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Abstract

Modern real-time systems are increasingly complex and

pervasive. Model Driven Engineering (MDE) is the emerg-

ing approach for the design of complex systems, strongly

based on the usage of abstract models as key artifacts, from

which an implementation is derived through a series of well-

defined (automated) transformations. The widely adopted

input notation in MDE is the Unified Modeling Language

(UML). To express models in a particular domain, and no-

tably for the modeling of real-time embedded systems, UML

profiles have been proposed, which enrich the set of UML

native elements with a consistent set of extensions. In this

trend, this paper develops an approach to the design of real-

time systems, based on a UML profile which is obtained

from the OMG standard SPT-Profile, with a few necessary

modifications.

1 Introduction

Embedded real-time systems are used in many systems,
from safety critical automotive applications to entertaining

systems.

The complexity of embedded real-time software sys-
tems, together with the cost pressure for such high volume

products, has convinced designers to evaluate and adopt ap-

propriate design and analysis tools. The required features of
such tools include early assessment of performance, explo-

ration of the space of parameters, code generation, formal

analysis of correctness, schedulability analysis, testing, and
much more.

Unfortunately, no commercial tool is currently able to
support the designer at all stages of the development. Also,

different tools that are able to support specific phases of the

design are not able to interoperate for the lack of an assessed
common methodology.

In this paper, we focus on a problem that has been ad-

dressed only recently by the real-time research community:
given a functional specification and its real-time contraints,
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how to design the set of concurrent real-time tasks and as-
sign functional behaviour to the tasks. This problem is

commonly referred to as the problem of mapping the func-
tional behaviour into an architectural specification, i.e. a set

of concurrent tasks, their parameters and synchronization

mechanisms.

Early efforts in this direction have already been made by

some tool providers. For example, the Real-Time Workshop

tool of the Matlab/Simulink toolset can generate a real-time
implementation of a control system schematic, specified in

a graphical language. The implementation consists of one

or more periodic real-time tasks, and their priority. How-
ever, the tool has very little flexibility. On one hand, it does

not allow to set real-time constraints in the graphical system

specification. Also, to maintain consistency between simu-
lation and implementation, in some cases the tool forces the

introduction of unwanted communication delays between
the functional blocks, modifying the original design spec-

ification.

To solve this type of problems, from many sides, several
attempts are being made to incorporate already at the mod-

eling stage appropriate notations for expressing the desired

non-functional properties, in a way that can be subsequently
analysed and transformed, via successive refinements, into

a conforming implementation. The idea of using and anno-

tating models as a first class element in software develop-
ment is the philosophy behind the emerging Model Driven

Engineering (MDE) approach [5, 6, 18].

MDE is a breach in software engineering concerning ap-
plication modeling and implementation. In this paradigm,

models provide abstractions of a physical system that al-

low engineers to reason about that system by ignoring ex-
traneous details while focusing on the relevant ones [6].

The main efforts introduced by MDE stays in the fact that
in its vision models are not only used for documentation

purposes, but they become well defined input/output ele-

ments for computer-based tools that implement precise op-
erations [5].

Hence, models used for reasoning and analysis are then

transformed into the desired implementation. This usage of
models as a baseline for implementation permits to raise the

abstraction level at which solutions are described, and opens
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a realm of novel possibilities for creating, analyzing, and

manipulating systems through various types of tools [18].
However, not to deceive these expectations, the customary

attitude to system development based on the usage of in-

dividual tools that tend to only operate on specific models
conforming to their own internal format has to change in

favour of standard techniques and languages [18].

Even though today UML represents only a possible in-
strument in MDE, it still provides a variety of instruments

to describe the characteristics of a generic system in cor-
responding models. Furthermore, sometimes it looks like

being not complete, in the sense that the basic elements of

the language cannot cover all potential needs for describ-
ing specific systems from any domain. In these cases the

definition of domain-specific variants of the UML may be

required. The UML however has already been conceived
for extensibility, for which purpose it provides a built-in

profiling mechanism to extend the language with elements

and constructs apt to describe specialized features, while re-
maining compliant with its standard definition.

