
DQN-based Intelligent Application Placement with
Delay-Priority in Multi MEC Systems

Juan Sebastian Camargo∗, Estefanı́a Coronado∗†, Claudia Torres-Pérez∗,
Javier Palomares∗ and Muhammad Shuaib Siddiqui∗

∗i2CAT Foundation, Barcelona, Spain;
Email: {juan.camargo, estefania.coronado, claudia.torres, javier.palomares, shuaib.siddiqui}@i2cat.net
†High-Performance Networks and Architectures, Universidad de Castilla-La Mancha, Albacete, Spain;

Email: estefania.coronado@uclm.es

Abstract—In 5G Multi-access Edge Computing (MEC) is
critical to bring computing and processing closer to users and
enable ultra-low latency communications. When instantiating an
application, selecting the MEC host that minimizes the latency
but still fulfills the application’s requirements is critical. However,
as future 6G networks are expected to become even more
geo-distributed, and handled by multiple levels of management
entities, this labor becomes extremely difficult and Machine
Learning (ML) is meant to be a native part of this process. In
this context, we propose a Reinforcement Learning model that
selects the best possible host to instantiate a MEC application,
looking to minimize the end-to-end delay while fulfilling the
application requirements. The proposed ML method uses Deep
Q-Learning through several stages of environment state, taking
an action and rewarding the model when it chooses correctly
and penalizing it otherwise. By modifying the reward incentives,
we have successfully trained a model that chooses the best host
possible delay-wise on a multi-level orchestration scenario, while
meeting the applications’ requirements. The results obtained via
simulation over a series of MEC scenarios show a success rate
of up to 96%, optimizing the delay in the long term.

Index Terms—Reinforcement Learning, Application Place-
ment, DQN, MEC, 5G, 6G, Distributed Orchestration

I. INTRODUCTION

5G introduces Ultra-Reliable Low-Latency Communica-
tions (URLLC) as a fundamental use-case that aims to pro-
vide services with a tight operational window and high-end
restrictions in terms of latency and reliability. URLLC services
must provide almost instantaneous access, with almost zero
perceived delay in human-oriented services, such as health-
care, entertainment, and safety. To provide applications with
this extremely low delay, one solution is to place them in
servers as close to the user as possible, in what is known
as Multi-access Edge Computing (MEC). A MEC system
is defined as a collection of nodes, known as MEC hosts,
that can provide computation and virtualization capabilities,
and a centralized entity that controls said hosts, known as
a MEC Orchestrator (MEO). The MEC host is responsible
for installing the URLLC application that will serve the
radio nodes connected to it, limiting the use of the URLLC
application to a geographically defined area. It is expected
that 5G and 6G networks rely heavily on URLLC, creating
highly distributed geographical zones, that eventually would
need an intelligent application-placement system that can

manage where the delay-constrained applications would be
efficiently installed.

Being able to choose a proper MEC host that satisfies
the application requirements, delay-wise, is fundamental when
managing delay-sensitive applications. This is an already com-
plex problem when dealing with a single Orchestrator and
various MEC hosts, so considering finding the most suitable
host to instantiate an application in an architecture with several
MEOs and their corresponding MEC hosts can be an arduous
and nontrivial task. Traditionally, this placement problem can
be solved using a greedy algorithm to find the best suitable
location [1] or using fuzzy logic giving priority to a specific
network parameter [2].

The main inconvenience with the previous solving methods
is their inability to generalize, a handicap in the ever-changing
5G and future 6G networks. In this respect, Reinforcement
Learning (RL) has been proven a valuable asset in solving
this type of problem. In particular, RL can use the current
network status and propose the most suitable MEC host for
the instantiation of the application. RL Systems can handle a
high number of parameters and adapt to handle unknown states
of the network without having been exposed to them before.
Consequently, in this paper, we propose a method that uses
RL as a tool for the delay-wise instantiation of lag-constrained
applications in 5G or 6G environments across distributed MEC
systems. Additionally, we test our system following the delay-
constrains suggested by ETSI for URLLC use cases. Finally,
we present the results showing the advantages of using this
RL method in a simulated environment.

