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ABSTRACT
This paper embeds SSIM in place of theL2 norm in a one step
Non Local Means (NLM) scheme. This is possible thanks
to a new form of SSIM that can be formally derived from
the classical SSIM using the spreading error analysis. This
approach has several advantages over L2 norm based NLM
such as greater robustness to parameters setting, higher per-
formance in terms of PSNR and SSIM, optimal subjective vi-
sual quality. In addition, it is possible to show that the cascade
of the proposed pure visual approach and a second step based
on L2 norm allows us to reach results close (slightly less) to
the state of the art (BM3D) in terms of PSNR and SSIM.

Index Terms— Image denoising, Non Local Means,
SSIM, Wiener filter.

1. INTRODUCTION

Image denoising is fundamental in various application fields
like image acquisition, quantization, transmission and so on.
Among the plethora of approaches proposed in the literature,
Non-Local Means (NLM) [1] is probably the one which has
received the major interest in the last years. The main rea-
son stems from the fact it is based on a simple, formal and
very performing idea: any noisy pixel can be cleaned using
a weighted sum of noisy pixels having similar neighborhood
located everywhere in the image. The more similar the neigh-
borhood (patch), the higher the weight for the corresponding
pixel. Apart from approaches that used NLM for specific ap-
plications (see for instance [18, 19]), many papers proposed
different solutions to overcome NLM’s weak points oriented
to: i) speed up NLM process [2–5], ii) make NLM more ro-
bust to parameters setting like the smoothing parameter in the
weight function and the adopted similarity window dimen-
sion [6,7] and iii) make NLM more performing and competi-
tive with the state of the art (i.e. BM3D [13]) [5, 8–12].

All the aforementioned approaches make use of the L2

norm (or equivalently, Mean Square Error (MSE)) for eval-
uating the distance between image patches. That is why in
the sequel classical NLM will be denoted with MSE-NLM.
However, despite the historical use of MSE as similarity met-

ric, it is well known that MSE is not the best candidate when
the perceived image quality is the final target [15]. More re-
cently, the structural similarity (SSIM) index [16] has been
proposed as an alternative image quality assessment metric in
order to meet human visual system behavior. Several studies
and applications in image processing have shown its better
performance over MSE.

A first attempt to replace MSE with SSIM has been pro-
posed in [14] (that will be indicated with SSIM-NLM). Au-
thors showed that SSIM cannot straightforwardly be used into
a NLM scheme as it is very sensitive to noise. It turns out that
the noisy image is firstly cleaned by a MSE-NLM process and
then patches from the cleaned image are used for the compu-
tation of NLM weights. Even though the good SNR perfor-
mance, such an approach has various drawbacks when com-
pared to MSE-NLM: i) it is less desirable from the computing
time point of view since a two step framework is required; ii)
involved precleaning and normalization lead to lose ’a pure’
visual denoising as still tied to MSE.

This paper proves that SSIM can be embedded in a one
step NLM denoising scheme. A simple but slightly different
form of SSIM is adopted in the case of not correlated noise. It
is mathematically derived from the classical SSIM by evalu-
ating how the noise affecting the original image spreads over
the measure. The main advantages of this approach, that will
be called Adaptive SSIM-NLM (ASSIM-NLM), can be sum-
marized as follows:

1. greater robustness to the adopted parameters (smoothing
factor, blocks dimension) if compared to MSE-NLM;

2. higher performance in terms of PSNR and SSIM than the
(one step) MSE-NLM as well as its variants like median
based NLM [12];

3. better subjective visual quality of the denoised image. In
other words, many artifacts in the recovered image, that
led to ad hoc approaches [11], are automatically avoided;

4. high flexibility: it allows us to employ the same methods
(like [17]) used for improving MSE-NLM as well as to
define a two step denoising framework.

It is worth outlining the last point. In fact, the proposed frame-
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work uses a ’pure’ visual perception based criterion for select-
ing similar patches. It is then possible to combine a second
MSE based phase to also exploit the complementary L2 based
criterion to increase denoising performance. A simple exam-
ple based on Wiener filter at the end of the next section shows
this possibility. The proposed two-step method will be de-
noted with I-ASSIM-NLM (Improved Adaptive SSIM based
NLM) and it is able to reach denoising results that are slightly
less but close to those of BM3D.

The outline of the paper is the following. The next section
presents the proposed correction to SSIM and its embedding
in the NLM algorithm. A further refinement of denoising re-
sults is also proposed. Section 3 presents some experimental
results achieved on some test images and for different levels
of noise. Comparative studies with the state of the art denois-
ing methods have also been provided. Concluding remarks
and guidelines for future research are the topic of the last sec-
tion.

