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ABSTRACT

Acoustic event detection in surveillance scenarios is an im-

portant but difficult problem. Realistic systems are struggling

with noisy recording conditions. In this work, we propose to

use Gabor filterbank features to detect target events in differ-

ent noisy background scenes. These features capture spectro-

temporal modulation frequencies in the signal, which makes

them suited for the detection of non-stationary sound events.

A single-class detector is constructed for each of the different

target events. In a hierarchical framework, the separate detec-

tors are combined to a multi-class detector. Experiments are

performed using a database of four different target sounds and

four background scenarios. On average, the proposed features

outperform conventional features in all tested noise levels, in

terms of detection and classification performance.

Index Terms— Audio surveillance, event detection, Ga-

bor features, noise robustness

1. INTRODUCTION

Automatic surveillance systems are becoming more and more

ubiquitous in public spaces. Audio analysis can complement

video-based systems, which are exposed to several vulnera-

bilities, such as occlusions. Systems that analyse audio sig-

nals can successfully be combined with video solutions, or

used in a stand-alone manner [1]. Relevant tasks that can be

solved by audio analysis are abnormal event detection (such

as gunshots or explosions) and classification, as well as source

localisation and tracking. The problems that an audio analy-

sis system has to face include high amounts of non-stationary

background noise and a strong diversity of potential interest-

ing sound events.

This paper deals with sound event detection in highly

realistic noisy environments. Several previous studies ad-

dressed the problem of detecting and classifying acoustic

events such as gunshots, explosions, or screams. Most of the

proposed systems rely on the traditional approach of mod-

elling Mel-frequency cepstral coefficient (MFCC) features

with Gaussian mixture models (GMMs) or hidden Markov
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models (HMMs) and explore different system setups or dif-

ferent additional audio features. Our work goes in the same

direction, with the goal of creating a robust system that can

operate in realistic environment.

1.1. Related Work

Over the last years, several studies evaluated systems for

event detection in surveillance scenarios. Several of the pro-

posed systems use classical spectral features in a GMM or

HMM framework. In [2], six sound event classes (including

human screams, explosions, and gunshots) are detected with a

median filter and classified using linear spectral band features

and either a GMM or HMM classifier. The system showed

solid recognition rates in white and musical background

noise. Clavel et al. used MFCCs and other spectral features

(spectral centroid and spread) together with a GMM classifier

to detect gunshot sounds in recordings of public places [3].

A similar system is used in [4] to detect scream and gunshot

sounds, and small improvements were obtained by adding

more features, most notably spectral distribution features

(e. g. spectral slope or spectral roll-off) and correlation-based

features. A two-stage approach is proposed in [5]: an audio

signal is first classified as normal or abnormal, followed by

a maximum-likelihood classification to determine the class.

This work relies again on MFCC features and an HMM

classifier. In [6], different gunshot detection algorithms are

compared, with the conclusion that correlation and wavelet-

based detection algorithms give higher performance. A bag

of aural words classifier was used in [7] to classify acoustic

events in surveillance scenarios. In [8], wavelet features are

proposed for environmental sound classification. The general

problem of event detection in surveillance scenarios is that

almost no realistic databases are available. In all of the men-

tioned studies, databases were created by mixing target sound

events into background recordings. Furthermore, most of the

previous studies rely on techniques that were originally de-

signed for speech processing. There is still a lack of features

and classification models that are specifically tailored to the

underlying problem.

Acoustic event detection systems are also used in other

environments. In the CLEAR [9] and D-CASE [10] evalu-

ations, the goal was to detect acoustic events in a domen-

stic environment. In [11], acoustic event detection was per-
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formed on real-life recordings. The UrbanSound dataset, an-

other database of real-life recordings is described in [12]. An

interesting approach for event detection that goes beyond the

classical spectral features are the spectrogram image features

proposed by Dennis et al. [13]. Relevant information is ex-

tracted by regarding the spectrogram as an image. These fea-

tures achieved good results in the similar problem of noise-

robust acoustic event classification.

1.2. Contributions

The goal of the present study is to construct a noise-robust

event detection system for surveillance scenarios. While most

of the previous studies in the field rely on classical spectral

and cepstral audio features (mostly MFCCs), we investigate

the suitability of a Gabor filterbank feature set. The em-

ployed Gabor filterbank features are physiologically inspired

and were originally proposed for noise-robust speech recog-

nition [14]. These features extract spectro-temporal modula-

tion frequencies from the signal by filtering the Mel spectro-

gram with different Gabor filters. The use of such features

is motivated by the finding that a similar processing is per-

formed in the primary auditory cortex of mammals [15]. In

a recent challenge for acoustic event detection in an office

environment, these features achieved a good detection perfor-

mance [16].