The paper is structured as follows: Sec. II presents the
related work. Sec. III describes the system architecture en-
visioned in this work, while Sec. IV describes the problem
formulation. Sec. V introduces the RL algorithm proposed to
solve the placement problem, minimizing delay in multi-level
orchestration scenarios. Sec. VI discusses the performance
evaluation. Finally, Sec. VII draws some concluding remarks.

II. RELATED WORK

Application placement at the edge is a sub-problem studied
in the context of resource allocation. Application and service
placement has been analyzed at several levels (from radio
access to the cloud) in the last few years, employing several

methods, such as numerical analysis, optimization problems,
and other algorithms [1], [2], [3], [4]. The paper in [2]
indicates a Quality of Experience (QoE)-aware application
placement, through fuzzy logic, that prioritizes requests and
classifies Fog instances according to user expectations. The
priority is based on access rate, required resources and pro-
cessing time. Conversely, the classification considers round
trip time, resource availability and processing speed. Mean-
while, the work in [1] uses a greedy algorithm with a multi-
stage stochastic programming model to minimize the total
execution cost of user applications, considering computation,
communication, and relocation cost. By contrast, the works
in [3], [4] intend to optimize time factors in Internet of Things
(IoT) scenarios. The real-time processing of applications is
considered in [3] with an approximation scheme in terms of
delay and bandwidth requirements. By contrast, the authors
of [4] focus on the mathematical model computation of finite
state machines optimizing completion time, energy consump-
tion and economic cost.

Many works have relied on ML to solve the previous
problem and, in particular, RL, as it has been proven to develop
effective performance in scenarios where the characteristics
and variations of the environment are not known in advance.
In this context, the works focused on IoT tend to firstly
transform the problem into an offloading problem with similar
requirements [5], [6], [7]. A Deep RL (DRL) approach is
studied in [5] to address task scheduling of fog-based IoT ap-
plications. The algorithm considers transmission, propagation,
waiting, and execution delay to achieve a trade-off between
them. The authors of [6] propose a distributed DRL model
for IoT in Edge and Fog Computing. The applications are
organized in Directed Acyclic Graphs (DAGs). Using the
same ML aproach, the paper in [8] proposes the placement
of Virtualized Network Functions (VNFs) in 5G networks
using DRL. This approach pursues the optimization of the
resource utilization and the minimization of the operational
costs of 5G networks while satisfying the Quality of Service
(QoS) requirements of the network. A similar work for Edge
Computing is described in [7]. DRL is employed for data-
intensive application deployment, aiming to reduce users’
latency and monetary costs for application service providers.

Similarly, a resource allocation framework for IoT applica-
tions is designed in [9]. It employs a novel two-stage DRL
scheme maximizing users’ QoE, and tunes the application
requirements to align with the available edge resources. The
alignment is performed by selecting the QoS range that can
be satisfied by the available resources. The model considers
packet loss rate, packet error rate and latency. The authors
of [10] perform application placement in Fog Computing,
considering user QoE. It is a model-based Value expansion
to determine long-term Q-value. The research in [11] studies
the application placement problem based on the ETSI MEC
architecture to balance the computational load. It allows the
MEC orchestrator to decide on the platform to host MEC
applications. However, the proposed work relies on an Integer
Linear Programming method instead of an RL algorithm.

The majority of the research examined is focused on IoT
application placement while reducing delay parameters in Fog
or Edge Computing environments. Different from previous
works, in this paper we solve the application placement
problem by prioritizing delay minimization in an ETSI MEC
compliant architecture while considering a novel multi-MEC
orchestration environment, aware of the available computa-
tional resources. We propose a multi-level architecture that
employs a primary orchestrator in charge of several MEC
orchestrators, as opposed to the examined studies, which
mainly do the analysis on just one level. The model developed
leverages a well-tested deep RL approach that is based on the
application’s requirements rather than its nature.