2. THE PROPOSED MODEL

Classical NLM uses MSE as similarity metric between two
image patches. In particular, at each pixel location x the value
of the original image I is estimated as a weighted average of
the values of the noisy image J (with J = I + N , where
N is i.i.d. zero mean additive gaussian noise with variance
σ2) corresponding to the pixels belonging to a window W
(search window) centered at x and of a certain size (in prin-
ciple it may be the whole image size), i.e. INLM (x) =∑

y∈W wyJ(y), where the weights wy are estimated as fol-
lows

wy = e(−
‖J(Bx)−J(By)‖22

h ) (1)

and Bx and By are the adopted similarity windows (the two
blocks to be compared) and h is a smoothing parameter.
Hence, the more similar Bx and By are, the smaller the MSE
value, the higher the weight wy . In other words, similar
points contribute more in the weighted average than dissimi-
lar points. In this paper we propose to use SSIM as similarity
metric in the definition of the weight wy . SSIM is defined as
follows [16]:

S(Bx, By) =
2µxµy + C1

µ2
x + µ2

y + C1︸ ︷︷ ︸
S1

2σxy + C2

σ2
x + σ2

y + C2︸ ︷︷ ︸
S2

(2)

where µ∗ and σ∗ respectively are the mean value and the stan-
dard deviation in B∗ while σxy is the correlation between
the values in the blocks Bx and By and C1 and C2 are two
normalizing constants.

√
1− S1 and

√
1− S2 are two nor-

malized metrics in Rn [20]. Unfortunately, as already shown
in [14], the straightforward use of SSIM cannot guarantee the
same denoising results of the classical NLM. In fact SSIM is
too much sensitive to the noise when measuring similarities
between noisy blocks. That is why in [14] the noisy image

is firstly denoised using MSE-NLM. Such a denoised image
is then used for estimating the SSIM-based weights of NLM
algorithm.

The main idea of the presented paper is to define a one
step denoising algorithm where a corrected version of SSIM
is used as similarity measure. Specifically, using a simple
algebra, the term 1 − S(Bx, By) is written in the following
equivalent form

(1− S(Bx, By)) =

= (1− S1(Bx, By)) + (1− S2(Bx, By))S1(Bx, By). (3)

It is worth observing that, by indicating with ∗̃ the noisy quan-
tities, the previous equation also holds for the noisy values
S̃1, S̃2 and S̃. Hence, the main idea is to adopt this form for
the computation of SSIM and to correct the estimation of S1

and S2 from the noisy data using the error propagation anal-
ysis [21]. In general, by indicating with m a given variable
and with m̃ its measured version, the relative error εm in the
approximation by m with m̃ can be written as

εm =
m̃−m
m

⇒ m̃ = (1 + εm)m.

The same identities hold if the roles of m and m̃ are inter-
changed. It turns out that S̃1 and S̃2 depend on the original
S1 and S2 as follows

S1 = S̃1(1 + εS̃1
), S2 = S̃2(1 + εS̃2

),

(1− S1) = (1− S̃1)(1 + ε1−S̃1
),

(1− S2) = (1− S̃2)(1 + ε1−S̃2
), (4)

where (1 + ε∗) represents the corrective term to apply to the
corresponding noisy measure in order to get the true measure
∗. Hence, by applying these corrective terms in eq. (4) in the
second member of eq. (3), we get an estimation of the clean
value of 1− S, i.e.

(1− S(Bx, By)) =

= (1 + ε1−S̃1
)(1− S̃1(Bx, By)) +

+(1 + ε1−S̃2
)(1− S̃2(Bx, By))(1 + εS̃1

)S̃1(Bx, By). (5)

Hence, the weights to use in the NLM algorithm are

w̄y = exp

(
−1− S(Bx, By)

h

)
,

where (1 − S(Bx, By)) is computed using eq. (5), and the
denoised image is Id(x) =

∑
y∈W w̄yJ(y).

Before giving the form of the corrective terms, it is worth
observing that the term in SSIM that is more sensitive to noise
is S2, due to its dependence on the correlation coefficient. S1

depends on the mean values in the image patches and then
their estimation is more robust to the presence of noise when-
ever the size of image patches is not too small. That is why
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Fig. 1. Denoising results on Lena and Barbara images for σ =
20. From left to right: ASSIM-NLM, MSE-NLM
.

we can simplify the expression in eq. (5) by neglecting the
error of S1 (i.e. by setting εS̃1

= ε1−S̃1
= 0) and considering

just the error on 1− S2, which has the following form:

ε1−S̃2
≈ 2σ2

‖Bx −By − (µx − µy)‖2
+

− 2σ2

‖Bx − µx‖2 + ‖By − µy‖2 + C2
. (6)

Details for the estimation of ε1−S̃2
are in the Appendix.

