6)

which, in our case, is given by: vi = λ sign(xi), for xi 6= 0 and
|vi|≤ λ, for xi = 0. Therefore, the optimality conditions (5)
for the LASSO problem (4) become

−∇if(x?) = λ sign(x?i), if x?i 6= 0, (7a)
|∇if(x?)|≤ λ, if x?i = 0, (7b)

Suppose for a moment that we knew the partition of indices
α and β corresponding to the nonzero and zero components
of an optimal solution x? respectively, as well as the signs of
the nonzero components. Then we would be able to compute
the nonzero components of x? by solving the following linear
system corresponding to (7a):

A>αAαx
?
α = A>α y − λ sign(x?α). (8)

Notice that the support set α of x? is much smaller compared
to its dimension n. Hence, provided that α (as well as the signs
of non-zero entries) has been identified, the problem becomes
very easy. Roughly speaking, the algorithm we will develop

can be interpreted as a fast procedure for automatically identi-
fying the partition {α, β} corresponding to an optimal solution
by solving a sequence of linear systems of the form (8). On
the other hand, it can be seen as a Newton method for solving
the following reformulation of the optimality conditions (5):

x = proxγg(x− γ∇f(x)), (9)

where proxγg is the proximal mapping defined as

proxγg(z) = argmin
x∈IRn

{
g(x) + 1

2γ ‖x− z‖
2
2

}
, (10)

and γ is taken smaller than the Lipschitz constant of f , i.e.,
γ < 1/‖A‖2. In the case where g = λ‖·‖1, proxγg is the
soft-thresholding operator:

(proxγg(z))i = sign(zi)(|zi|−γλ)+, i = 1, . . . , n. (11)

The iterative soft-thresholding algorithm (ISTA) is a fixed
point iteration for solving (9). In fact, it is just an application
of the well known forward-backward splitting technique for
solving (5). On the other hand, FISTA is an accelerated version
of ISTA where an extrapolation step between the current and
the previous step precedes the forward-backward step [10],
[16].

To motivate our algorithm, instead of a fixed point problem,
we view (9) as a problem of finding a zero of the so-called
fixed point residual:

Rγ(x) := x− proxγg(x− γ∇f(x)). (12)

One then would be tempted to apply Newton’s method for
finding a root of (12). Unfortunately the fixed point residual
is not everywhere differentiable, hence the classical Newton
method is not well-defined. However, it is well known that
Rγ is nonexpansive, hence globally Lipschitz continuous [15].
Therefore, the machinery of nonsmooth analysis can be em-
ployed to devise a generalized Newton method for Rγ(x) = 0,
namely the semismooth Newton method. Due to a celebrated
theorem by Rademacher, Lipschitz continuity of Rγ implies
almost everywhere differentiability. Let F stand for the set of
points where Rγ is differentiable. The B-differential of the
nonsmooth mapping Rγ at x is defined by

∂BRγ(x) :=

{
B ∈ IRn×n

∣∣∣∣ ∃{xn} ∈ F : xn → x,
R′γ(xn)→ B

}
. (13)

If Rγ is continuously differentiable at a point x ∈ IRn

then ∂BRγ(x) = {R′γ(x)}. Otherwise ∂BRγ may contain
more than one elements (matrices in IRn×n). The semismooth
Newton method for solving Rγ(x) = 0 is simply

xk+1 = xk −H−1k Rγ(xk), Hk ∈ ∂BRγ(xk). (14)

Since in the case of LASSO the fixed point residual is
piecewise affine, it is also strongly semismooth. Provided that
solution x? of (4) is unique (which is the case if for example
the entries of A are drawn Gaussian i.i.d [17]) and that the
initial iterate x0 is close enough to x?, the sequence of iterates
defined by (14) is well defined (any matrix in ∂BRγ(xk) is
nonsingular) and converges to x? at a quadratic rate, i.e.,
lim supk→∞

‖xk+1−x?‖
‖xk−x?‖2 < ∞ [15]. In fact, since the fixed

point residual is piecewise affine for the LASSO problem,
it can be shown that (14) converges in a finite number of
iterations, in exact arithmetic. Specializing iteration (14) to
the LASSO problem, an element Hk of ∂BRγ(xk) takes the
form Hk = I −Pk(I − γA>A). Here Pk is a diagonal matrix
with (Pk)ii = 1 for i ∈ αk and (Pk)ii = 0, for i ∈ βk, where

αk = {i | |xki − γ∇if(xk)|> γλ}, (15a)

βk = {i | |xki − γ∇if(xk)|≤ γλ}. (15b)