III. SYSTEM ARCHITECTURE

The system architecture envisioned in this work is based
on the MEC reference architecture proposed by ETSI [12]. A
MEC system is composed of various distributed nodes, known
as MEC hosts. Each MEC host has computing, storage, RAM,
and network resources, which are employed to instantiate
applications, seeking to decrease the overall user’s delay. A
MEC system also comprises an entity managing the MEC
hosts, known as MEO. In future 5G and beyond and 6G
networks, it is expected to have topologies with multiple MEC
systems, which would increase the complexity of choosing a
host to meet the applications’ requests, also considering that
each of them may belong to a different administrative domain.
In this scenario, we introduce a centralized control entity, on
top of the MEC architecture, and responsible for managing all
the MEC systems. This entity, named Multi-MEC Orchestrator
(MMO) can access all the information from its subordinated
MEC systems, and based on those parameters, can choose the
best MEC host to instantiate an application.

Given the currently restricted delay times needed for
URLLC applications and the high number of parameters
involved, a human-controlled network is not only unfeasible
but also error-prone. Additionally, with the network’s hetero-
geneity, and the time-changing environments, having a fixed
pre-configuration to manage the network is also not an option
as it would rapidly turn itself obsolete. However, that same
environment of high performance and an elevated number of
parameters allows us to introduce an RL model that works
together with the MMO to successfully fulfill the network’s
requirements. A high-level view of the architecture can be
seen in Fig 1. The application instantiation requests come first
from the MMO, which searches for the possible MEC host
that complies with the application requirement, prioritizing the
fulfillment of the delay constraints of the application. Having
selected the best possible MEC host, the MMO forwards
the request to the corresponding MEC orchestrator, which
instantiates the application.

IV. PROBLEM FORMULATION

This section presents the mathematical formulation of the
application placement problem considering multiple MEC
systems. The method uses the information available in the

Fig. 1. High-level view of the multi MEC architecture.

MMO regarding the capacity of all the nodes of each MEC
system and its current end-to-end delays. It is assumed that
the MMO has all network’s information and can share it under
requirement to the MEC host choosing method.

Let N be the total number of MEC systems in our
network architecture and M be the number of nodes in
each MEC system. Each m ∈ M has the corresponding
current resource availability of the evaluated parameters:
i.e., CPU (CPU), RAM (RAM), storage (ST) and delay
parameters (D) associated with any given state s ∈ S .
For each s there is a capacity vector showing the cur-
rently available A⃗ resources of each MEC system, such as
A⃗s

n,m = [ACPUs
n,m , ARAMs

n,m , AST s
n,m , ADs

n,m]. This avail-
ability vector is updated whenever a new application is instan-
tiated in any MEC system. Additionally, there is a maximum
capacity vector C, containing the maximum computational
capabilities of each of the resources in each MEC host, such
as C⃗n,m = [CPUn,m|max, RAMn,m|max, STn,m|max].

Let I be the set of application instantiation requests. Each
instantiation i ∈ I contains a request vector (R) composed
by the demanded computational resources (CPU, RAM, and
storage) and the maximum application’s delay budget, such as
R⃗i = [RCPU

i , RRAM
i , RST

i , RD
i]. Given a reward function F ,

the reward values of any state s are Fs = [F1, F2, ..., Fm].
Table I outlines all the model’s parameters.

The main objective of the host-choosing method is to find
an optimum MEC host with enough capacity to meet the
application requirements while fulfilling its delay constraints.
To formulate this problem, the following two binary variables
have been defined. First, we propose xn,m, which indicates if
a node m in a MEC system n is active or not:

xn,m =

{
1 , if node m in MEC systems n is active
0 , otherwise (1)

We also define yin,m, which indicates if the request i ∈ I has
been successfully deployed in the node m of MEC system n:

yin,m =

{
1 , if request r is successfully placed and deployed
0 , otherwise

(2)

TABLE I
SUMMARY OF THE SYSTEM MODEL PARAMETERS.