One domain particularly sensible to the exigence of pro-

filing the UML is real-time embedded system design, which
is the scope of our research.

From this point of view, the contribution of this paper can
be seen in two different perspectives: in the long term, our

goal is that of unifying a real-time design methodology with

the MDE approach. In this sense, we believe that this paper
provides a fully developed exercise of how such a goal can

be pursued. In the short term, the methodology resulting

from this exercise already provides by itself a useful, appli-
cable solution to fit an embedded application, described by

means of fully compliant UML diagrams, into a set of real-

time tasks, ready to be executed on a real-time scheduler.
The paper is structured as follows: in the next section

we provide the background of related work, on which the

methodology is built, and in Section 3 we summarize the
scheduling algorithm considered. Then, in Section 4 our

UML profile is defined: this is derived from the well known

OMG UML Profile for Schedulability, Performance and
Time [14]. The methodology is hence illustrated by means

of an example in Section 5 and discussed in Section 6. Con-
clusions are finally drawn.

2 Related Work

2.1 Real-Time Methodologies

The vast majority of research work on real-time systems
is centered around the concept of task. Real-time theory

does not focus on the problem of generating the task set and

assigning non-functional properties to tasks. Generally, task
sets are assumed to be given by the designer, using some ad-

hoc software design methodology.

However, there is a lack of a well-established methodol-
ogy that guides the designer in generating the task set. In-

stead, in the industrial practice some experienced engineer

uses heuristics for establishing the tasks set. In many cases,

the task set and the parameters of the tasks are decided well
before the complete design of the functional behavior of the

application is completed. Functional blocks are then as-

signed to tasks depending on their requirements in terms
of criticality or importance. This decision makes the design

unflexible: as new funtionality is added, it would probably

be better to re-design or even completely re-generate the
task set and its parameters.

Most system modeling approaches are based on this

structure. Even development tools focusing on platform-
based design assume tasks to be manually generated by

the designer. Manual generation makes the methodology

very flexible, as it allows the designer to quickly change
the mapping and test the functionality and performance of

many configurations rapidly. However, in complex appli-

cations, the number of possible mapping configurations is
very large. Therefore, the designer needs a tool that aids

him/her in automatically exploring the space of possible

configurations for identifying the one that leads to the best
performance. A concrete example of such kind of tools are

the Cierto VCC by Cadence or its evolution Metropolis [3].

Some work by Gerber and Saksena [9] aims at designing
a distributed system which satisfies performance require-

ments. The goal of their methodology is to assign the task

parameters (i.e., periods and priorities), and the communi-
cation resources, so as to minimize a global cost function

that takes into account throughput and delay.

However, they assume that the task set has already been

generated. Moreover, they assume that tasks have already
been assigned to nodes in the distributed system. Although

this work can serve as a basis for future extensions of our

methodology, it has a slightly different scope.

Most closely related to our work is the more recent work
by Saksena and Karvelas [15, 16]. In their work, they try

to define a methodology to group jobs (similar to what we
call functional blocks in Section 3) into tasks and assign

each task a scheduling priority. A great contribution of their

work is the use of object-oriented design methodologies:
jobs are not self-contained functions, but object methods.

However, this proposal comes with two problems: first, the

task creation algorithm is not made available by the authors;
in addition, their methodology is based on static priorities.