Acoustic events are modelled with GMMs, and single-

class detectors for noisy environments are created. A hier-

archical system setup is used to distinguish between different

event classes, in order to arrive at multi-class detection sys-

tem. Experiments are carried out using recordings of breaking

glass, explosion, gunshot, and scream sounds. Target sounds

were mixed into realistic background scene recordings. The

experimental evaluations reveal that the proposed GBFB fea-

tures achieve better results than MFCC features, in terms of

event detection and classification.

The rest of the paper is organised as follows. In Section 2,

the framework of the event detection system is delineated.

The employed audio features are described in detail in Sec-

tion 3. Experimental results are presented in Section 4, fol-

lowed by some conclusions in Section 5.

2. EVENT DETECTION SYSTEM

The proposed event detection system is composed of single-

event detectors. For each target event, a detector is trained.

Each event detector consists of a two-class GMM classifier,

one model, θ1, for the target event and one, θ2, for the back-

ground noise. The GMMs are trained with diagonal covari-

ances, and the number of mixture components is fixed to 16

(following preliminary experiments). For a given unknown

sample X = x1, . . . , xT , where T is the length in frames, the

log-likelihood for both models

Li = logP (X|θi), i ∈ {1, 2} (1)

is evaluated. The log-likelihoods are used to derive a detec-

tion score

φ = L1 − L2. (2)

Together with a threshold, this score can be converted to a

detection decision.

The same detection framework can be used for single-

event and multi-event detection. For single-event detection,

a detection score is obtained as described above. In order

to perform multi-event detection, a hierarchical system setup

is used. After obtaining the scores for each single-event de-

tector, maximum-likelihood classification between all target

event models is performed to obtain one result.

The given problem of event detection in surveillance sce-

narios differs from other acoustic event detection scenarios.

In most other event detection scenarios, precise timing infor-

mation is important, regarding the onset and offset of events.

On the other hand, in surveillance scenarios, exact timing (in

the order of several frames) is not required. Therefore, we

evaluate the system with pre-segmented recordings, instead

of detecting events in longer background recordings.

3. AUDIO FEATURES

As a baseline, MFCCs are used as features. In previous stud-

ies about event detection for acoustic surveillance, MFCCs

achieved a good performance in combination with GMM

classifiers. 13 MFCC coefficients are computed for each

frame of 25 ms length (frame shift 10 ms). Together with delta

and delta-delta coefficients, this results in a 39-dimensional

feature vector per frame.

As an alternative, we propose to use Gabor filterbank

(GBFB) features. This feature set models the spectro-

temporal modulation frequencies in the signal and it was

recently proposed for noise-robust speech recognition [14].

The selection of features based on Gabor filterbank is mo-

tivated by the fact that it provides a systematic approach to

describe the spectro-temporal characteristics of a signal and

it offers the benefits of the wavelet analysis by analysing the

signal at different scales. This results in an optimal time-

frequency localization [17]. Therefore, global as well as lo-

calised characteristics of the temporal as well as the spec-

tral structure of the signal can be gathered. Since the Ga-

bor filterbank is defined in the spectro-temporal domain, it

can be adjusted to capture features in the time domain only,

the spectral domain or features related to dependencies of the

spectral excitation with respect to the time. This is useful to

characterise many sound events where the frequency excita-

tion structure follows a specific chronology. For example, a

detonation causes shock waves which have specific spectro-

temporal structure caused by increased pressure of the air, its

local temperature and the local speed of sound. Hence, in

an initially plane sinusoidal wave of a single frequency, the

peaks of the wave travel faster than the troughs, and the pulse

becomes cumulatively more like a sawtooth wave [18]. As
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another example, although the sound of a gun shot depends

on the gun, however, the evolvement of the excited frequen-

cies has similar time dependency for the majority of guns.

To extract GFB features, first, the log Mel-spectrum of a

signal (25 ms frames with 10 ms frame shift) is computed.

This spectrum is filtered by a Gabor filterbank. Each Gabor

filter is defined as the product of a 2-dimensional sinusoid car-

rier (3) with corresponding temporal modulation frequency

ωk and spectral modulation frequency ωn, and an envelope

function (4):

sω(x) = exp(iωx), (3)

hb(x) =

{

0.5− 0.5 cos
(

2πx

b

)

− b

2
< x < b

2

0 else.
(4)

The parameter b controls the width of the carrier function.