Notation Description
N Number of MEC systems composing the network, n ∈ [1,N]
M Number of nodes of each MEC system, m ∈ [1,M]
S States of the network, s ∈ S
A⃗s

n,m Available resource vector associated to any state s ∈ S in a
node m ∈ M of the MEC system n ∈ N
A⃗s

n,m =
[
ACPUs

n,m , ARAMs
n,m , ASTs

n,m , ADs
n,m

]
C⃗n,m Maximum capacity of each computational resource in each

MEC host m ∈ M of the MEC system n ∈ N
C⃗n,m = [CPUn,m|max, RAMn,m|max, STn,m|max]

I Set of application instantiation requests, i ∈ [1, I]
R⃗i Resource request vector with computational resources and

maximum delay time R⃗i =
[
RCPU

i , RRAM
i , RST

i , RD
i

]
Fs Reward function of any given state of the network s ∈ S

Fs = [F1, F2, ..., Fn]

The main objective is to maximize the reward function,
which minimizes the delay, by selecting the MEC system that
generates the highest value for a given request, such as:

max : Fs ∀s ∈ S (3)

Additionally, we would like to maximize the number of
application requests deployed successfully, such as:

max :
∑
i∈I

yin,m ∀m ∈ M ∀n ∈ N (4)

The constraints of the proposed problem are the following:
• The computational resources demand of all requests al-

located in any node m ∈ M of any MEC system n ∈ N
cannot exceed its total capacity in terms of CPU (CPU),
RAM (RAM), storage (ST):∑
∀i∈I

RCPU
i ≤ ACPUs

n,m ·xn,m ∀m ∈ M,∀n ∈ N ,∀s ∈ S

(5)∑
∀i∈I

RRAM
i ≤ ARAMs

n,m ·xn,m ∀m ∈ M,∀n ∈ N ,∀s ∈ S

(6)∑
∀i∈I

RST
i ≤ AST s

n,m · xn,m ∀m ∈ M,∀n ∈ N ,∀s ∈ S

(7)
• The application delay parameter cannot exceed the value

demanded in any request:

RD
i ≤ ADs

n,m ∀i ∈ I,∀m ∈ M,∀n ∈ N ,∀s ∈ S (8)

In addition, given the dependency between the variables x
and y, a relationship between them has to be added, as follows:

if
∑

∀m∈M

∑
∀n∈N

xi
n,m = 0 ⇒ yin,m = 0 ⇒ Fs = 0 (9)

V. DELAY-AWARE REINFORCEMENT LEARNING
PLACEMENT ALGORITHM

The control method presented in this paper uses a RL
technique mixed with a deep neural network predictor, where
an agent is exposed to an environment with a pool of ac-
tions regarding placement decisions. If the agent chooses to

Fig. 2. Deep Q-Learning cycle.

place an application in a MEC host that completely fulfills
the requirements, especially the delay characteristics of the
application to instantiate, it receives a high reward value. On
the other hand, if the agent chooses a MEC host that does
not fulfil the application requirements, it is penalized with a
negative reward. The reward function symbolizes the instant-
value that the model obtains by selecting a specific action to a
given state. If we continue generating reward values for each
pair of action-states, we obtain a long-term value for each one
named Q. As this process is computationally expensive, we
use a neural network to predict an estimated Q value, which
is known as Deep Q-Learning [13].

The model determines the best action by obtaining the Q
value followed by an exploration/exploitation step. Exploration
allows the model to take random actions initially and then
focus on exploitation where the best actions are chosen. This is
important when the reward is not instant and the model needs
to explore other options for long-term benefit. The complete
process is shown in Fig 2

An index is associated to each of the computational re-
sources (RAM, CPU, and storage), which represents how
much free space there would be in each of the hosts after
the application would have been instantiated. The value is
proportional for the free space left in the host, meaning that
the normalized value is closer to 1 if there is plenty of free
space and closer to zero otherwise. Eq. 10 depicts how the
value of the index is calculated. It takes into consideration the
subtraction of the values of the request R⃗i and the resource
availability A⃗s

n,m vectors.
A higher value shows that the MEC host is more suitable

for the instantiation than another host with a lower number. In
explanation, a higher number prevents selecting a low-resource
host able to instantiate the application and favors another host
(also with enough capacity for the instantiation) with more
resources available.