Recently, Bartolini et al. [4] have proposed an algorithm

that, starting from a functional model of the system and the

associated timing constraints, generates the task sets by as-
signing functional blocks to tasks, and periods and dead-

lines to tasks. The algorithm assumes an EDF (Earliest

Deadline First) scheduler [10], and has been proved to be

optimal for single processor systems. The approaches in [4]

and in [16] have been compared: the results obtained with
the methodology in [4] were superior from a schedulability

point of view, mainly from the use of dynamic priority as-

signments. However, the functional specification symbols
used in [4] are not standard, and the algorithm is not part of

any methodology.
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This is actually the goal of this paper: to use a standard

MDE-based methodology for modeling a real-time system,
and then directly apply the algorithm in [4] to generate the

implementation and perform the schedulability analysis.

2.2 UML Profiles

UML answered the industry’s needs for a common lan-

guage to discuss information technology. However, in sev-
eral current research areas such as real-time embedded sys-

tems, requirements related to response time, performances

or schedulability that cannot be expressed functionally are
crucial.

Since 1999, when the Object Management Group
(OMG) issued an explicit request for proposals (RFP) for

a domain-specific interpretation capable to deal with non-

functional requirements, the main challenge in these kinds
of approaches was to maintain the full conformance with

the UML standard.

UML relies on its own extension mechanisms to define

additional features by means of the notion of a profile: a

profile customizes UML for a specific domain or purpose
using extension mechanisms able to modify the semantics

of the metamodel elements. The main advantage in the use

of a profile is that this practice allow the modelers to define
or choose Domain Specific Languages according to their

actual needs.

The specification of a UML profile focuses on the defini-

tion of a set of stereotypes. A stereotype provides a method

to extend a metaclass, creating a new UML metamodel ele-
ment or adding new or extra semantics to the existing ones.

The metaclass extended by the stereotype is usually referred

to as base class. Each stereotype is characterized by a set
of properties called tagged values and can be influenced by

a semantic condition or restriction called a constraint.

In particular, the UML Profile for Schedulability, Perfor-

mance and Time (SPT-Profile) [14] has been proposed by a

working consortium of OMG member companies, and has
been recently adopted as an OMG standard.

The SPT-Profile does not add elements to the UML meta-
model, but defines a set of domain profiles for UML al-

lowing for the construction of models that can be used

to make (also early in the life cycle) quantitative predic-
tions regarding the characteristics of timeliness, schedula-

bility, and performance. It was not conceived for a specific

analysis method, but is intended to provide a single uni-
fying framework encompassing the existing analysis meth-

ods, still leaving enough flexibility for different specializa-

tions. The underlying idea is to import as annotations in
the UML models the characteristics relative to the target

domain viewpoint such as performance, real-time, schedu-

lability or concurrency. The overall structure of the SPT-
Profile is modularized in sub-profiles so as to allow system

designers and developers to only use those elements of the

profile that they need, and to allow future extensions.

Similarly, the UML-RT [17] profile has been proposed to

model software architectures in real-time systems. UML-

RT extends UML with stereotyped active objects, called
capsules, to represent system components, where the inter-

nal behavior of a capsule is defined using state machines.

The interaction with other capsules takes place by means
of protocols that define the sequence of signals exchanged

through stereotyped objects called ports and specify the de-

sired behavior over a connector.

The importance for real-time and embedded systems

communities to converge on a unified notation is also con-

firmed by some important experiences that, originated from
a non-UML compliant notation to describe their metamod-

els, are now moving towards a UML-based input nota-

tion [7]. In particular, the UML Platform Profile (UML-PP)
has been inspired by earlier work within the already men-

tioned Metropolis design environment [3]. Its semantics is

defined in terms of the Metropolis Metamodel by establish-
ing a direct correspondence between modeling elements of

the UML-PP and elements of the Metropolis Metamodel.

As said, our aim is to develop an MDE approach to real-
time systems design based on a UML compliant input nota-

tion. Therefore, at the moment our choice naturally goes to

SPT, which is the currently adopted OMG standard profile.
A contingent problem with the SPT-Profile exists concern-

ing UML versioning: SPT is still based on version 1.5 of

the UML [11], now superseded by the new UML 2.0 super-
structure [12]. Indeed, to respond to the changes introduced

by the UML 2.0 and also to address several requested im-

provements to better specify the properties of real-time em-
bedded systems, the OMG has now issued a new RFP for

UML Profile for Modeling and Analysis of Real-Time and
Embedded Systems (MARTE) [13], and a new profile is un-

der development to replace the existing UML SPT-Profile.