As a matter of fact the predominant role of S2 is con-
firmed by the following observation. In ideal conditions, i.e.
image patches sufficiently large, there exists a precise relation
between S and S̃. Since noise is zero-mean and independent
of the image, we have µ∗ = µ̃∗, σ2

∗ = σ̃2
∗+σ

2 and σxy = σ̃xy ,
hence S̃1 = S1 and then

S̃(Bx, By) =
σ2
Bx

+ σ2
By

+ C2

σ̃2
Bx

+ σ̃2
By

+ C2
S(Bx, By).

Unfortunately, in case of small blocks (pointwise SSIM esti-
mation), previous relation does not hold because of the insta-
bility of the correlation term in S2. That is why we introduced
the corrective term in eq. (8).

2.1. Combining SSIM and MSE: I-ASSIM-NLM

In order to eliminate the residual noise as well as some arti-
facts introduced in the denoised image Id, a further denoising
step can be performed. In particular, following the strategy
suggested in [22], the residual image R(x) = J(x) − Id(x)
is computed and a wavelet-based Wiener filtering is applied

Fig. 2. SSIM maps of the images in Fig. 1. The brighter the
pixel the higher the local SSIM value [16].

to both Id and R. The coefficients of the Wiener filter that
is applied to R are computed using Id as estimation of the
original image information. The final denoised image is then
Id + Rd, where Rd is the denoised residual. For the de-
noised image a conventional empirical Wiener filter is applied
to each wavelet subband by adjusting the noise variance at
each level (i.e., σ2

2j is the noise variance at the j−th level.).
It will be shown in the next section that the combination of
ASSIM-NLM and an additional simple MSE step allows us
to reach results close to the state of the art both in terms of
SSIM and PSNR. This is due to the exploitation of two dif-
ferent denoising strategies based on visual perception (SSIM)
and data information (MSE).

3. EXPERIMENTAL RESULTS

The proposed denoising method has been tested on several
images and different noise levels. Some results are contained
in Table 1. They have been achieved using a 19 × 19 win-
dow size for the blocks to be compared and 31× 31 as search
window. Results do not change if blocks with smaller size
are selected. The smoothing parameter has been fixed to h =
0.02. Table 1 compares the denoising results of the proposed
ASSIM-NLM and MSE-NLM (using the same parameters)
in terms of Peak Signal to Noise Ratio (PSNR) and Structural
Similarity Index (SSIM). The values in the table are the av-
erage over 30 runs of the algorithm. As it can be observed,
ASSIM-NLM outperforms MSE-NLM of about 1db on aver-
age in terms of PSNR and 0.03 in terms of SSIM. It is also
worth observing the visual quality of the denoised images.
As shown in Fig. 1 the visual appearance of the restored im-
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Table 1. 512× 512× 8bits Lena, Barbara, and Boats images.
Comparisons in terms of PSNR and SSIM (in the brackets)
of denoising results of the proposed ASSIM-NLM, its refined
version (I-ASSIM-NLM), MSE-NLM, its refined version (I-
MSE-NLM), and BM3D for different noise standard devia-
tions.

Image Method Noise StD σ

10 20 30 40

ASSIM-NLM 34.86 31.61 29.55 27.86
(0.961) (0.922) (0.886) (0.844)

MSE-NLM 34.43 30.46 28.27 26.81
(0.947) (0.890) (0.845) (0.808)

Lena BM3D 35.93 33.05 31.26 29.86
(0.969) (0.940) (0.912) (0.884)

I-ASSIM-NLM 35.57 32.83 30.80 29.70
(0.968) (0.939) (0.910) 0.883

I-MSE-NLM 35.08 31.94 29.96 28.60
(0.962) (0.924) (0.888) (0.856)

ASSIM-NLM 33.17 30.50 28.42 26.78
(0.967) (0.939) (0.903) (0.862)

MSE-NLM 33.30 29.95 26.17 24.41
(0.962) (0.899) (0.834) (0.775)

Barbara BM3D 34.98 31.78 29.81 27.99
(0.977) (0.953) (0.927) (0.894)

I-ASSIM-NLM 33.97 31.30 29.27 27.90
(0.973) (0.950) (0.921) (0.894)

I-MSE-NLM 33.30 29.39 26.82 25.11
(0.970) (0.921) (0.868) (0.816)

ASSIM-NLM 32.70 29.57 27.48 25.97
(0.952) (0.891) (0.831) (0.798)

MSE-NLM 31.86 27.94 25.63 24.25
(0.922) (0.821) (0.748) (0.693)