CPUindex =
As

n,m|CPU −Ri|CPU

Cn,m[CPU |max]
(10)

RAMindex =
As

n,m|RAM −Ri|RAM

Cn,m[RAM |max]
(11)

STindex =
As

n,m|ST −Ri|ST

Cn,m[ST |max]
(12)

Additionally, after having obtained all the parameter indexes
of the three capacity indicators, we proceed to obtain the delay
index separately. The delay here refers to the end-to-end delay
from the UE to the MEC host, including the transmission,
processing and queueing delay. This index is bounded by the
maximum and minimum delays that the model uses, in the
way described in Eq. 13.

Dindex =


0 if ADs

n,m < RD
m,n

Dmax−RD
m,n

Dmax−Dmins
otherwise

(13)

Having found the four indexes, the next step is to make a
summation among them and then divide them by the delay
index. As the normalized delay is bounded between zero and
one, the lower the delay index, the higher the value obtained
in the reward, encouraging the RL model to select this low
delay options. Finally, with these four indexes we obtain the
function fs

m,n(R
D
m,n), described in Eq. 14, that is used in the

reward function proposed in this paper in Eq. 15.

fs
m,n(R

D
m,n) =

CPUindex +RAMindex + STindex

Dindex
(14)

rs =


0

∑
∀n∈N

∑
∀m∈M

xn,m = 0

0 A⃗s
n,m < R⃗s

i ∀n ∈ N ,∀m ∈ M,∀s ∈ S
fs
m,n(R

D
m,n) otherwise

(15)
This reward function first filters the scenarios in which there

are no active nodes present in the architecture and assigns a
total reward of 0. Conversely, the next step is to check if the
current capacity of the hosts, in terms of capacity and delay, is
enough to fulfill the application requirements. Again, if there
is no capacity in any of the nodes, the reward is zero, as
there is no action that can provide a satisfactory solution to
the instantiation petition. Finally, if these two filters are passed
successfully, the reward value is obtained based in the function
presented in Eq. 14.

Eq. 14 provides a simple yet useful reward function. It
is bounded in the range [0,1], generating rewards closer
to 1 when the host is empty and closer to 0 in opposite
circumstances. This continuous range help the RL model to
learn easier as for subtle changes between one state and its
respective adjacent state there is a corresponding subtle change
in their reward functions.

VI. PERFORMANCE EVALUATION

A. Training Methodology

The training follows the architecture described in Sec-
tion III, having two MEC systems connected to a centralized
MMO. Each MEC system manages two MEC hosts, each of

which has associated three computing parameters, i.e., RAM,
CPU and storage, and an additional delay parameter. Both the
training and evaluation is performed via simulation, which is
based on a series of episodes where the RL model interacts
with the environment and takes an action, being rewarded
accordingly, and then transitions to the next episode.

According to [14], the maximum end-to-end latency for
URLLC varies between 10 and 60 ms. Therefore, the delay
constraints are defined randomly in the [10-60 ms] range.
Note that the delay parameter refers to the end-to-end delay.
The application requirements, including the delay budget,
are generated randomly following a normal distribution. The
simulation uses values in the [0,100] range for the capacity
parameters and scales the delay values to match the same
range. Throughout all the episodes, the maximum capacity
of all nodes is fixed at 100. Each episode represents a new
application instantiation request. At the beginning of each
episode, the capacity, and delay of all the MEC hosts is
randomly assigned, including a historical value that simulates
the already installed applications in said MEC host.

The environment selects a random action and obtains a
reward (as described in Eq. 15). With time, the selection of
actions becomes less random and more focused on choosing
the action that generates the highest reward. This exploration-
exploitation trade-off is necessary for the system to explore
different options and identify those that generate the highest
reward in the long-term. The training process produces new
application requests until all MEC hosts are full and no more
instantiations are possible.

B. Neural Network Configuration

The neural network used by the RL model consists of four
layers: one input layer, two hidden layers and one output layer.
The input layer uses as input the number of parameters per
MEC hosts times the number of MEC hosts working under
the MMO, plus the parameters of the application request. The
two hidden layers are fully connected and have 16 neurons
each, using a Rectified Linear Unit (ReLU) as the activation
function. The output layer of the neural network contains an
equal number of nodes as the total number of MEC hosts, with
each output value representing the probability of selecting the
corresponding MEC host.