However, waiting for such a profile to be released, this work
refers to the current standard version [14], hoping that this

experience may be also useful for the MARTE profile de-

velopers.

3 Scheduling Methodology

The UML profile and the methodology that we propose
in the next section incorporate an algorithm for software

mapping, which is the operation which fits functions into
software tasks, and assigns parameters (periods and dead-

lines) to tasks.

We assume the scheduler to have real-time features; our

chosen target is a preemptive EDF scheduler, though other
algorithms for real-time scheduling might be used.

To make the methodology as general as possible, we do

not require in-depth knowledge of the application’s inter-
nal workings: especially, we do not require the knowledge

of worst-case execution times (WCET) of functions for gen-

erating the tasks. The task set can be generated, and the
deadlines assigned, based only on the system topology and

the end-to-end temporal constraints. For this reason, we re-
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quire the system to be schematically described with a DAG,

or Directed Acyclic Graph.
Our methodology allows a system designer to use the

DAG view of the system to partition the application into a

set of tasks and assign them real-time deadlines; in addition,
we provide a feasibility test which can be run on the graph,

to check if a system created with these algorithms will be

schedulable.
A functional model is formally a t-uple {V , E ,R}, where

V is the set of vertices, E the set of edges, and R is the set
of mutually exclusive resources used by the functions.

• V = {F1, . . . , Fn} is the set of functional blocks. They

represent the basic operations of the system, and can

be aggregated into tasks. A block Fi has an input port

and an output port. An input port is a buffer of infi-

nite size that may contain activation tokens. When at
least one activation token is present on the input port,

the functional block is active. A functional block can

execute only if it is active. Each functional block is
executed once for each activation token; therefore, if

multiple tokens are input to a block, we assume an OR

activation semantics, i.e., one activation for each token.
When the block executes, it first consumes one token,

then runs for the duration of a random variable com-

prised between 0 and γi. At the end of the execution
it fires its output port. If no other token is present on

the input port, the block becomes inactive, otherwise

it remains active, and will be executed again according
to the scheduling policy.

A functional block Fi can also be characterized by a

maximum computation time γi. This is only used for

schedulability analisys and not for the generation of
the task set. Therefore, in a first stage of the method-

ology, it can be ignored.

• E = {l1, . . . , lm} is the set of functional links. A func-

tional link li = (Fh, Fk) connects the output port of

functional block Fh (the source block) to the input port
of block Fk (the sink). One functional block can be the

source or sink of many links. When a functional block

completes execution, it fires its output port: this means
that tokens are sent on all the links starting from that

output port. When fired, a token is instantaneously re-

ceived on the input port of the sink, and no communi-
cation latency is accounted for.

• R = {R1, . . . , Rz} is the set of logical resources that
can be used by the functional blocks to carry out their

computations. They are used to model shared data

structures that can contain state information or shared
data and that need to be executed in mutual exclusion.

An external event is produced by the external environ-

ment and is represented as a special functional block with
no input links, denoted ei. An external event is generated

at a minimum interarrival time, denoted by Ti. It can be

either periodic or sporadic; in the former case, events are

generated at a constant rate Ti.

An output oj is a special functional block with no output

link. It represents a consumption by the environment of the
data produced by the system and sent for instance to some

actuator. For our purposes, an output is merely a stub where

execution ends.