Each of the sinusoid carriers corresponds to a specific tem-

poral and spectral modulation frequency. The maximum size

of the filters is limited to 69 frequency channel and 40 time

frames. The filterbank is designed to consist of 41 Gabor fil-

ters (with different temporal and spectral modulation frequen-

cies). Each of these filters can be applied to each of the 23

frequency channels. From the 943 possible combinations, a

number of representative channels is selected. This reduces

the filterbank output to 311 dimensions. These settings corre-

spond to the original definition of the GBFB features [14] and

are used throughout the present work.

Figure 1 illustrates the log Mel-spectrogram and the out-

put of one Gabor filter for two exemplary recordings of the

classes breaking glass and gunshot. The breaking glass

recording has only few low-frequency components, while

the gunshot recording reveals a considerable amount of low-

frequency components. In addition to the spectrograms, the

output of the Gabor filter corresponding to a spectral modu-

lation frequency of 0.06 cycles per channel and a temporal

modulation frequency of 6.2 Hz is shown in order to illus-

trate the extracted features. Considerable differences between

the two different classes are visible in the figure in terms of

the spectral distribution, as well as characteristic properties

within the recording of the same class.

Applying the 2-dimensional Gabor filterbank can also be

understood as an image filtering process on the spectrogram.

With the spectro-temporal extent of the filters, spectral and

temporal context is incorporated in the resulting features.

Spectral modulation frequencies of up to 0.25 cycles per

channel and temporal modulation frequencies of up to 25

Hz are captured with the filterbank. Exploiting this infor-

mation seems to be promising for the task of event detection

in surveillance scenarios, since the target sounds are not

assumed to be stationary.

In order to compare GBFB features to MFCCs, a principal

component analysis is applied to reduce the dimensionality of

the GBFB features to 39. As a consequence, the same model

order can be applied for both feature sets. In the experiments,
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Fig. 1. log Mel-spectrogram (top) and output for one Gabor

filter (bottom) for two recordings. The x-axis represents the

time in s and the y-axis the Mel-frequency channels.

the PCA basis is always computed from the training data, and

test data are projected onto this basis.

4. EXPERIMENTS

4.1. Database

There are no standard publicly available databases for acous-

tic surveillance scenarios. As in most of the previous studies

on event detection for audio surveillance, we created our

own evaluation database. Different classes of target sounds

were mixed into realistic background recordings at various

signal-to-noise ratios (SNRs). As target sounds, we consid-

ered the four classes breaking glass, explosion, gunshot, and

scream. For each of these classes, we collected 100 samples

from the public repository www.findsounds.com. Back-

ground sounds were chosen from the database of acoustic

scenes from the D-CASE challenge [10]. The classes busys-

treet, openairmarket, park, and tubestation were selected

as potential scenarios for audio surveillance. Although the

background recordings in the D-CASE database are available

as binaural recordings, only the left channel was used, to

simulate a simple, realistic single-microphone setup. Target

sounds were mixed into background recordings at different

SNR values from 20 dB to 0 dB, in steps of 5 dB. The detec-

tion models are trained with matched noise settings, i. e., for

each background noise, a separate model is trained.

In order to provide negative samples for the detection

experiments, consisting only of background sounds, extracts

are cut from the background recordings. It was found that

the length of the target sounds follows a Gamma distribution.

Background samples were extracted with a length randomly
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Table 1. Event detection equal error rate, comparing MFCC

and GBFB features

SNR (dB)

0 5 10 15 20 ∞ mean

MFCC 23.1 17.2 8.6 5.6 4.1 1.7 10.1

GBFB 22.5 13.8 7.5 4.5 3.1 1.3 8.8

drawn from a Gamma distribution with shape and scale pa-

rameters adjusted to the length distribution of the target

sounds.

In total, the created database consists of 8 800 samples:

four target classes with 100 samples each, mixed with four

different backgrounds at five SNR values, together with the

clean recordings; furthermore, four background classes with

100 samples each. The database is divided into a training

set (60 of each of the 100 samples) and a test set (the other

40 samples). For training, only clean recordings of the tar-

get events as well as background recordings are used, while

tests are performed for all SNR values in addition to the clean

recordings.