C. Performance Evaluation

We propose two scenarios to test the method’s capabilities.
Scenario 1 is composed of two MEC systems, each of them
managing two MEC hosts, for a total of four MEC hosts. Sce-
nario 2 envisions four MEC systems, each of them containing
two MEC hosts, for a total of eight MEC hosts. Following the
previous methodology, the obtained results from the training
process in these environments is shown in Fig. 3 for Scenario 1
and Fig. 5 for Scenario 2. Both figures describe the accuracy
of the last 100 episodes throughout the training process. The
accuracy is calculated by comparing the model’s output against
the optimal answer obtained from the reward function. It can
be observed that Scenario 1 reaches a plateau around 1000

Fig. 3. Average accuracy through training for Scenario 1.

Fig. 4. Accuracy before and after training for Scenario 1.

episodes, whereas Scenario 2 does it around 2000 episodes.
For Scenario 1, the final training accuracy is around 96%,
slightly more than 91% value for Scenario 2.

During inference, a set of random application instantiation
requests is generated at the MMO. Therefore, once received,
the MMO forwards it to the already trained RL model, which
must decide the best MEC host to instantiate the application
across all available ones in all MEC systems. Once the model
has taken a decision, the network parameters are updated with
a new host status, a random delay time for the hosts is chosen,
and the cycle is restarted. This cycle procedure is repeated 100
times for each scenario, obtaining an average accuracy of 95%
and 92% for Scenario 1 and Scenario 2, respectively.

Additionally, we evaluate Scenario 1 and Scenario 2 using
the same inference process as previously, but this time we
choose the applications from a pre-defined list rather than
randomly, wanting to evaluate the model’s behavior before
and after training. To do so, we execute inference in an
entirely untrained model, sending the application list through
the untrained model 100 times and determining the overall
accuracy level after each pass. The identical application set
is then run 100 times over a completely untrained model.
We obtain an average accuracy of 23% for the untrained
model in Scenario 1. However, considering that it is a four-
host architecture, the untrained RL model is choosing the
host totally at random (a random choice for 4 hosts is 25%).
On the other hand, testing the fully trained model using the
same application list, we obtain around 93% of accuracy rate.
The training accuracy before and after the training can be

Fig. 5. Average accuracy through training for Scenario 2.

Fig. 6. Accuracy before and after training for Scenario 2.

seen in Fig. 4, including the 95% confidence interval for
Scenario 1. We performed the same inference process using
the architecture in Scenario 2, with an average accuracy level
of 11% (a complete random choice for 8 hosts is 12.5%)
before and 83% after training, respectively, as shown in Fig. 6.
It can be observed that, although both scenarios reached a
comparable accuracy level, it takes almost the double of
episodes for Scenario 2 to converge compared with Scenario 1.
Considering that there are fewer hosts in Scenario 1, the
RL model was able to cover a sufficient state space during
training to function accurately. However, as the number of
nodes increases, the required state space to achieve the same
values also increases proportionally. Similarly, by having been
able to explore a larger portion of the state space, the level
of effectiveness of the model could potentially be higher.
However, the accuracy presented by doubling the number of
hosts is within the range of use in a demanding environment,
showing that the RL model could be scaled successfully.

VII. CONCLUSION

In this paper, we have presented a RL method that allows
a MMO to choose the best host delay-wise for application
instantiation in multi-level MEC orchestration. The proposed
DQN model can predict with 96% accuracy the best possible
host destination for the application. Additionally, even though
the model was designed with end-to-end delay in mind as
the key parameter, together with the awareness of the infras-
tructure status, we aim to expand it and use other network
parameters. Thanks to the flexibility of RL, the main variable

could be adjusted, and any other technical parameter could
be used instead. As another line of future work, we aim to
improve the accuracy levels by modifying the neural network’s
parameters and perform an exhaustive fine-tune of the model.