A path is the end-to-end execution of the system’s func-

tionality. When an external event arrives, one or more se-
quences of functional blocks are executed in an order de-

fined by the policy of the underlying scheduler. These exe-

cution chains, which start from an external event and con-
tinue executing until an output is reached, are the paths; a

path is an ordered sequence of functional blocks. We de-

note them with Pk(ei, oj); the k index is related to the fact
that more than one path can exist between the same exter-

nal event and output stub. For simplicity, we will assume

the paths to have a certain order, thus we can denote them
without expliciting the source event and the sink output.

Since paths represent the end-to-end computations of
the system, we can assign them a deadline that represents

the maximum reaction time allowed for that computation.

When event ei is triggered, the functional blocks in path Pk

are executed until output oj is reached.

∆k is the relative deadline for Pk. Since a path can be
activated many times (once for each trigger of the external

event), every instance Pk,l of the path will have its own ab-

solute deadline, denoted with δk,l. If we denote with Ak,l

the time when the l-th instance of path Pk is activated, then

δk,l = Ak,l + ∆k.

Usage of shared resources is assumed and affects the sys-
tem performance. A functional block Fi may require mu-

tually exclusive access to a resource Rr. For the sake of
simplicity, we do not account for the exact duration of crit-

ical sections, and will assume that a functional block will

maintain the lock on the resources it uses for the whole du-
ration of its execution. This can have a negative impact on

performance, but it helps in modeling the system and keep-

ing it deadlock-free.

3.1 Mapping

Among the algorithms proposed in [4], we will summa-
rize in brief the one called Joined Late Activation (JLA).

JLA is an algorithm which partitions the system into a

set of tasks and assigns them periods and deadlines only
requiring an end-to-end temporal constraints, expressed in

the form of path deadlines. The task partitioning works ac-
cording to the following rules: a task is a chain of func-

tional blocks and must be entirely included in a path. This

means that the functional blocks in a task are sequentially
connected (TP-rule 1). If a functional block has more than

one input link, it must be at the beginning of a task and its

only entry point (TP-rule 2). And if a functional block has
more than one output link, then the task which contains it is

extended along the shortest deadline path (TP-rule 3). For
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instance, if a block has two output links, one along a path

P1 and the other along the path P2, with ∆1 < ∆2, then
the task will extend along P1, including the correspond-

ing blocks, unless this contradicts the previous rules or the

blocks have already been assigned to another task.

In addition, the following rules determine the assignment
of deadlines to tasks: every time a task is activated by an

external event or by a functional link, it is assigned an abso-

lute deadline equal to the minimum absolute deadline of all
sub-paths originating from the activation event (D-rule 1). A

task activated directly by an external event, let it be τ1, has

an absolute deadline of d1 = mini{δi | τ1 ∈ Pi} (D-rule 2).
The absolute deadline of a task τi,l ∈ P , which is activated

by τi−1,h ∈ P at time fi−1,h, is di,l = minj{δj | τi,l ∈ Pj}
(D-rule 3).

A complete, step-by-step description of the JLA algo-
rithm can be found in [4].

4 Proposed Extended Profile

The main effort of this paper versus a UML view point

is to extend the SPT scheduling sub-profile (introduced in

Section 2.2) in order to model the mapping of functional
blocks into an earliest deadline schedule threads. This sec-

tion describes how the UML SPT-Profile can be used as it

is, or possibly where it was necessary to extend it.

With regard to the Domain Viewpoint, this has been
broadly discussed in Section 3. The main abstractions we

need to model focus on the notions of resources, functional

blocks, external events and paths. Even though something
quite similar to the concepts of resources, functional blocks

and external events are present and expressed in a very de-

tailed way in the UML extensions proposed in [14], there
are no references to the notion of a path as intended here.

The rest of this section focuses on the UML viewpoint,

i.e., we explain how to model the above notions into a

UML-compliant notation. In particular, among the dia-
grams available in UML, our profile focuses on Activity

Diagrams [8]. These aim at modeling the procedural flow

of actions that are part of a larger activity. Since the con-
cepts and the scheduling algorithm we refer to in this pa-

per are based on a dataflow model (in particular on a Direct

Acyclic Graph representation), we note a natural correspon-
dence with these kind of diagrams.