4.2. Event Detection

Firstly, event detection is evaluated separately for each class

of acoustic event. The task is to detect target events in a back-

ground recording. Therefore, evaluation can be carried out in

terms of false detections and false rejections. For each record-

ing, an event detector yields a detection score, which can be

used, together with a detection threshold, to trade off false

detections and false rejections. Results for different detection

threshold can be plotted in a detection error trade-off (DET)

curve. The equal error rate (EER) is used as a universal per-

formance measure in this work. It is defined as the operating

point with equal false detection and false rejection rates.

Detection experiments are performed separately for each

of the backgrounds, in matched conditions. This means that

the detector is trained and tested with the same background

class. The results can be averaged over all backgrounds and

over all target sounds, to obtain one averaged EER per SNR

value. Table 1 shows these results, for MFCC and GBFB fea-

tures. GBFB features achieve better results than MFCCs for

all SNR values. On average, using GBFB instead of MFCC

leads to a relative performance improvement of 13%.

Table 2 reports results (for GBFB features) separately for

each of the target classes. As could be expected, breaking

glass and scream are easier to detect, since for the other two

classes, confusions with background sounds are more likely

because of the low-frequency noise-like structure.

Results for the separate background classes are given in

Table 3. The worst results are obtained with the background

class openairmarket. This class contains a wide range of di-

verse sounds, which could lead to the relatively high error

Table 2. Event detection results (EER) separately for each

target event, using GBFB features

SNR (dB)

0 5 10 15 20 ∞ mean

Glass 22.5 14.4 9.4 4.4 1.9 0.0 8.8

Expl. 22.5 15.6 8.8 6.9 5.0 3.8 10.4

Gun 26.9 16.9 9.4 6.3 5.0 1.3 10.9

Scream 18.1 8.1 2.5 0.6 0.6 0.0 5.0

Table 3. Event detection results (EER) separately for each

background class, using GBFB features

SNR (dB)

0 5 10 15 20 ∞ mean

Street 16.3 8.8 2.5 0.6 0.0 0.0 4.7

Market 33.1 19.4 10.6 6.3 3.1 1.9 12.4

Park 21.9 15.0 10.0 6.3 5.6 2.5 10.2

Tube 18.8 11.9 6.9 5.0 3.8 0.6 7.8

rates. For the background class park, the error rates are also

relatively high. On average, the park recordings are relatively

quiet, which means that they have to be amplified unnaturally

strong in order to arrive at certain SNR values. Realistically,

the SNR values would be much higher in a park environment

compared to, for example, busystreet.

To illustrate the detection result of one exemplary exper-

iment, Figure 2 shows the DET curves for the detection of

the class gunshot in tubestation noise. For an SNR value of

20 dB, the EER is 7.5%, and for 0 dB, the EER goes up to

25%.

4.3. Event Classification

In order to perform multi-event detection, the same frame-

work as for single-event detection is used. Results for event

classification are shown in Table 4. The comparison shows

again that GBFB features achieve a better performance than

MFCCs. Only in the case of clean sounds, MFCCs are

slightly better, while for all other SNR values, GBFB features

perform consistently better. On average, the relative perfor-

mance improvement from MFCCs to GBFBs is 6%. The

practical advantage of the multiclass detection system is that

it uses the same models as the single-class detectors, which

are trained with clean data only. Further improvements in

classification accuracy are expected with the introduction of

concepts such as multi-condition training.

5. CONCLUSIONS

We proposed an event detection system for audio surveil-

lance scenarios. Acoustic events are modelled with GMMs

and single-class detectors are trained for different realistic
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Fig. 2. DET curves for the class gunshot in tubestation noise,

for the SNR values of 20, 10, 5, and 0 dB.

Table 4. Event classification accuracy
SNR (dB)

0 5 10 15 20 ∞ mean

MFCC 38.1 51.4 66.4 74.2 77.2 93.8 66.9

GBFB 42.3 55.9 68.9 78.9 84.7 93.4 70.7

background noise conditions. As an alternative to the classi-

cal MFCC features, we evaluated Gabor filterbank features,

which extract spectral and temporal modulation frequencies

from the signal. In an evaluation with realistic background

recordings in noisy conditions, the proposed Gabor features

achieved a better detection and classification performance

than the MFCCs. In particular, in the classification exper-

iments, where MFCCs performed slightly better in clean

conditions, GBFB features showed a better noise robustness.

In this work, matched models with known background sound

are assumed. In order to run the system automatically in

different background scenes, a combination with a system

for acoustic scene recognition makes sense, such as the one

presented in [19]. The evaluated GMMs are well suited to

model stationary sounds such as scream, while for other non-

stationary sounds, better models need to be found in future

work.
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