ACKNOWLEDGMENT

This work has been performed in the framework of the
European Union’s Horizon 2020 AI@EDGE project co-
funded by the EU under grant agreement No 101015922.
The authors would also like to acknowledge CERCA
Programme / Generalitat de Catalunya for sponsoring
part of this work. This work has been also sup-
ported by the EU “NextGenerationEU/PRTR”, MCIN
and AEI (Spain) under project IJC2020-043058-I, by
the grant ONOFRE-3 PID2020-112675RB-C43 funded by
MCIN/AEI/10.13039/501100011033 and also by the Horizon
European project NANCY under grant agreement 101096456.

REFERENCES

[1] H. Badri, T. Bahreini, D. Grosu, and K. Yang, “A Sample Average
Approximation-Based Parallel Algorithm for Application Placement in
Edge Computing Systems,” in Proc. of IEEE IC2E, Orlando, FL, USA,
Apr. 2018, pp. 198–203.

[2] R. Mahmud, S. N. Srirama, K. Ramamohanarao, and R. Buyya, “Quality
of Experience (QoE)-aware placement of applications in Fog computing
environments,” Journal of Parallel and Distributed Computing, vol. 132,
pp. 190–203, Oct. 2019.

[3] R. Yu, G. Xue, and X. Zhang, “Application Provisioning in FOG
Computing-enabled Internet-of-Things: A Network Perspective,” in
Proc. of IEEE INFOCOM, Honolulu, USA, Apr. 2018, pp. 783–791.

[4] N. Mehran, D. Kimovski, and R. Prodan, “MAPO: A Multi-Objective
Model for IoT Application Placement in a Fog Environment,” in Proc.
of ACM IoT, Bilbao, Spain, Oct. 2019, pp. 1–8.

[5] P. Gazori, D. Rahbari, and M. Nickray, “Saving time and cost on
the scheduling of fog-based IoT applications using deep reinforcement
learning approach,” Future Generation Computer Systems, vol. 110, pp.
1098–1115, Sep. 2020.

[6] M. Goudarzi, M. S. Palaniswami, and R. Buyya, “A Distributed Deep
Reinforcement Learning Technique for Application Placement in Edge
and Fog Computing Environments,” IEEE Transactions on Mobile
Computing, pp. 1–1, Oct. 2021.

[7] Y. Chen, S. Deng, H. Zhao, Q. He, Y. Li, and H. Gao, “Data-Intensive
Application Deployment at Edge: A Deep Reinforcement Learning
Approach,” in Proc. of IEEE ICWS, Milan, Italy, Jul. 2019, pp. 355–359.

[8] A. Dalgkitsis, P.-V. Mekikis, A. Antonopoulos, G. Kormentzas, and
C. Verikoukis, “Dynamic resource aware vnf placement with deep
reinforcement learning for 5g networks,” in GLOBECOM 2020-2020
IEEE Global Communications Conference. IEEE, 2020, pp. 1–6.

[9] I. Alqerm and J. Pan, “DeepEdge: A New QoE-Based Resource Al-
location Framework Using Deep Reinforcement Learning for Future
Heterogeneous Edge-IoT Applications,” IEEE Transactions on Network
and Service Management, vol. 18, no. 4, pp. 3942–3954, Dec. 2021.

[10] B. Krishnamurthy, S. G. Shiva, and S. Das, “MVE-based Reinforcement
Learning Framework with Explainability for improving Quality of
Experience of Application Placement in Fog Computing,” in Proc. of
AIIoT, Seattle, WA, USA, Jun. 2022, pp. 084–090.

[11] B. Brik, P. A. Frangoudis, and A. Ksentini, “Service-Oriented MEC
Applications Placement in a Federated Edge Cloud Architecture,” in
Proc. of IEEE ICC, Dublin, Ireland, Jun. 2020, pp. 1–6.

[12] “Multi-access Edge Computing (MEC). Framework and Reference Ar-
chitecture,” European Telecommunications Standards Institute (ETSI),
France, Standard, Mar. 2022.

[13] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski
et al., “Human-level control through deep reinforcement learning,”
nature, vol. 518, no. 7540, pp. 529–533, Feb. 2015.

[14] “Service Requirements for Next Generation New Services and Markets,”
European Telecommunications Standards Institute (ETSI), France, Stan-
dard, Oct. 2018.