Stereotype Base Class Parent Used Tags

≪Resource≫ ObjectNodes ≪SAresource≫

≪SAction≫ Action SAworstCase

≪ExtEvent≫ InitialNode ≪SAtrigger≫ SAoccurrence

≪Path≫ ActivityGroups Deadline

Table 1. Stereotypes Definition

Resource. To model the resources, in principle we would

inherit the whole set of characteristics proposed in the SPT-

Profile within the ≪SAresource≫ stereotype definition. In

particular, this stereotype identifies a kind of resource that
can be contended by multiple concurrent actions and whose

access is protected by some mechanism. Several tagged val-

ues are associated with the definition of resource, but these
are too detailed for our purposes, so they will not be consid-

ered at this stage. Unfortunately, such stereotypes cannot

be applied directly to the ObjectNodes of an Activity Dia-
grams [12], since this concept does not specialize any ele-

ment of the stereotype base class list [14]. In order to exploit
the definition of resource as we utilize it in our profile, with-

out infringing the semantics of SPT-Profile elements, we in-

troduce a new stereotype (≪Resource≫), which is defined
in identical way as ≪SAresource≫, but can be applied also

to ObjectNodes.

Functional block. A functional block is basically a unit of

work with a defined execution pattern, which contends the
usage of some resources with other functional blocks. Such

definition corresponds to the specification of ≪SAaction≫

used for the scheduling domain description in the SPT [14].

The SPT Profile again introduces a lot of characteristics in

order to clarify the role of an action, but in our case only the

SAworstCase tagged value will be considered at the present

stage. This value refers to the maximum computation time

γ of the functional block as defined in Section 3. This
stereotype can be directly applied to an Action element of

an Activity Diagram, since it specializes the concept of an

Action from BasicActions [12], which are allowed as base
classes for the stereotype ≪SAaction≫ [14].

The scheduling algorithm in Section 3 allows a func-

tional block to have a set of input or output ports. Such
ports can manage tokens to transfer control, step by step,

between functional blocks through the defined dataflow. In

the UML Activity Diagram, the actions already provide this
concept by means of the notion of pins. Since we have rep-

resented a functional block by means of an extension of the

action of an Activity Diagram, hence the ports can be rightly
represented using the pins.

External event. As usual, in the case of embedded sys-

tems, the notion of some event generated for example by a
sensor, which triggers system execution, is quite common.

Activity Diagrams can model the starting point for execut-

ing an activity by means of their InitialNodes [12], but in its
usual definition no real-time annotations are possible. The

SPT-Profile, on the otehr side, provides the instrument to

model events of this kind by means of the ≪SAtrigger≫

stereotype. However, this stereotype cannot be applied to

an InitialNode, since neither the latter nor any of its gen-
eralization appear in the base class list of ≪SAtrigger≫

[14]. Therefore for this case we introduce a new stereo-

type (≪ExtEvent≫) defined as ≪SAtrigger≫, which can
be applied to the InitialNode modeling concept. At the mo-

ment, the only tagged value that we associate to this new

stereotype is the SAoccurrence one, which defines the pat-
tern of inter-arrival times between consecutive occurrences

of the trigger, as specified in [14]. Referring to the notation
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Figure 1. The extension on SPT-Profile with

the Path

adopted in Section 3, this tagged value corresponds to the

property of an external event denoted as T .