Computing the Newton direction amounts to solving the so-
called Newton system, Hkd

k = −Rγ(xk). Taking advantage
of the special structure of Pk and applying some permutations,
this simplifies to

dkβk
= −(Rγ(xk))βk

, (16a)

γA>αk
Aαk

dkαk
= −(Rγ(xk))αk

− γA>αk
Aβk

dkβk
. (16b)

Taking into consideration (11), we obtain

(Rγ(x))i =

{
γ(∇if(x) + si(x)λ), i ∈ α,
xi, i ∈ β,

(17)

where si(x) = sign(xi − γ∇if(x)), and α, β are defined
using (16) (dropping index k). Therefore, after further rear-
rangement and simplification, the Newton system becomes

dkβk
= −xkβk

, (18a)

A>αk
Aαk

(xkα + dkαk
) = A>αk

y − λsαk
(xk). (18b)

Summing up, an iteration of the semismooth Newton method
for solving the LASSO problem takes the form xk+1 = xk +
dk, which becomes:

xk+1
βk

= 0, (19a)

xk+1
αk

= (A>αk
Aαk

)−1(A>αk
y − λsαk

(xk)). (19b)

Note a connection with (8): the index sets αk, βk serve as
estimates for the nonzero and zero components of x?.

There are two obstacles that we need to overcome before
we arrive at a sound, globally convergent algorithmic scheme
for solving the LASSO problem. The first one is that the
semismooth Newton method (19) converges only when started
close to the solution. The second obstacle concerns the fact
that (19) might not be well defined, in the sense that Aαk

might not have full column rank, hence A>αk
Aαk

will be
singular. Indeed when λ is very small or when xk is far
from the solution, the index set αk defined in (15a) might
have cardinality larger than m (which is the only case where
a singularity may arise given our construction of A), the
number of rows of A. The next two subsections are devoted
to proposing strategies to overcome these two issues.

Overall, the algorithm can be seen as an active set strategy
where large changes on the active set are allowed in every
iteration (instead of only one index) leading to faster conver-
gence.

B. Globalization strategy

To enforce global convergence of Newton-type methods for
solving nonlinear systems of equations it is customary to use
a merit function based on which a step τk is selected which
guarantees that

xk+1 = xk + τkd
k (20)

decreases the merit function sufficiently.
Recently the following merit function, namely the Forward-

Backward Envelope (FBE), was proposed for problems of the
form (4)

ϕγ(x) = inf
z∈IRn

{f(x)+∇f(x)>(z−x)+g(z)+ 1
2γ
‖z−x‖22}. (21)

It is easy to see that function inside the infimum is strongly
convex with respect to z and the infimum is uniquely achieved
by the forward-backward step Tγ(x) = proxγg(x− γ∇f(x)).
Therefore, in order to evaluate ϕγ at a point x one simply
needs to be be able to perform the same operations required
by FISTA. Furthermore, function ϕγ is continuously differen-
tiable with gradient given by

∇ϕγ(x) = γ−1(I − γ∇2f(x))Rγ(x). (22)

If γ < 1/‖A‖2, then solutions of (4) are exactly the stationary
points, i.e. the points for which ∇ϕγ(x) becomes zero. In fact
one can additionally show that minimizing the FBE (which
is an unconstrained smooth optimization problem) is entirely
equivalent to solving (4), in the sense that inf ϕ = inf ϕγ and
argmin ϕ = argmin ϕγ . In the case of LASSO where f is
quadratic the FBE is convex.

It is not hard to check that, provided it is well defined,
the semismooth Newton direction dk given by (16) is in fact
a direction of descent for the FBE, i.e., ∇ϕγ(xk)>dk < 0.
Therefore, one can perform a standard backtracking line-
search to find a suitable step that guarantees the Armijo condi-
tion and hence global convergence: Pick the first nonnegative
integer ik such that τk = 2−ik satisfies

ϕγ(xk + τkdk) ≤ ϕγ(xk) + ζτk∇ϕγ(xk)>dk. (23)

where ζ ∈ (0, 1/2), and then set xk+1 = xk + τkdk.
Furthermore, this step choice guarantees that as soon as xk is
close enough to the solution, τk = 1 will always satisfy (23)
and the iterates will be given by the (pure) semismooth Newton
method (19) inheriting all its convergence properties.

C. Continuation strategy

Since the goal of solving the LASSO problem is to recover
the sparsest solution of Ax = y, we know that such a solution
will have a ‖x?‖0 much smaller than m, hence as soon as xk

is close to the solution, Aαk
will have full column rank.