Boats BM3D 33.92 30.88 29.12 27.74
(0.966) (0.925) (0.887) (0.850)

I-ASSIM-NLM 33.46 30.43 28.44 27.26
(0.965) (0.920) (0.873) (0.822)

I-MSE-NLM 32.82 29.25 27.13 25.73
(0.951) (0.875) (0.811) (0.759)

ages using the proposed denoiser is very good: the image does
not show annoying smoothing effects and textures have been
recovered very well. In order to emphasize this aspect, the
SSIM image of the recovered image is shown in Fig. 2 and it
has been compared with the same SSIM map computed on the
results of the classical NLM. As it can be observed the pro-
posed denoising algorithm is able to recover textures of the
original image without introducing smoothing. In addition it
better preserves some details on the image edges. As it is evi-
dent in Fig. 3, the proposed one step ASSIM-NLM allows us
to reach the same results of the two step SSIM-NLM in [14]
with a considerable computing time saving. In fact, with re-
spect to MSE-NLM, the proposed denoiser requires the ad-
ditional cost for the computation of SSIM, which is a little
bit computationally demanding with respect to MSE. On the
contrary, with respect to SSIM-NLM, ASSIM-NLM is faster
since NLM (and in particular the search of similarities) runs
just once while it in principle must run twice in SSIM-NLM.

Table 1 also contains the denoising results of I-ASSIM-
NLM and I-MSE-NLM. A biorthogonal wavelet with odd
vanishing moments is used for processing both the residual

10 15 20 25 30 35 40 45 50 55
24

25

26

27

28

29

30

31

32

33

34

σ

P
S

N
R

 

 

Lena

Barbara

Boat

Fig. 3. PSNR results of the proposed ASSIM-NLM (dark
markers) and the two step method SSIM-NLM (light mark-
ers) for three test images and different noise levels.

R and the denoised image Id in I-ASSIM-NLM. Four scale
levels of an undecimated wavelet decomposition have been
fixed while in the estimation of Wiener filter coefficients, the
variance of the noise is scaled according to the scale level
of the transform. I-ASSIM-NLM allows us to increase the
denoising result of NLM-SSIM up to 1.3db in terms of PSNR
and up to 0.03 in terms of SSIM. In addition, the proposed
method provides results that are close to those provided by
BM3D for different test images. A better estimation of the
corrective terms and a different weighting function would
allow the proposed denoiser to be really competitive with
BM3D.

4. CONCLUSIONS

In this paper a SSIM based NLM denoising method has been
proposed. The method uses a corrected version of SSIM,
which takes into account its sensitiveness to noisy data. This
kind of correction allows us to avoid a pre-denoising step of
the image to be used in the evaluation of the metric as well
as better denoising results with respect to the classical NLM
in terms of PSNR, SSIM and subjective visual quality. A
further refinement of the denoising results can be performed
on the denoised image by simply Wiener filtering both the
denoised image and its residual. This kind of refinement is
not costly and allows us to achieve denoising results that are
close and sometimes comparable to BM3D, that actually is
the most performing two-step denosing method and exploits
image inner similarities for denoising. The proposed method
also seems somewhat robust to some NLM parameters. Fu-
ture research will be devoted to improve the correction of
SSIM with a more precise estimation of the error, trying also
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to embed the refinement step directly in the NLM-SSIM de-
noiser. In addition, the ASSIM-NLM could be used in the
first step of the BM3D algorithm.

A. APPENDIX

For the estimation of the relative error, we can use the follow-
ing relations from the floating point arithmetic [21]:

a) εx±y ≈
x

x± y
εx ±

y

x± y
εy;

b) εxy ≈ εx + εy; c) ε x
y
≈ εx − εy (7)

where x and y are two generic variables. Since 1 − S2 =
‖Bx−By−(µx−µy)‖2

‖Bx−µx‖2+‖By−µy‖2+C2
, using c) and then a), we have

ε1−S2
≈ ε‖Bx−By−(µx−µy)‖2 +

− ‖Bx − µx‖2

‖Bx − µx‖2 + ‖By − µy‖2 + C2
ε‖Bx−µx‖2 +

− ‖By − µy‖2

‖Bx − µx‖2 + ‖By − µy‖2 + C2
ε‖By−µy‖2 . (8)

where ε‖Bx−By−(µx−µy)‖2 ≈ 2σ2

‖Bx−By−(µx−µy)‖2 ,

ε‖Bx−µx‖2 ≈ σ2

‖Bx−µx‖2 and ε‖By−µy‖2 ≈ σ2

‖By−µy‖2 in
their simplest form.
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