Path. In their classical formulation, Activity Diagrams al-

low to group flows of actions by means of activity partitions

(these are also sometimes referred to as swimlanes). The
grouping is made with respect to the role of some entity or

process who is responsible for carrying on those actions. In

our case we want to force somehow this concept and model
the notion of paths as introduced in Section 3. A path is

an ordered sequence of steps that the system has to execute

following up an input received from an external event: we
can then see an activity partition as a container of a set of

related actions triggered by an external event and whose ex-

ecution has to be performed in accord to some timing con-
straints. Figure 1 depicts the notion of path into the SPT-

Profile domain viewpoint. According to [12], Actions in an

ActivityPartition may not be in other partitions of the same
dimension, thus we define the stereotype ≪Path≫ as appli-

cable to the more general ActivityGroups UML modeling
element. Its end-to-end constraint for the computation can

be expressed by means of a Deadline tagged value. In the

execution model of Section 3 the latter represents the max-
imum reaction time expected for a computation, denoted as

∆.

In cases where an action belongs to several paths, the
usual graphical and textual notations of Activity Diagrams

can be adopted. In particular, the classical UML Activity

Diagram textual notation entails to annotate each node with
the activity partition or partitions to which it belongs, en-

closed within round brackets.

A resume of the definitions and uses of the previously
described stereotypes is given in Table 1.

5 Example

The example this section exposes refers to a scenario
where a system collects informations from the environment

by means of a sensor, filters them and updates its control

subsystem. At the same time, the captured and filtered in-
formations can be transformed in a human-readable form

and stored in a log repository. Periodically a user can query

Figure 2. The Scenario in the Example

such repository in order to monitor the whole system.

Figure 3 depicts the use of the extended notions of UML

Activity Diagrams in order to model the informal scenario

in Figure 2.

The model is composed by three paths (DataControl, Sig-

nalRecord, UserLog). Each of them is represented by an Ac-

tivity Partition stereotyped as ≪Path≫ and their deadline is

represented by the tagged value Deadline set to 18, 40, 200
respectively. DataControl and SignalRecord share the same

external event (e1) and the first two functional blocks (Sam-

pler, Filter). e1 produces the stimulus for the system with
a constant interval of time, precisely every 40 msec. On

the other hand, UserLog has its own periodic initial node

(e2), but shares its last action node with SignalRecord (Log-

ger). Last, each functional block was modeled by an action

stereotype as ≪SAction≫ and the duration of their execu-
tion is represented by the tagged value SAworstCase.

From this formalization of the system, by means of a
transformation engine the UML scenario can be provided

as input to the algorithms described in Section 3.1 in order
to obtain an activity scheduling if it is possible. For the

motivations argued in Section 6, at the moment the engine

that transforms the UML representation into the input for
the RTSim [1] tool is not already implemented, although it

is theoretically possible.

We can now apply our partitioning methodology, as ex-

plained in Section 3.1. We first use TP-rule 1, which states
that every task must be included in a path. One possible re-

sulting task set assigns the functional blocks Sampler, Filter,

Transform and Logger to the task τ1, Ctrl to τ2 and UserInput

to τ3.

This partitioning is not in accordance with TP-rule 2, be-

cause the Logger block has more than one input link. By ap-

plying the second rule, we obtain that the functional blocks

Sampler, Filter and Transform are assigned to the task τ1,

Ctrl to τ2, UserInput to τ3 and Logger to τ4.

Last, we apply TP-rule 3. It specifies that τ1 should not

include the Transform block, but rather the Ctrl block; this
is because the DataControl path has a stricter deadline than

the SignalRecord path. If the partitioning used were the one

described above, the Transform function would be executed
before the Ctrl block, resulting in a priority inversion. The

final task set is as follows:
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Figure 3. A DAG representation by means of the UML Activity Diagram extension.
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Figure 4. Schedule chart example.

Task Functional blocks Deadline Period

τ1 Sampler, Filter, Ctrl 18 40

τ2 Transform 40 -
τ3 Logger 40/200 -
τ4 UserInput 200 100

Deadlines have also been assigned according to the D-

rules described in Section 3.1. These are the absolute dead-

lines relative to the first instance of the tasks; subsequent

instances will have greater deadlines. It is possible to as-
sign relative values for deadline; these would be the base

deadlines. However, they are not in the scope of this article.