When λ is small or when x0 is far from the solution, the
cardinality of (15a) can be larger than m rendering the left-
hand side matrix in (18b) singular. This said, we know that
iterates for which the set αk contains more than m indices, are
known to be away from the optimal solution since we know
for sure that at the solution the cardinality of α(x?) = {i |

|x?i − γ∇f(x?)|> γλ} = {i | x?i 6= 0} will be (much) smaller
than m.

In order to enforce that αk contains few elements, a
simple continuation strategy that gradually reduces λk to
the target value λ is employed. Following [18], we start
with λ0 = max{λ, ‖A>∇f(x0)‖∞} and we decrease λk =
max{λ, ηλk−1}, for some η ∈ (0, 1) whenever ‖Rγ(xk)‖≤
λkεk with εk → 0. Not only does this ensure that (16) is
well defined, but it allows to solve linear systems of small
dimension to determine the Newton direction. A conceptual
pseudo-algorithm summarizing the basic steps of the proposed
algorithm is shown hereafter.

Algorithm 1 Forward-Backward Newton with continuation

Input: A, y, x0 ∈ IRn (initial guess), γ ∈ (0, 1/‖A‖2), λ >
0, η ∈ (0, 1), ε (tolerance)
λ̄← max{λ, ‖A>∇f(x0)‖∞}, ε̄← ε
while λ̄ > λ or ‖Rγ(xk; λ̄)‖> ε do

xk+1 = xk + τkd
k,

where dk solves (18) and τk satisfies (23)
if ‖Rγ(xk; λ̄)‖≤ λε̄ then

λ̄← max{λ, ηλ̄}, ε̄← ηε̄
end if

end while

In Algorithm 1 we denote by Rγ(x; λ̄) the fixed point
residual introduced in (12) replacing g by ḡ(x) = λ̄‖x‖1.

IV. SIMULATIONS

In this section we apply the proposed methodology to
various data streams and we compare it to standard algorithms
such as FISTA, ADMM [19] and the interior point method of
Kim et al. [8], aka L1LS method. In our approach we used
the continuation strategy described above with η = 0.5 and an
Armijo line search. The required tolerance for the termination
of all algorithms was set to 10−8.

We observed that after decompressing the first window, the
number of iterations required for convergence was remarkably
low (in most cases, around 4 iterations for each window were
sufficient). It should be highlighted that after the first decom-
pression, the computational cost of the algorithm decreases
significantly. This is first because of the aforementioned warm-
start and second because the value of the residual r = Ax−y
is updated by using only vector-vector operations. Updating
A(i+1) ← A(i)P and x

(i+1)
0 ← P>x̂(i) and using the fact

that P is orthogonal, we have that r(i+1) = A(i+1)x
(i+1)
0 −

y(i+1) = r(i) + y(i) − y(i+1).
A stream of total length N = 106 was generated as

follows: its entries are drawn from Ber(S), where S is average
stream sparsity. Then, the non-zero entries are taken uniform
in [−2,−1] ∪ [1, 2] and multiplied by 8σ

√
2 logN (dynamic

range assumption [7]), based on selected noise variance σ2.
We then select window size n, let s = nS,m = 4s, and
generate sampling matrix A with i.i.d. entries N (0, 1/m). For
LASSO, we pick λ = 4σ

√
2 log n following [7].

Window size ×10 4

0.5 1 1.5 2

A
v
e
ra

g
e
 r

u
n
ti
m

e
 [
s
]

10 -1

10 0

10 1

FBN

FISTA

ADMM

L1LS

Figure 1: Average runtimes varying the window size. FBN:
proposed forward-backward Newton method, L1LS [8],
ADMM [12], FISTA [10].

Sparsity [%]

0 5 10 15

A
v
e

ra
g

e
 r

u
n

ti
m

e
 [

s
]

10 -1

10 0

FBN

FISTA

ADMM

L1LS

Figure 2: Average runtimes varying the sparsity of the data
stream.

In Figures 1 and 2 we observe that the proposed algorithm
outperforms all state-of-the-art methods by an order of mag-
nitude. The results presented in Figure 1 were obtained for
a fixed sparsity 10% and w(i) being a zero-mean normally
distributed noise with variance 0.01. In Figure 2, for the same
noise level and using a window of size n = 5000 we show
how the runtime is affected by the sparsity of the data stream2.