τ1 and τ4 are activated by external events, therefore they
can be assigned a period equal to that of the event. On the

other hand, τ2 and τ3 do not have an explicit period, since

they are activated at non-periodic intervals after the execu-
tion of their predecessors.

The reason why τ3 is assigned two different deadlines is

because it is activated twice, once by τ2 and the other by
τ4. When activated by τ2, its deadline is that of the Sig-

nalRecord path, i.e. 40; when activated by τ4, it has the
deadline of the UserLog path, which is 200.

This task set is ready for execution on an EDF scheduler.

The Gantt chart produced by a simulation of the schedule
is shown in Figure 4. In the chart, up-pointed arrows repre-

sent task activation times, while a task deadline is depicted

with an arrow pointing down. Rectangular blocks (indepen-
dently of their color) show the task running on the CPU.

Starting from an XML representation of the DAG, the

whole methodology, from the task partitioning and the
deadline assignment to the simulation, has been executed

with a tool we have developed.

6 Discussion

In these last years, UML communities are involved in an

important and difficult transaction from the 1.5 version of

the language to the more recent 2.0. The new specification
aims to be more “well defined” and complete than the pre-

vious ones, and it is also included in a wider context related

to MDE techniques. However, the last and final UML 2.0
specification was relased only the last July [12]. This aspect

is quite important on a practical point of view, since there
is a lack of fully compliant tools yet. In addition, the new

version of the UML superstructure is not compatible with

the old one, especially on the issues about the definition of
Activity Diagrams. As direct consequence, as briefly intro-

duced in Section 2.2, lots of description instruments such

as standard profiles can be used in theory with UML 2.0,
but not in practice yet. Of course, these problems presently

exist, but due to their temporary nature caused by current

technological changes, they do not leak the basic ideas sug-
gested by this work.

The profile presented in this work, beyond providing an

interface toward the standard UML world for the work de-
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scribed in Section 3, inherits all the advantages of the un-

derlying methodologies. In particular, we want to point out
the following features: the methodology allows to specify

and develop applications taking into account their tempo-

ral behavior, expressed directly by means of constraints on
its functionalities. Thanks to the automatic generation of

the task set, changes in the functional behaviour are au-

tomatically and optimally reflected in the task set organi-
zation, thus reducing the development time. Furthermore,

the functional specification ensures a correct use of shared
resources, by automatically generating the synchronization

mechanisms that are necessary to ensure mutual exclusion.

This prevents possible errors, simplifying the job of the de-
signer. In addition, as described in [4], the use of the SRP

[2] protocol togheter with the EDF scheduling policy en-

sures optimality from a schedulability point of view. At last,
the methodology directly supports schedulability analysis.

The result of the analysis can easily be back-annotated on

the UML specification. The designer can thus directly act
on the specification for removing bottlenecks, if the system

is not schedulable; or he or she can evaluate the possibil-

ity to add new functionalities, if there are enough resources
available. Annotating the results directly on the diagrams

permits a faster evaluation of the trade-offs.

7 Conclusions and Future Work

In this paper we have presented an extension to the SPT-
Profile in order to provide a UML interface to the method-

ology illustrated in [4]. The use of UML notations should
involve the interoperability with other design methodolo-

gies and tools. Furthermore, we believe that UML in the

MDE context represents, even in real-time and embedded
scenarios, a useful and easier support toward the systems

design automation from specification to implementation.

As a possible future work, it is our intention to imple-
ment a model into a model transformation engine from the

profile specification to the input schema actually used by the

tool that generates the task set, and simulate an EDF sched-
uler execution. In accordance with the problems related to

current technological limitations argued in Section 6, such

implementation will be as complete and UML 2.0 compli-
ant as possible.

Furthermore, as soon as the new MARTE [13] stable and

complete specification will be released, it is our intention to
redirect these ideas to take into account the new results.
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