V. CONCLUSIONS

We have proposed an efficient method for successively
decompressing the entries of a data stream sampled using Re-
cursive Compressed Sensing [1]. We have proposed a second-
order proximal method for solving LASSO with accelerated

convergence over state-of-art methods. Our scheme is very

2We have also conducted extensive experiments varying SNR, termination
accuracy and comparing the speed of RCS against classical CS; in all of them
we have observed significant improvements, but we exclude them for length
considerations.

efficient as each iteration nails down to solving a linear system
of low dimension, which we may further avoid by a single
Cholesky factorization at a pre-processing step. We have tested
our algorithm against the state-of-art for various windows sizes
and sparsity patterns; our experiments depict notable speed-up
which may renders RCS suitable for an online implementation
under stringent time constraints.

REFERENCES

[1] N. Freris, O. Öçal, and M. Vetterli, “Recursive Compressed Sensing,”
Tech. Rep., 2014. [Online]. Available: http://arxiv.org/abs/1312.4895

[2] D. L. Donoho, “Compressed sensing,” IEEE Transactions on Informa-
tion Theory, vol. 52, pp. 1289–1306, 2006.

[3] E. Candès and T. Tao, “Near-optimal signal recovery from random
projections: Universal encoding strategies?” IEEE Transactions on In-
formation Theory, vol. 52, no. 12, pp. 5406–5425, 2006.

[4] E. Candès and M. Wakin, “An introduction to compressive sampling,”
IEEE Signal Processing Magazine, vol. 25, no. 2, pp. 21–30, 2008.

[5] S. Qaisar, R. Bilal, W. Iqbal, M. Naureen, and S. Lee, “Compressive
sensing: From theory to applications, a survey,” Journal of Communi-
cations and Networks, vol. 15, no. 5, pp. 443–456, 2013.

[6] R. Tibshirani, “Regression Shrinkage and Selection via the LASSO,”
Journal of the Royal Statistical Society. Series B (Methodological),
vol. 58, pp. 267–288, 1996.

[7] E. Candès and Y. Plan, “Near-ideal model selection by `1 minimization,”
The Annals of Statistics, vol. 37, pp. 2145–2177, 2009.

[8] S.-J. Kim, K. Koh, M. Lustig, S. Boyd, and D. Gorinevsky, “An interior-
point method for large-scale `1-regularized least squares,” IEEE Journal
of Selected Topics in Signal Processing, vol. 1, no. 4, pp. 606–617, 2007.

[9] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends
in Optimization, vol. 1, no. 3, pp. 123–231, 2013.

[10] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algo-
rithm for linear inverse problems,” SIAM Journal on Imaging Sciences,
vol. 2, no. 1, pp. 183–202, 2009.

[11] S. J. Wright, R. D. Nowak, and M. A. T. Figueiredo, “Sparse Recon-
struction by Separable Approximation,” IEEE Transactions on Signal
Processing, vol. 57, no. 7, pp. 2479–2493, 2009.

[12] M. Afonso, J. Bioucas-Dias, and M. A. T. Figueiredo, “Fast image
recovery using variable splitting and constrained optimization,” IEEE
Transactions on Image Processing, vol. 19, no. 9, pp. 2345–2356, 2010.

[13] N. Freris, O. Öçal, and M. Vetterli, “Compressed Sensing of Streaming
data,” in Proceedings of the 51st Allerton Conference on Communica-
tion, Control and Computing, pp. 1242–1249.

[14] P. Patrinos and A. Bemporad, “Proximal Newton methods for convex
composite optimization,” in IEEE Conference on Decision and Control,
Florence, Italy, 2013, pp. 2358–2363.

[15] P. Patrinos, L. Stella, and A. Bemporad, “Forward-backward truncated
Newton methods for convex composite optimization,” Tech. Rep., 2014.
[Online]. Available: http://arxiv.org/abs/1402.6655

[16] Y. Nesterov, “Gradient methods for minimizing composite functions,”
Mathematical Programming, vol. 140, no. 1, pp. 125–161, 2013.

[17] R. J. Tibshirani, “The Lasso problem and uniqueness,” Tech. Rep.,
2012. [Online]. Available: http://arxiv.org/abs/1206.0313

[18] L. Xiao and T. Zhang, “A proximal-gradient homotopy method for the
sparse least-squares problem,” SIAM Journal on Optimization, vol. 23,
no. 2, pp. 1062–1091, 2013.

[19] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, 2011.

http://arxiv.org/abs/1312.4895
http://arxiv.org/abs/1402.6655
http://arxiv.org/abs/1206.0313

	I Introduction
	I-A Compressed Sensing

	II Recursive Compressed Sensing
	II-A Problem statement
	II-B Our contribution

	III Algorithm
	III-A Forward Backward Newton Algorithm
	III-B Globalization strategy
	III-C Continuation strategy

	IV Simulations
	V Conclusions
	References

